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Abstract

The gap between sensing patterns of different face modalities
remains a challenging problem in heterogeneous face recog-
nition (HFR). This paper proposes an adversarial discrimina-
tive feature learning framework to close the sensing gap vi-
a adversarial learning on both raw-pixel space and compact
feature space. This framework integrates cross-spectral face
hallucination and discriminative feature learning into an end-
to-end adversarial network. In the pixel space, we make use
of generative adversarial networks to perform cross-spectral
face hallucination. An elaborate two-path model is introduced
to alleviate the lack of paired images, which gives consider-
ation to both global structures and local textures. In the fea-
ture space, an adversarial loss and a high-order variance dis-
crepancy loss are employed to measure the global and local
discrepancy between two heterogeneous distributions respec-
tively. These two losses enhance domain-invariant feature
learning and modality independent noise removing. Experi-
mental results on three NIR-VIS databases show that our pro-
posed approach outperforms state-of-the-art HFR methods,
without requiring of complex network or large-scale training
dataset.

Introduction

Face recognition research has been significantly promot-
ed by deep learning techniques recently. But a persisten-
t challenge remains to develop methods capable of match-
ing heterogeneous faces that have large appearance discrep-
ancy due to various sensing conditions. Typical heteroge-
neous face recognition (HFR) tasks conclude visual versus
near infrared (VIS-NIR) face recognition (Yi et al. 2007;
2009), visual versus thermal infrared (VIS-TIR) face recog-
nition (Socolinsky and Selinger 2002), face photo versus
face sketch (Tang and Wang 2004; Wang and Tang 2009),
face recognition across pose (Huang et al. 2017) and so on.
VIS-NIR HFR is the most popular and representative task in
HFR. This is because NIR imaging provides a low-cost and
effective solution to acquire high-quality images under low-
light scenarios. It is widely applied in surveillance systems
nowadays. However, the popularization of NIR images is far
from VIS images, and most face databases are enrolled in
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Figure 1: The proposed adversarial discriminative HFR
framework. Adversarial learning is employed on both raw-
pixel space and compact feature space.

VIS domain. Consequently, the demand for face matching
between NIR and VIS images grows gradually.

A major challenge of HFR comes from the gap between
sensing patterns of different face modalities. In practice, hu-
man face appearance is often influenced by many factors,
including identities, illuminations, viewing angles, expres-
sions and so on. Among all the factors, identity difference
accounts for intra-personal differences while the rest lead
to inter-personal differences. A key effort for face recogni-
tion is to alleviate intra-personal differences while enlarge
inter-personal differences. Specifically, in the heterogeneous
case, the noise factors that cause inter-personal differences
show diverse distributions in different modalities, e.g. vari-
ous spectrum sensing distribution between VIS domain and
NIR domain, leading to a more complex problem to preserv-
ing the identity relevance between different modalities.

A lot of research efforts have been devoted to elim-
inating the sensing gap (Socolinsky and Selinger 2002;
Yi et al. 2007; Li et al. 2013). One straightforward ap-
proach to cope with the sensing gap is to transform hetero-
geneous data onto a common comparable space (Lei et al.
2012). Another commonly used strategy is to map data from
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one modality to another (Lei et al. 2008; Wang et al. 2009;
Huang and Frank Wang 2013). Most of these methods only
focus on minimizing the sensing gap, but not emphasize dis-
crimination among different subjects, causing performance
reduction when the number of subjects increases.

Another challenge for HFR is the lack of paired train-
ing data. General face recognition and hallucination have
benefited a lot from the development of deep neural net-
works. However, the success of deep learning relies on large
amount of labeled or paired training data to some extent. Al-
though we can easily collect large-scale VIS images through
the internet, it is hard to collect massive paired heteroge-
neous image data such as NIR images and TIR images. How
to take the advantage of the powerful general face recogni-
tion to boost HFR and cross-spectral face hallucination is
worth studying.

