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Abstract—Synthetic aperture radar (SAR) has all-day and all-
weather characteristics and plays an extremely important role in
the military field. The breakthroughs in deep learning methods
represented by convolutional neural network (CNN) models have
greatly improved the SAR image recognition accuracy. Classifica-
tion models based on CNNs can perform high-precision classifica-
tion, but there are security problems against adversarial examples
(AEs). However, the research on AEs is mostly limited to natural
images, and remote sensing images (SAR, multispectral, etc.) have
not been extensively studied. To explore the basic characteristics
of AEs of SAR images (ASIs), we use two classic white-box at-
tack methods to generate ASIs from two SAR image classification
datasets and then evaluate the vulnerability of six commonly used
CNNs. The results show that ASIs are quite effective in fooling
CNNs trained on SAR images, as indicated by the obtained high
attack success rate. Due to the structural differences among CNNs,
different CNNs present different vulnerabilities in the face of ASIs.
We found that ASIs generated by nontarget attack algorithms
feature attack selectivity, which is related to the feature space
distribution of the original SAR images and the decision boundary
of the classification model. We propose the sample-boundary-based
AE selectivity distance to successfully explain the attack selectivity
of ASIs. We also analyze the effects of image parameters, such
as image size and number of channels, on the attack success rate
of ASIs through parameter sensitivity. The experimental results
of this study provide data support and an effective reference for
attacks on and the defense capabilities of various CNNs with regard
to AEs in SAR image classification models.

Index Terms—Adversarial example (AE), convolutional neural
network (CNN), synthetic aperture radar (SAR).

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) is a sensor that actively

emits microwaves, which improves the azimuth resolution

through the principle of a synthetic aperture to obtain large-area

high-resolution radar images. The SAR image is the image

data acquired by the microwave band, which contains only the
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echo information of one band. It is recorded in the form of

binary complex numbers. The data of each pixel can extract the

corresponding amplitude and phase information. The amplitude

information is the backscattering intensity of the radar wave by

the ground target, and it can be used to identify and classify

the target. The radar target recognition technology is based on

the radar echo signal to extract the target feature and realize

the automatic judgment of the target attribute, class, or type

[1]. Using image recognition technology for target recognition

is the most intuitive method in the field of automatic target

recognition, so our research work is mainly focused on the 2-D

radar image formed by the amplitude information obtained by

imaging the target by SAR.

Target recognition based on 2-D SAR images has three main

steps: image preprocessing, feature extraction, and classification

decision. The design and selection of features directly deter-

mine the accuracy of target recognition. Eryildirim and Cetin

[2] extracted features based on 2-D cepstrum with the aim of

discriminating between clutter and man-made objects in a SAR

image. Gaglione et al. [3] proposed a recognition algorithm for

full-polarimetric SAR images, which is based on the pseudo-

Zernike moments (pZm) and the Krogager decomposition com-

ponents and exploited the multisource data offered by different

sensors. Clemente et al. [4] proposed a novel algorithm for au-

tomatic target recognition that is capable of exploiting single or

multichannel SAR images to extract features based on pZm for

target recognition. The method for SAR target recognition based

on dictionary learning and joint dynamic sparse representation

was proposed by Sun et al. [5] and combined amplitude features

and scale-invariant feature transform features in the recognition

process. An algorithm for automatic target recognition based

on Krawtchouk moments was proposed by Clemente et al. [6]

and had high reliability in the presence of noise and reduced

sensitivity to discretization errors.

Because the SAR imaging mechanism is different from the

optical imaging system, different terrains in the two-dimensional

images generated by the SAR imaging system exhibit several

special phenomena, such as shadows, overlap, and perspective

shrinkage. In addition, SAR images have coherent speckle noise,

and the visual readability is poor. It is difficult to manually design

effective features for SAR image target recognition. Different

from the traditional automatic target recognition technology

based on artificial design features [7], [8], deep neural networks,

especially convolutional neural networks (CNNs), can auto-

matically learn target features for automatic target recognition
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Fig. 1. On the left is the original SAR image. A CNN correctly identified it
as a T-62 main battle tank with a confidence of 99.62%. On the right is the
ASI. After adding an AP to the original SAR image, the CNN identified it as a
Sandia Laboratory Implementation of Cylinders false target with a confidence
of 99.93%.