To address the above two issues, this paper proposes an
adversarial discriminative feature learning framework for H-
FR by introducing adversarial learning on both raw-pixel
space and compact feature space. Figure 1 is the pipeline
of our approach. Cross-spectral face hallucination and dis-
criminative feature learning are simultaneously considered
in this network. In the pixel space, we make use of genera-
tive adversarial networks (GAN) as a sub-network to perfor-
m cross-spectral face hallucination. An elaborate two-path
model is introduced in this sub-network to alleviate the lack
of paired images, which gives consideration to both glob-
al structures and local textures and results in a better visual
result. In the feature space, an adversarial loss and a high-
order variance discrepancy loss are employed to measure
the global and local discrepancy between two heterogeneous
feature distributions respectively. These two losses enhance
domain-invariant feature learning and modality independen-
t noise removing. Moreover, we implement all these glob-
al and local information in an end-to-end adversarial net-
work, resulting in relatively compact 256 dimensional fea-
tures. Experimental results show that our proposed adver-
sarial approach not only outperforms state-of-the-art HFR
methods but also can generate photo-realistic VIS images
from NIR images, without requiring of complex network or
large-scale training dataset. The results also suggest that the
joint hallucination and feature learning is helpful to reduce
the sensing gap.

The main contributions are summarized as follows,

• A cross-spectral face hallucination framework is embed-
ded as a sub-network in adversarial learning based on
GAN. A two-path architecture is presented to cope with
the absence of well aligned image pairs and improve face
image quality.

• An adversarial discriminative feature learning strategy is
presented to seek domain-invariant features. It aims at e-
liminating the heterogeneities in compact feature space
and reducing the discrepancy between different modali-
ties in terms of both local and global distributions.

• Extensive experimental evaluations on three challenging
HFR databases demonstrate the superiority of the pro-
posed adversarial method, especially taking feature di-
mension and visual quality into consideration.

Related Work
What makes heterogeneous face recognition different from
general face recognition is that we need to place data from
different domains to the same space, only by which the mea-
surement between heterogeneous data can make sense.

A kind of approaches uses data synthesis to map data
from one modality into another. Thus the similarity rela-
tionship of heterogeneous data from different domain can
be measured. In (Liu et al. 2005), a local geometry p-
reserving based nonlinear method is proposed to gener-
ate pseudo-sketch from face photo. In (Lei et al. 2008),
they propose a canonical correlation analysis (CCA) based
multi-variate mapping algorithm to reconstruct 3D model
from a single 2D NIR image. In (Wang and Tang 2009),
multi-scale Markov Random Fields (MRF) models are ex-
tend to synthesize sketch drawing from given face photo
and vice versa. In (Wang et al. 2009), a cross-spectrum
face mapping method is proposed to transform NIR and
VIS data to another type. Many works (Wang et al. 2012;
Juefei-Xu, Pal, and Savvides 2015) resort to coupled or joint
dictionary learning to reconstruct face images and then per-
form face recognition. However, large amount of pairwise
multi-view data are essential for these methods based on da-
ta synthesis, making it very difficult to collect training im-
ages. In (Lezama, Qiu, and Sapiro 2016), they design a patch
mining strategy to collect aligned image patches, and then
produce VIS faces from NIR images through a deep learn-
ing approach.

Another kind of methods deals with heterogeneous data
by projecting them to a common latent space respectively, or
learn modality-invariant features that are robust to domain
transfer. In (Lin and Tang 2006), Common Discriminan-
t Feature Extraction (CDFE) is proposed to transform data
to a common feature space, which takes both inter-modality
discriminant information and intra-modality local consisten-
cy into consideration. (Liao et al. 2009) use DoG filtering as
preprocessing for illumination normalization, and then em-
ploy Multi-block LBP (MB-LBP) to encode NIR as well as
VIS images. (Klare and Jain 2010) further combine HoG
features to LBP descriptors, and utilize sparse representa-
tion to improve recognition accuracy. (Goswami et al. 2011)
incorporate a series of preprocessing methods to do nor-
malization, then combine Local Binary Pattern Histogram
(LBPH) representation with LDA to extract robust features.
In (Zhang, Wang, and Tang 2011), a coupled information-
theoretic projection method is proposed to reduce the modal-
ity gap by maximizing the mutual information between pho-
tos and sketches in the quantized feature spaces. In (Lei et
al. 2012), a coupled discriminant analysis method is sug-
gested that involves the locality information in kernel space.
In (Huang et al. 2013), a regularized discriminative spec-
tral regression (DSR) method is developed to map hetero-
geneous data into the same latent space. In (Hou, Yang,
and Wang 2014), a domain adaptive self-taught learning ap-
proach is developed to derive a common subspace. In (Zhu
et al. 2014), Log-DoG filtering is involved with local en-
coding and uniform feature normalization to reduce hetero-
geneities between VIS and NIR images. (Shao and Fu 2017)
propose a hierarchical hyperlingual-words (Hwords) to cap-
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ture high-level semantics across different modalities, and a
distance metric through the hierarchical structure of Hwords
is presented accordingly.

Recently, many works attempt to address the cross-modal
matching problem by deep learning methods benefitting
from the development of deep learning. In (Yi, Lei, and
Li 2015) , Restricted Boltzmann Machines (RBMs) is used
to learn a shared representation between different modali-
ties. In (Liu et al. 2016), the triplet loss is applied to reduce
intra-class variations among different modalities as well as
augment the number of training sample pairs. (Kan, Shan,
and Chen 2016) develop a multi-view deep network that is
made up of view-specific sub-network and common sub-
network, in which the view-specific sub-network attempts
to remove view-specific variations while the common sub-
network seeks for common representation shared by al-
l views. In (He et al. 2017), subspace learning and invariant
feature extraction are combined into CNNs. This method ob-
tains the state-of-the-art HFR result on CASIA NIR-VIS 2.0
database.

As mentioned before, our work is also related to the fa-
mous adversarial learning. GAN (Goodfellow et al. 2014)
has achieved great success in many computer vision ap-
plications including image style transfer (Zhu et al. 2017;
Isola et al. 2017), image generation (Shrivastava et al. 2017;
Huang et al. 2017) , saliency detection (Hu, Zhao, and Tan
2017) and object detection (Li et al. 2017; Wang, Shrivasta-
va, and Gupta 2017). Adversarial learning provides a simple
yet efficient way to fit target distribution via the min-max
two-player game between generator and discriminator. Mo-
tivated by this, we introduce adversarial learning in NIR-
VIS face hallucination and domain-invariant feature learn-
ing, aiming at closing the sensing gap of heterogeneous data
in pixel space and feature space simultaneously.

The Proposed Approach

In this section, we present a novel framework for the cross-
modal face matching problem based on adversarial discrim-
inative learning. We first introduce the overall architecture,
and then describe the cross-spectral face hallucination and
the adversarial discriminative feature learning separately.

Overall Architecture

The goal of this paper is to design a framework that enables
learning of domain-invariant feature representations for im-
ages from different modalities, i.e. VIS face images IV and
NIR face images IN .

We can easily get numerous VIS face images for train-
ing thanks to the prosperous of social network. In most cir-
cumstances, face recognition approaches are trained with
VIS face images, which cannot achieve full performance
when handling with NIR images. Besides, it is necessary to
archive all processed images for most face recognition sys-
tems in real-world applications. However, NIR face images
are much harder to distinguish by humans comparing with
VIS faces. A feasible way is to convert NIR face images in-
to VIS spectrum. Thus, we employ a GAN to perform cross-
spectral face hallucination, aiming at better fitting the VIS-

based face models as well as producing VIS-like images that
are friendly to human eyes.

However, we find that it is insufficient that only transfer-
ring NIR images into VIS spectrum in NIR-VIS HFR. A
reasonable explanation is that NIR images are distinct with
VIS images not just on imaging spectrum. For example, NIR
face images often have darker or blurrier outlines due to the
distance limit of the near-infrared illumination. The special
way of imaging for NIR images makes the noise factors that
cause inter-personal differences show diverse distributions
compared to the VIS images. Hence, an adversarial discrim-
inative feature learning strategy is proposed in our approach
to reduce heterogeneities between VIS and NIR images.