[9], which reduces the computational cost and improves the

recognition accuracy.

With the rapid development of deep learning in the field of

computer vision, image classification and recognition methods

based on CNN models have been widely used for target recogni-

tion in SAR images. For example, Shao et al. [10] analyzed and

compared the performance of different CNNs on the MSTAR

[11] dataset based on accuracy, number of parameters, training

time, and other metrics to verify the superiority of CNNs for SAR

image target recognition. Wang et al. [9] proposed despeck-

ling and classification coupled CNNs to distinguish multiple

categories of ground targets in SAR images with strong and

varying speckle. Shang et al. [12] proposed deep memory con-

volution neural networks to alleviate the problem of overfitting

caused by insufficient SAR image samples, and their method

achieved higher accuracy than several other well-known SAR

image classification algorithms. Huang et al. [13] proposed an

improved deep Q-network method for polarimetric SAR image

classification, and the experimental results demonstrated that the

proposed method has a better classification performance than

traditional supervised classification methods.

Although CNNs perform very well in the field of image classi-

fication and recognition, they are highly sensitive to adversarial

perturbations (APs). APs can easily fool classifiers based on

CNNs [14]–[18]. The purpose of adding APs to the original

images is to fool a classifier into misclassifying them. We refer

to such an image with an AP as an adversarial example (AE).

In many cases, APs are difficult for humans to perceive, but

they still cause CNNs to incorrectly predict the labels of AEs.

The existence of AEs carries hidden dangers in the military

and other fields with high security requirements. Fig. 1 shows

that the adversarial SAR image (ASI) is misclassified with high

confidence by the CNN, and humans can barely perceive any

differences between the original SAR image and the ASI.

Previous research on AEs has shown that they can easily

fool natural image classifiers [19]–[22]. However, there are

few studies on AEs involving remote sensing fields, such as

SAR, which limits our understanding of the security of remote

sensing image classification models. Czaja et al. [23] were the

first to analyze the problem of AEs in remote sensing images.

The results showed that AEs can cause errors in even the most

advanced remote sensing image classifiers. Li et al. [24] pro-

posed a robust structure that can detect AEs in high-resolution

remote sensing images. Nevertheless, we are unclear regarding

the characteristics of ASIs at present. In this article, we mainly

discuss the characteristics of AEs for SAR image classification

models based on CNNs.

CNN classification models trained on SAR images are easily

fooled by ASIs with special added noise. We can use attack

algorithms to generate this special noise. It is special as follows:

First, this noise is so small that it is almost imperceptible

when added to the original image. Second, the pixels of the

original image are modified to generate an adversarial image

using gradient descent along the direction in which the CNN

incorrectly predicts, thus easily fooling the CNN. Speckle noise

is caused by the coherence principle on which SAR imaging is

based. Speckle noise is very obvious in SAR images, and its

randomness means it is not necessarily easy to fool the CNN

into making the wrong classification.

We describe a possible problem in SAR image recognition,

i.e., AEs lead to misclassification of CNNs. We discovered an

interesting phenomenon of the AE by experiment. This phe-

nomenon has not yet been studied, so we proposed a hypothesis

for the occurrence of this phenomenon, and verified our conjec-

ture through experiments. For the CNN trained on SAR images,

we observed the common feature of the ASIs generated by

different attack algorithms, i.e., ASIs generated by the nontarget

attack algorithm have a preference for selecting attack classes.

The research on AE in the field of remote sensing did not

explain this fact, but we proposed a new metric, AE selective

distance (AESD), to successfully explain the phenomenon of the

attack selectivity of ASIs. Our research on this phenomenon will

provide a theoretical basis for designing new attack methods.

The main contributions of our work are listed as follows.