To summarize, the proposed approach consists of two key
components (shown in Fig. 1): cross-spectral face hallucina-
tion and adversarial discriminative feature learning. These
two components try to eliminate the gap between differen-
t modalities in raw-pixel space and compact feature space
respectively.

Cross-spectral Face Hallucination

The outstanding performance of GAN in fitting data dis-
tribution has significantly promoted many computer vision
applications such as image style transfer (Zhu et al. 2017;
Isola et al. 2017). Motivated by its remarkable success, we
employ GAN to perform the cross-spectral face hallucina-
tion that converting NIR face images into VIS spectrum.

A major challenge in NIR-VIS image converting is that
image pairs are not aligned accurately in most databases.
Even though we can align images based on facial landmark-
s, the pose and facial expression of the same subject stil-
l vary quite a lot. Therefore, we build our cross-spectral
face hallucination models based on the CycleGAN frame-
work (Zhu et al. 2017), which can handle unpaired image
translation tasks. As illustrated in Fig. 1, a pair of genera-
tors GV : IN → IV and GN : IV → IN are introduced
to achieve opposite transformation, with which we can con-
struct mapping cycles between VIS and NIR domain. Asso-
ciated with these two generators, DV and DN aim to dis-
tinguish between real images I and generated images G(I)
correspondingly.

Generators and discriminators are trained alternatively
toward adversarial goals, following the pioneering work
of (Goodfellow et al. 2014). The adversarial losses for gen-
erator and discriminator are shown in Eq. 1 and Eq. 2 re-
spectively.

LG−adv = −EI∼P (I) logD (G (I)) , (1)

LD−adv = E
I
′∼P(I′) log(1−D(I

′

))

+ EI∼P (I) logD (G (I)) ,
(2)

where I and I
′

are images from different modalities.
In the CycleGAN framework, an extra cycle consisten-

cy loss Lcyc is introduced to guarantee consistency be-

tween input images and the reconstructed images, e.g. IN

vs. GN (GV (I
N )) and IV vs. GV (GN (IV )). Lcyc is calcu-

lated as

Lcyc = EI∼P (I)‖I − F (G (I))‖1, (3)
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Figure 2: The proposed two-path architecture used in cross-
spectral face hallucination.

where F is the opposite generator to G. In our cross-spectral
face hallucination case, if G is used to transfer VIS faces into
NIR spectrum, then F is used to transfer NIR faces into VIS
spectrum.

We find that a single generator is hard to synthesize high
quality cross-spectral images with both global structures and
local details are well reconstructed. A possible explanation
is that convolutional filters are shared across all the spatial
locations, which are seldom suitable for recovering global
and local information at the same time. Therefore, we em-
ploy a two-path architecture as shown is Fig. 2. Since the pe-
riocular regions show special correspondences between NIR
images and VIS images diverse from other facial areas, we
add a local path around eyes so as to precisely recover details
of the periocular regions.

Because VIS images and NIR images mainly have differ-
ence in light spectrum, the structure information should be
preserved after cross-spectral translations. Similar to (Leza-
ma, Qiu, and Sapiro 2016), we choose to represent the input
and output images in YCbCr space, for which the luminance
component Y encode most structure information as well as i-
dentity information. An luminance-preserving term is adopt-
ed in the global path to enforce structure consistency:

Lintensity = EI∼P (I)‖Y (I)− Y (G (I))‖1 (4)

in which Y (.) stands for the Y channel of images in YCbCr
space.

To sum up, the full objective for generators GV , GN is:

LG = LG−adv + α1Lcyc + α2Lintensity (5)

where α1 and α2 are loss weight coefficients.

Adversarial Discriminative Feature Learning

In this section, we propose a simple way to learn domain-
invariant face representations using adversarial discrimina-
tive feature learning strategy. Ideal face feature extractor
should be capable of alleviating the discrepancy caused by
different modalities, while keeping discriminant among dif-
ferent subjects.

Adversarial Loss As mentioned above, GAN has strong
ability of fitting target distribution via the simple min-max
two-player game. In this section, we use GAN in cross-view
feature learning so as to eliminate domain discrepancy in

feature-level. As demonstrated in Fig. 1, an extra discrimi-
nator DF is employed to act as the adversary to our feature
extractor. DF outputs a scalar value that indicates the proba-
bility of belonging to VIS feature space. The adversarial loss
of our feature extractor takes the form:

LF−adv = −EIN∼P (IN ) logDf

(

F
(

GV

(

IN
)))

(6)

By enforcing the fitting of NIR feature distribution to
VIS feature distribution, we can remove the noise factors
accounting for domain discrepancy. Since the adversarial
loss is used to eliminate the discrepancy between distribu-
tions of heterogeneous data in a global view without tak-
ing local discrepancy into consideration, and distributions
in each modalities consist of many sub-distributions of dif-
ferent subjects, the local consistency may not be well pre-
served.

Variance Discrepancy Similar to the conventional do-
main adaptation tasks (Long et al. 2016; Zellinger et al.
2017), we want to bridge two different domains by learning
domain-invariant feature representations in HFR. But HFR
faces more challenges. First, HFR needs to match the same
subject or instance rather than the same class, and distin-
guishe two different subjects that belong to the same class
in most domain adaptation tasks. Second, there is no upper
limit of the number of subject classes, the majority of which
are not appeared in training phase. Fortunately, unlike these
unsupervised domain adaptation tasks, label information in
the target domain is supported in HFR, which can supervise
the discriminative feature learning.

The usage of adversarial loss can only handle partial intra-
personal difference caused by modality transfer, but not
the modality-independent noise factors. Considering that the
feature distribution of the same subject should be as close as
possible ideally, we employ the class-wise variance discrep-
ancy (CVD) to enforce the consistency of subject-related
variation with the guide of identity label information:

σ (F ) = E

(

(F − E (F ))
2
)

, (7)

LCVD =
C
∑

c=1

E
(∥

∥σ
(

Fc
V
)

− σ
(

Fc
N
)∥

∥

2

)

(8)

where σ(.) is the variance function, and the Fc
V , Fc

N de-
note feature observations belonging to the c−th class in VIS
and NIR domain respectively.

Cross-Entropy Loss As the adversarial loss and the vari-
ance discrepancy penalties cannot ensure the inter-class di-
versity which exists in both the source domain and the target
domain, we further employ the common-used classification
architecture to enforce the discrimination and compactness
of the learned feature. Empirical error of all samples is min-
imized as

Lcls =
1

|N |+ |V |

∑

i∈{N,V }

L (WFi, yi) (9)
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where W is the parameter for softmax normalization, and
L (·, ·) is the cross-entropy loss function.

The final loss function is a weighted sum of all the losses
defined above: Ladv to remove the modality gap, LCVD to
guarantee intra-class consistency, and Lcls to preserve iden-
tity discrimination.

L = LF−adv + λ1LCVD + λ2Lcls (10)

Experiments

In this section, we evaluate the proposed approach on three
NIR-VIS databases. The databases and testing protocols are
introduced firstly. Then, the implementation details is pre-
sented. Finally, comprehensive experimental analysis is con-
ducted among the comparison with related works.

Datasets and Protocols

The CASIA NIR-VIS 2.0 face database (Li et al. 2013). It
is so far the largest as well as the most challenging pub-
lic face database across NIR and VIS spectrum. Its chal-
lenge contains large variations of the same identity, expres-
sion, pose and distance. The database collects 725 subjects,
each with 1-22 VIS and 5-50 NIR images. All images in
this database are randomly gathered, and no one-to-one cor-
respondence between NIR and VIS images. In our experi-
ments, we follow the View 2 of the standard protocol defined
in (Li et al. 2013), which is used for performance evaluation.
There are 10-fold experiments in View 2, where each fold
contains non-overlapped training and testing lists. There are
about 6,100 NIR images and 2,500 VIS images from about
360 identities for training in each fold. In the testing phase,
cross-view face verification is taken between the gallery set
of 358 VIS image belonging to different subjects, and the
probe set of over 6,000 NIR images from the same 358 i-
dentity. The Rank-1 identification rate and the ROC curve
are used as evaluation criteria.