1) We propose the AESD to analyze the attack selectivity of

ASIs generated by different nontarget attack algorithms,

which provided us with the opportunity to quickly achieve

targeted attacks and understand the underlying geometry

of ASIs.

2) Massive analyzing the AEs on MSTAR and SENSAR

datasets with two attack model on six popular deep CNN

models, we obtain several interesting conclusions.

3) The network structure of the CNN has a great influence

on robustness. The simpler the structure is, the higher the

robustness of the CNN.

4) For the training data, adding auxiliary information in the

form of channels can improve the accuracy of the CNN,

but it will reduce its robustness.

5) In addition, the use of cropping to remove unnecessary

information for classification and recognition in the image

can improve the robustness of CNNs against adversarial

attacks.

6) Simply pursuing higher accuracy will lose robustness.

We suggest that the designers should weigh the balance

between accuracy and robustness when designing new

CNNs.

The rest of this article is organized as follows. In Section II,

we briefly review the related works on AEs. Section III in-

troduces the principle of the attack algorithms and defines the



LI et al.: ADVERSARIAL EXAMPLES FOR CNN-BASED SAR IMAGE CLASSIFICATION: AN EXPERIENCE STUDY 1335

AESD. Section IV reports on the experimental results and pro-

vides an analysis. Finally, Section V provides a summary and

conclusion.

II. RELATED WORKS

In recent years, breakthroughs have been achieved in the

application of CNNs to the field of remote sensing. Remote

sensing automatic discrimination technology based on CNNs

has been widely used in social life and military fields [25]–[29].

In the past, researchers have expended considerable effort in

studying how to improve the accuracy of models by designing

better model architectures, proposing more effective loss func-

tions, and expanding datasets to improve data diversity. Before

the discovery of AEs, the accuracy of CNNs was a consistent

research concern. However, few people have questioned the

safety and reliability of CNNs. Szegedy et al. [30] were the first

to discover that CNNs are easily fooled by tiny perturbations.

These perturbations cause CNNs to misclassify AEs with high

confidence. Moreover, AEs generated by one neural network

can fool other neural networks. These findings have caused

widespread concern among researchers about the safety of deep

learning. Many other later works also studied these interesting

properties, but no complete theory yet exists to explain this

phenomenon [31]–[34]. Goodfellow et al. [19] believe that the

linear nature of neural networks in high-dimensional spaces

leads to the generation of AEs. In a high-dimensional space,

the infinitely small perturbations in AEs accumulate during the

forward propagation of the network, which can cause large

changes in the output and result in errors.

As CNNs are increasingly applied in practice, many re-

searchers have begun to focus on the security of CNNs and have

studied AEs in areas, such as autonomous driving [35] and face

recognition [36], [37], and found that AEs reduce the robustness

of CNNs. AEs exist not only in computer vision fields, such as

image classification [20]–[22], [38]–[40], object detection [41],

[42], and semantic segmentation [43], [44], but also in the natural

language processing [45], [46] and speech recognition [47], [48].

Various attack algorithms exist for generating AEs. Taking

image classification as an example, the attack algorithms can be

divided into different types. Based on information that attackers

can obtain, the attack algorithms can be divided into white-box

attacks [19]–[22], [30], [38], [39] and black-box attacks [14],

[40]. In a white-box attack, an attacker can obtain complete

information about the target model, including its parameters,

structure, training method, and even training data. In contrast,

in a black-box attack, the attacker does not know specific infor-

mation about the model but can observe the output by submitting

various inputs. The attacker then uses the correspondence rela-

tionships between the input and output to find suitable AEs with

which to attack the model. According to whether the attack class

is directional, the attack algorithm can be divided into target

attacks [19], [21], [30], [38], [40] and nontarget attacks [14],

[20], [22], [39]. A target attack deception model incorrectly

predicts the AEs as the specified labels while a nontarget attack

needs only to cause the model to predict the labels of the AEs

incorrectly.