The BUAA-VisNir face database (Huang, Sun, and
Wang 2012). This dataset is made up of 150 subjects with 40
images per subject, among which there are 13 VIS-NIR pairs
and 14 VIS images in different illumination. Each VIS-NIR
image pairs are captured synchronously using a single multi-
spectral camera. The paired images in the BUAA-VisNir
dataset vary in poses and expressions. Following the test-
ing protocol proposed in (Shao and Fu 2017), 900 images of
50 subjects are randomly selected for training, and the other
100 subjects make up the testing set. It is worth noted that
the gallery set contains only one VIS image of each subject.
Therefore, a testing set of 100 VIS images and 900 NIR im-
ages are organized. We report the Rank-1 accuracy and the
ROC curve according to the protocol.

The Oulu-CASIA NIR-VIS facial expression
database (Chen et al. 2009). Videos of 80 subjects
with six typical expressions and three different illumination
conditions are captured in both NIR and VIS imaging
systems in this database. We take cross-spectral face
recognition experiments following the protocols in (Shao
and Fu 2017), where only images from the normal indoor
illumination are used. In each expression, eight face images
are randomly selected such that 48 VIS images and 48 NIR

Figure 3: Results of the cross-spectral face hallucination.
From left to right, the input NIR images, generated VIS
images by cycleGAN, generated VIS images by the pro-
posed cross-spectral face hallucination framework, and cor-
responding VIS images of the same subjects.

images of each subject are used. Based on the protocol
in (Shao and Fu 2017), the training set and testing set
contain 20 subjects respectively, resulting in a total of
960 gallery VIS images and 960 NIR probe images in
testing phase. Similar to the above two datasets, the Rank-1
accuracy and the ROC curve are reported.

Implementation Details

Training data. Our cross-spectral hallucination network is
trained on the CASIA NIR-VIS 2.0 face dataset. Note that
the label annotation is not involved in the training of face
hallucination module, therefore it would not affect the re-
liability of our following HFR tests. The feature extraction
network is pre-trained on the MS-Celeb-1M dataset (Guo et
al. 2016), and finetuned on each testing datasets respective-
ly. All the face images are normalized by similarity transfor-
mation using the locations of two eyes, and then cropped to
144 × 144 size, of which 128 × 128 sized sub images are
selected by random cropping in training and center cropping
in testing. For the local-path, 32 × 32 patches are cropped
around two eyes, and then flipped to the same side. As men-
tioned above, in the cross-spectral hallucination module, im-
ages are encoded in YCbCr space. In the feature extraction
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step, grayscale images are used as input.

Network architecture. Our cross-spectral hallucination
networks take the architecture of ResNet (He et al. 2016),
where the global-path is comprised of 6 residual blocks and
the local-path contains 3 residual blocks. Output of the local-
path is feed to the global-path before the last block. In the
adversarial discriminative feature learning module, we em-
ploy the model-B of the Light CNN (Wu, He, and Sun 2015)
as our basic model, which includes 9 convolution layers, 4
max-pooling and one fully-connected layer. Parameters of
the convolution layers are shared across the VIS and NIR
channels as shown in Fig. 1. The output feature dimension
of our approach is 256, which is relatively compact compar-
ing with other state-of-the-art face recognition networks.

Experimental Results

Face Hallucination Results Fig. 3 shows some examples
generated by our cross-spectral hallucination framework.
We report the results of cycleGAN (Zhu et al. 2017) for
comparison. As shown in Fig. 3, the results of cycleGAN
are not satisfying, which may caused by the lack of strong
constraint such as the proposed Lintensity . Note that our
method can accurately recover details of the VIS faces, e.p.
eyeballs, mouths and hairs. Specifically, the periocular re-
gions are well transformed to VIS-like faces in which eye-
balls are distinguishable. Results in Fig. 3 demonstrate the
ability of our cross-spectral hallucination framework to gen-
erate photo-realistic VIS images from NIR inputs, with both
global structure and local details are well preserved.

Results on the CASIA NIR-VIS 2.0 database Table 1
shows results of the proposed approach with different set-
tings. We report mean value and standard deviation of
Rank-1 identification rate, verification rates at 1%, 0.1%,
0.01% false accept rate (VR@FAR=1%, VR@FAR=0.1%,
VR@FAR=0.01%) for a detailed analysis. We evaluate the
performance obtained by our method in different settings,
including cross-spectral hallucination, ADFL and halluci-
nation + ADFL. In order to validate the effectiveness of
Ladv and LCVD, we report results of removing one of them
respectively. The cross-spectral hallucination brings a per-
formance gain for about 3% in Rank-1 accuracy as well
as VR@FAR=1%, addressing that the cross-spectral image
transfer helps to close the sensing gap between different
modalities. Obviously, significant improvements can be ob-
served when the proposed ADFL is used. Since supervision
signals are introduced in the ADFL, it has stronger capacity
than cross-spectral hallucination to boost the HFR accuracy.
Both the adversarial loss and the variance discrepancy help
to improve the recognition performance according to results
of w/o Ladv and w/o LCVD. When the cross-spectral halluci-
nation and the adversarial discriminative learning strategies
are applied together, the best performance is obtained.

We also compare the proposed approach with both con-
ventional and state-of-the-art deep learning based NIR-
VIS face recognition methods: PCA+Sym+HCA (Li et
al. 2013), learning coupled feature space (LCFS) (Jin,
Lu, and Ruan 2015), coupled discriminant face descrip-
tor(CDFD) (Jin, Lu, and Ruan 2015; Wang et al. 2013),cou-

Table 2: Experimental results for the 10-fold face verifica-
tion tasks on the CASIA NIR-VIS 2.0 database.

Rank-1 FAR=0.1% Dim.

PCA+Sym+HCA(2013) 23.70 19.27 -
LCFS(2015) 35.40 16.74 -
CDFD(2015) 65.8 46.3 -
CDFL(2015) 71.5 55.1 1000
Gabor+RBM(2015) 86.16 81.29 14080
Recon.+UDP(2015) 78.46 85.80 -

H2(LBP3)(2016) 43.8 10.1 -
COTS+Low-rank(2017) 89.59 - 1024
IDR(2017) 97.33 95.73 128

Ours 98.15 97.18 256

Table 3: Experimental results on the BUAA-VisNir
Database.

Rank-1 FAR=1% FAR=0.1%

MPL3(2009) 53.2 58.1 33.3
KCSR(2009) 81.4 83.8 66.7
KPS(2013) 66.6 60.2 41.7
KDSR(2013) 83.0 86.8 69.5

H2(LBP3)(2017) 88.8 88.8 73.4
IDR(2017) 94.3 93.4 84.7

Basic model 92.0 91.5 78.9
Softmax 94.2 93.1 80.6
ADFL w/o LCVD 94.8 92.2 83.9
ADFL w/o Ladv 94.9 94.5 87.7
ADFL 95.2 95.3 88.0

pled discriminant feature learning (CDFL) (Jin, Lu, and Ru-
an 2015), Gabor+RBM (Yi, Lei, and Li 2015), NIR-VIS
reconstruction+UDP (Juefei-Xu, Pal, and Savvides 2015),
COTS+Low-rank citelezama2016not and Invariant Deep
Representation (IDR) (He et al. 2017). The experimental
results are consolidated in Table 2. We can see that deep
learning based HFR methods perform much better than con-
ventional approaches. The proposed method improves the
previous best Rank-1 accuracy and VR@FAR=0.1%, which
are obtained by IDR in (He et al. 2017), from 97.33% to
98.14% and 95.73% to 97.18% respectively. All of these re-
sults suggest that our method is effective for the NIR-VIS
recognition problem.