With the rapid development of remote sensing technology,

the amount of data we can obtain is constantly increasing, and

it has become increasingly difficult to process massive amounts

of data manually. Remote sensing image processing technology

has gradually transformed from using traditional visual inter-

pretation to relying on automated methods. Data-driven CNNs

have made good progress in automatic remote sensing image

processing. Currently, many CNN methods have been applied

to automatic remote sensing image processing. The existence

of AEs may have a serious impact on the practical application

of these methods. SAR is widely used in the military field,

and military applications have extremely high requirements

for security. Nevertheless, we know nothing about ASIs at the

moment. Therefore, we start with the classic attack algorithm to

study the characteristics of ASIs and hope that our work can be

helpful for future research.

III. METHODOLOGY

In this section, we will introduce the methods used in the

experiment in detail. First, the definition of ASIs is introduced.

Next, the methods of generating ASIs will be introduced subse-

quently. Finally, the AESD we proposed will be introduced.

A. Problem Description of ASIs

First, we formalize ASIs. Let X denote a SAR image dataset

in which each SAR image is denoted as x ∈ R
C×H×W and k

represents a classification model that outputs a predicted label

k(x) for each SAR image x ∈ X

k(x̃) �= k(x) for most x ∈ X

x̃ = x+ η (1)

where x is the original SAR image, x̃ is the ASI, and η ∈
R

C×H×W is the AP, and C, H , and W are the number of

channels, height, and width of a SAR image, respectively. The

classification model k misclassifies the ASI x̃ generated by the

vast majority of original SAR images x from the SAR image

dataset X after the perturbation η is added. We use the ∞
norm to constrain the perturbation. When the perturbation η

is sufficiently small, humans cannot visually distinguish an ASI

from an original SAR image

‖η‖p =

⎛
⎜⎜⎝

∑

0≤i<H
0≤j<W

|ηij |
p

⎞
⎟⎟⎠

1/p

< δ (2)

p=∞
=⇒

‖η‖∞ = max
0≤i<H
0≤j<W

|ηij | (3)

where p is the norm. Here, p = ∞. δ controls the value of

perturbation.

B. Method for Generating ASIs

When training the CNN, the parameters in the CNN are

updated by subtracting the gradient obtained by backpropagation
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so that the loss value becomes increasingly smaller, and the

probability of the model prediction becomes increasingly higher.

In a nontarget attack, the goal is that the model misclassifies the

input image into any class other than the correct class. We need

only to increase the loss value to achieve this goal. This is the

opposite of the purpose of updating parameters when training

the CNN.

Considering the speed and attack success rate of ASIs gen-

erated by the attack algorithm, we use two classic white-box

attack algorithms, fast gradient sign method (FGSM) [19] and

basic iteration method (BIM) [20]. FGSM is currently the attack

algorithm most widely used to attack image classifiers based

on CNNs because it needs only a one-step gradient-increasing

operation to generate ASIs. Using FGSM to generate ASIs is

very fast, but it also limits the attack success rate. We also use

BIM, which has a higher attack success rate. BIM is an iterative

algorithm that makes it easier to fool CNNs by generating ASIs

through its multiple iterations, but it is slower than FGSM.

1) Fast Gradient Sign Method: Goodfellow et al. [19] pro-

posed the FGSM to generate AEs. The FGSM attack algorithm

is as follows:

x̃ = x+ ǫsign(∇xJ(θ, x, y)) (4)

∇xJ(θ, x, y) = −

c∑

k=1

yk log pk (5)

sign(x) =

⎧
⎪⎨
⎪⎩

−1, x < 0

0, x = 0

1, x > 0

(6)

wherex is the original SAR image, x̃ is the ASI, andJ(θ, x, y) is

the loss function. Here,J(θ, x, y) is the multiclass cross-entropy,

θ is the model parameter, c is the number of classes,y is the label

of x, and yk is the indicator variable. If the ground truth label

is the kth class, yk is 1. Otherwise, yk is 0. pk is the predicted

probability of the kth class obtained from thex input model, and

∇x is the partial derivative of J(θ, x, y) of x. The sign function

sign(·) retains only the gradient direction. It does not consider

the specific gradient value. ǫ is a scalar value used to limit the

value of perturbation.

The specific process of the FGSM algorithm is as follows: We

input an original image x into the CNN to output a predicted

probability through forward propagation, then calculate the loss

value J(θ, x, y) between the predicted probability and the label

y of the image, and finally use the lost value for backpropagation

to obtain the gradient ∇xJ(θ, x, y) of the input image. To

control the perturbation η without causing great damage to the

original image, the norm limit is imposed on the perturbation.

Therefore, instead of directly using the gradient value, only the

gradient direction sign(·) is used, and a step-length is added to

the gradient direction to obtain the perturbation. This step-length

parameter ǫ can be used to control the amplitude of the attack

noise. The larger the parameter value is, the greater the attack

intensity and the easier it is to observe the noise. We add the

perturbation η to the original image x to obtain the adversarial

image x̃.

2) Basic Iterative Method: The FGSM is fast, but it uses only

one gradient update, and sometimes one update is not enough to

attack successfully. Thus, Kurakin et al. [20] proposed the BIM

to generate AEs. The BIM attack algorithm is as follows:

x0 = x, xi+1 = clip(xi + α sign(∇xJ(θ, x, y))) (7)

where the initial ASI x0 is the original SAR image x, xi is the

ASI at the ith iteration, clip(·) denotes that the value is limited

to [0, 1], α is the attack step-length of each iteration, and the

remaining symbols have the same meanings as in (4).

The specific process for the BIM to generate AEs is similar

to FGSM. The difference is that BIM allocates the total noise

amplitude in FGSM to each iteration. Given the total noise

amplitude ǫ, we useα = ǫ/N to setα and N . In addition, clip(·)
means that the overflowed value is replaced by the boundary

value. This is because in the iterative update, as the number of

iterations increases, some pixel values may overflow (outside the

range of 0 to 1). Replacing these values with 0 or 1 will eventually

generate an effective AE. BIM iteratively uses multiple small

steps to create an attack, adjusts the direction after each small

step, and adds a recalculated perturbation to achieve a better

attack effect.

C. AE Selectivity Distance

Perturbation generated by a nontarget attack algorithm causes

an original sample to easily cross the nearest decision boundary

to generate an AE. We call the distance between the sample and

the nearest decision boundary the AESD. AESD provides a rea-

sonable explanation for the attack selectivity of AEs generated

by the nontarget attack algorithm.

1) Geometric Interpretation: Fig. 2 shows the AESD. The

shapes represent the class that humans consider correct, whereas

the colors represent the labels predicted by the classifier. For

example, the original sample represented by a red sphere is

perturbed to generate an AE represented by a blue sphere. From

the human perspective, the AE is almost identical to the original

sample. Thus, humans can still correctly classify the AE, i.e.,

humans still see the shape as the sphere, but the classifier will

misclassify the AE, i.e., the color changes from red to blue.

Although the samples of class A and class B have the closest

distance in the feature space, most of the AEs generated by the

original samples belonging to classA are misclassified as classC
instead of class B. We hold that the nontarget attack algorithm

does not use the similarity of the features of the samples but

generates the perturbation selectively according to the difficulty

encountered for the sample to cross the decision boundary.

Therefore, we propose AESD to verify the cause of the attack

selectivity of AEs generated by nontarget attack algorithms. The

choice of attack class is determined by the distance between

the original sample and the decision boundary. The closer the

distance is, the easier it is for the sample to cross the decision

boundary and be misclassified as the class on the other side of

the decision boundary.

2) Definition of AESD: In a multiclassification task, the dis-

tance from a sample to the decision boundary formed between

different classes is different. These distance differences will
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Fig. 2. Classes A, B, and C are represented by a red sphere, a green cube, and
a blue triangular pyramid, respectively, where the decision boundary between
A and B is P1, the decision boundary between A and C is P2, and the decision
boundary betweenB andC isP3. The samples inside the ellipses are the original
samples, and the samples outside the ellipses are the AEs. x̃0 is the AE produced
by the original sample x0. The distance from x0 to the decision boundary P1

is l1, and the distance to the decision boundary P2 is l2. Because l2 < l1, l2 is
the AESD of x0.