Results on the BUAA-VisNir face database We com-
pare the proposed approach with MPL3 (Chen et al. 2009),
KCSR (Lei and Li 2009), KPS (Lei and Li 2009), KD-
SR (Huang et al. 2013) and H2(LBP3 (Shao and Fu 2017).
The results of these comparing methods are from (Shao and
Fu 2017). Table 3 shows the Rank-1 accuracy and verifi-
cation rate of each method. Profit from the powerful large-
scale training data, the basic model achieves really good per-
formance that is better than most of the comparing meth-
ods. We can see that performance can be further improved
when adversarial loss and variance discrepancy are intro-
duced. Particularly, without the constraint of variance con-
sistency, the verification rate drops dramatically at low FAR.
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Table 1: Experimental results for the 10-fold face verification tasks on the CASIA NIR-VIS 2.0 database of the proposed
method.

Rank-1 acc.(%) VR@FAR=1%(%) VR@FAR=0.1%(%) VR@FAR=0.01%(%)

Basic model 87.16± 0.45 89.65± 0.89 72.06± 1.38 48.25± 2.68
Softmax 95.89± 0.75 98.26± 0.48 93.25± 1.14 75.13± 3.02

ADFL w/o Ladv 96.56± 0.63 98.56± 0.27 95.24± 0.36 81.69± 1.77
ADFL w/o LCVD 97.34± 0.53 98.95± 0.14 96.88± 0.40 85.83± 3.02

Hallucination 90.56± 0.86 92.95± 0.20 81.17± 0.42 62.24± 2.77
ADFL 97.81± 0.29 99.04± 0.21 97.21 ± 0.34 88.11 ± 3.09
Hallucination + ADFL 98.15 ± 0.34 99.12 ± 0.15 97.18± 0.48 87.79± 2.33

Table 4: Experimental results on Oulu-CASIA NIR-VIS
Database.

Rank-1 FAR=1% FAR=0.1%

MPL3(2009) 48.9 41.9 11.4
KCSR(2009) 66.0 49.7 26.1
KPS(2013) 62.2 48.3 22.2
KDSR(2013) 66.9 56.1 31.9

H2(LBP3)(2017) 70.8 62.0 33.6
IDR(2017) 94.3 73.4 46.2

Basic model 92.2 80.3 53.1
Softmax 93.0 80.9 56.1
ADFL w/o LCVD 93.1 81.2 55.0
ADFL w/o Ladv 92.7 83.5 60.6
ADFL 95.5 83.0 60.7

This phenomenon demonstrates the effectiveness of variance
discrepancy in removing intra-subject variations. Finally, the
proposed ADFL acquires the best performance.

Results on the Oulu-CASIA NIR-VIS facial expression
database Results on the Oulu-CASIA NIR-VIS are pre-
sented in Table4, in which the results of these comparing
methods are from (Shao and Fu 2017). Similar to result-
s on the BUAA-VisNir database, our proposed ADFL fur-
ther boosts the performance beyond the powerful basic mod-
el. We observe that the adversarial loss contributes little to
this database since the training set of Oulu-CASIA NIR-VIS
database only contains 20 subjects and is relatively small-
scale. So it is easy for the powerful Light CNN to learn
good feature extractor for such a small dataset with the guid-
ance of softmax loss. Besides, the variance discrepancy stil-
l shows great capability in promoting verification rate at
low FAR. These results demonstrate the superiority of our
method.

Conclusions

In this paper, we focus on the VIS-NIR face verifica-
tion problem. An adversarial discriminative feature learning
framework is developed by introducing adversarial learn-
ing in both raw-pixel space and compact feature space. In
the raw-pixel space, the powerful generative adversarial net-

work is employed to perform cross-spectral face halluci-
nation, using a two-path architecture that is carefully de-
signed to alleviate the absence of paired images in NIR-VIS
transfer. As for the feature space, we utilize the adversari-
al loss and a high-order variance discrepancy loss to mea-
sure the global and local discrepancy between feature dis-
tributions of heterogeneous data respectively. The proposed
cross-spectral face hallucination and adversarial discrimina-
tive learning are embedded in an end-to-end adversarial net-
work, resulting in a compact 256-dimensional feature rep-
resentation. Experimental results on three challenging NIR-
VIS face databases demonstrate the effectiveness of the pro-
posed method in NIR-VIS face verification.
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