Fig. 3. Sample-boundary distance for a linear binary classifier.

inevitably lead to the attack selectivity of AEs. Therefore, we

define AESD as follows:

dAESD = min
1≤i≤n

li (8)

where li is the sample-boundary distance from the original

sample to the ith decision boundary and n is the number of

decision boundaries in the model.

3) Sample-Boundary Distance:

a) Binary classification: The decision boundary of a clas-

sification model based on a CNN is extremely complicated. We

cannot use mathematical formulas to accurately describe the

decision boundary of a CNN. To simplify the problem, we first

study linear binary classification. As shown in Fig. 3, we assume

that the classification function is k(x) = sign(f(x)), where

Fig. 4. Sample-boundary distance for a nonlinear binary classifier.

f(x) = wTx+ b, and w and b are parameters of f(x). See (6),

sign(·) is the sign function. P : {x : f(x) = 0} represents the

decision boundary. According to the distance formula from a

point to a straight line, we can obtain the distance l(x0) formula

from the sample x0 to the decision boundary P as follows:

l(x0) =
|f(x0)|

‖w‖
2

. (9)

However, the CNN is by nature a nonlinear approximator,

and its decision boundary is not a plane. For a nonlinear binary

classification task, our assumption is that the decision functions

of CNNs are all locally linearly approachable or that the clas-

sification boundaries are all smooth. If a Taylor expansion is

performed at a certain point of the decision function, the tangent

plane of this point is roughly similar to the decision boundary

in a neighborhood of that point, as shown in Fig. 4. We linearize

f at x0 and use f(x0) to derive the derivative of x0 instead of

the parameter w, i.e., w = ∇xf(x0) approximates the distance

between the sample x0 and the decision boundary P as follows:

l(x0) =
|f(x0)|

‖∇xf(x0)‖2
. (10)

b) Multiclassification: Next, we extend the discussion

from binary classification to multiclassification. We assume that

a classifier has n outputs, where n > 2 is the number of classes.

In Fig. 5, n = 3, and c1, c2, and c3 are indexes of three different

classes, where the class of sample x0 is the c2th class. The

decision boundary between the c1th class and the c2th class

is P : {x : fc1(x)− fc2(x) = 0}. The distance from x0 to the

boundary P formed by these two classes is l(x0) as follows:

l(x0) =
|fc2(x0)− fc1(x0)|

‖∇xfc2(x0)−∇xfc1(x0)‖2
(11)

where f(x) is the predicted vector output by the model. fc(x) is

the value of the cth dimension of the vector f(x), i.e., the model

predicts the sample as the output value of the cth class. ∇x is

the partial derivative of the predicted vector f(x) of sample x.

Fig. 6 shows the main process of analyzing ASIs. We divided

the SAR dataset into a training dataset and a test dataset. The

CNN is trained on the training dataset, and the accuracy of the

model is calculated using the test dataset. The misclassification
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Fig. 5. Sample-boundary distance for a nonlinear multiclassifier.

of the model itself affects our calculation of the attack success

rate of ASIs. Therefore, for the test dataset, we set a confidence

threshold to filter out the test data that the model can correctly

classify. In our experiments, the threshold is 0.7. The confidence

of the test image is less than the threshold, which is considered

to be an unreliable false prediction. We use the filtered test

images as the original images to generate the adversarial images

by two attack algorithms, FGSM and BIM. The correctness of

AESD is verified by calculating the AESD of original images

and comparing whether the class of AESD is consistent with

the predicted label of the adversarial images. The attack success

rate is used to evaluate the vulnerability of CNNs and show the

impact of the adversarial image parameters, such as image size

and number of channels.

IV. EXPERIMENTS AND ANALYSIS

To analyze the characteristics of ASIs, we used two attack

algorithms, FGSM and BIM, to attack six CNNs trained on

MSTAR and SENSAR datasets. The two datasets used in our

experiment are the amplitude information retained by the SAR

data after processing, i.e., the single-band grayscale image. The

CNN models were VGG16 [49], GoogLeNet [50], InceptionV3

[51], ResNet50 [52], ResNeXt50 [53], and DenseNet121 [54].

At the end, the experimental results are analyzed comprehen-

sively.

A. Databases

1) MSTAR: MSTAR [11] was produced by the US Defense

Advanced Research Projects Agency in the mid-1990s using

high-resolution spotlight SAR to collect SAR images of vari-

ous Soviet military vehicles. The collection conditions for the

MSTAR images are divided into two types: standard operating

condition (SOC) and extended operating condition (EOC). In

this study, we use SAR images collected by SOC. The dataset

includes ten ground target classes, and the classes have different

sizes in different pictures. The targets are located in the center of

TABLE I
DETAILS OF MSTAR, INCLUDING TARGET CLASS, DATA NUMBER,

AND CLASS NAME

the images and occupy only a small area. To simplify identifica-

tion, we center-crop the image to128× 128. The training dataset

was collected at a 17◦ imaging side view, and the test dataset

was collected at a 15◦ imaging side view. Detailed information

regarding the dataset is shown in Table I. Fig. 7 shows examples

of SAR images for each of the classes in MSTAR.

2) SENSAR: SEN1-2 [55] is a SAR-optical image-pair

dataset divided into four different subsets according to the four

seasons: spring, summer, autumn, and winter (ROIs1158 spring,

ROIs1868 summer, ROIs1970 fall, and ROIs2017 winter). Each

subset contains pairs of SAR-optical images taken at different

locations in the Northern Hemisphere. In this study, we use

only the ROIs1868 summer subset, which is divided into two

folders, s1 and s2, where s1 holds the SAR images and s2 holds

the optical images. In our experiments, we use only the SAR

images. Folder s1 contains 49 subfolders, and each subfolder

corresponds to the SAR images taken of the same area, i.e., the

SAR images in a given folder belong to the same area and class,

and each area’s class is represented by a serial number (e.g., 0, 1,

2, . . .). We selected 20 of the 49 folders and randomly selected

SAR images from each folder according to a training-to-testing

ratio of 1: 1 to construct a new dataset called SENSAR, which

contains 10 581 training samples and 10 575 test samples. The

SAR images in SENSAR have a size of 256× 256. Fig. 8 shows

examples of SAR images for each class in SENSAR.

B. Metrics and Implementation Details

To evaluate the vulnerability of CNNs, we used the evaluation

indicator attack success rate. In the attack task, the higher the

attack success rate value is, the more fragile the CNN. It is

expressed as follows:

attack success rate =
Ndiff

Nall

(12)

where Ndiff is the number of ASIs whose predicted labels

differ from the true classes and Nall is the total number of

ASIs generated by the attack algorithm against the classification

model.

In general, the pixel value range of an 8-b image is between

0 and 255, and the pixel value range of a 16-b image is between

0 and 65535. To make the loss function converge as quickly as

possible in the process of model training, the image is usually
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Fig. 6. Process for analyzing the characteristics of ASIs.

Fig. 7. Examples of SAR images in MSTAR.

normalized, i.e., the pixel value of the image is input to the

model as a 0–1 floating point number. In the case of 8-b images,

to save an AE (0–1 floating point number) as an image (0–255

unsigned integer), the decimal places are rounded off. If ǫ =
0.01, 2 < 255× 0.01 = 2.55 < 3, the upper limit of the pixel

value that each pixel in the image can modify is 3. The greater the

value of ǫ, the more obvious the noise in the adversarial image

is [20]. To make the original image and the adversarial image

have no obvious difference, the value of ǫ should be set as small

as possible. However, if ǫ is overly small, such as a pixel value

that can be modified by most ±1 for each pixel, it is difficult to

damage the classification of the CNN with such an adversarial

image.

Therefore, for FGSM, we set ǫ to 0.01, which not only ensures

that we cannot perceive the difference between the adversarial

image and the original image but also enables the confrontation

image to successfully attack the CNN. BIM is an iterative attack

algorithm, and FGSM is a single-step attack algorithm. To

compare BIM and FGSM, variable control should be performed.

For BIM, α was set to 0.002, and the number of iterations N
was set to 5. Let ǫ = α×N , to ensure that the upper limit of

the pixel value of each pixel modified after the iterative attack

of BIM is the same as the single-step attack of FGSM.

Fig. 8. Examples of SAR images in SENSAR.

C. Vulnerability of CNNs

Some examples of the attack results are shown in Fig. 9. In

Fig. 9(a), the class of the original SAR image is BTR70, and

VGG16 correctly classified it with a confidence above 99%.

The first column shows the original image and its corresponding

predicted label and confidence. The third column shows the

adversarial image and its corresponding predicted label and con-

fidence. The second column shows the APs, and the perturbation

image is obtained by subtracting the original image from the

adversarial image. We set ǫ to 0.01, so the maximum value of

pixels in the perturbation image is 3. We cannot observe such

small pixel changes, so the second column shows the image after

the pixel value of perturbation is enlarged.
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TABLE II
ATTACK SUCCESS RATES OF ASIS

Fig. 9. Examples of adversarial images generated by the FGSM attacks using
VGG16. (a) MSTAR. (b) SENSAR.

However, VGG16 not only incorrectly classified the adver-

sarial image as BMP2 but also provided a confidence of over

81%. “Ori.” and “Adv.” in the chart represent the original image

and the adversarial image, respectively. We cannot perceive the

difference between the adversarial image and the original image,

but we can already clearly see the difference in the feature map

extracted by the CNN. As shown in Fig. 10, we use a heat map

to visualize these features. The difference between the feature

maps at the corresponding positions framed by the red frame is

very obvious, which shows that the disturbances that human eyes

cannot perceive affect the features extracted by the CNN. Fig. 11

shows the feature vectors of the original image and the adversar-

ial image for classification, which ultimately leads to the result

of Fig. 12. The class BTR70 has the largest predicted value in

the original image. After adding the perturbation, the predicted

value of class BTR70 drops significantly, and the value corre-

sponding to class BMP2 becomes the largest predicted value.

Table II shows the attack success rate of ASIs generated

by FGSM and BIM against six CNNs trained on MSTAR and

SENSAR. The results show that the average attack success rate

of ASIs is 86.85%, the highest is 99.96%, and the lowest is

68.25%. Most original SAR images generate ASIs after specific

perturbations are added, proving that ASIs are quite effective

in fooling CNNs trained on SAR images, as indicated by the

obtained high attack success rate, which means that there are

many ASIs in high-dimensional space. Table III shows the

average confidence of ASIs. In Table III, the maximum value

of the average confidence on ASIs is 0.9997, and the minimum

value is 0.8060. After being attacked, the CNNs revealed their

vulnerabilities by misclassifying the ASIs with high confidence,

which means that CNNs trained on SAR images are highly

vulnerable to ASIs.

In addition, different CNNs that were attacked by ASIs

showed different vulnerabilities. We hold that model structure

differences are the main reason for the differences in the vulner-

ability of CNNs. The more modules are stacked or aggregated

in the model structure, the more vulnerable the CNNs.

Both GoogLeNet and InceptionV3 include the inception

structure, which stacks the feature maps using multiple small

convolution kernels and increases the width of the network by

increasing the number of channels in the feature map. Both

ResNet and DenseNet contain the connection structure that

propagates low-layer information through identity connections

and residual connections to increase the network depth. ResNeXt

uses a multibranched isomorphic structure in which the number

of branches is called the “cardinality” and forms another key

factor for measuring neural networks in addition to depth and

width. Although these structures improve model classification

accuracy, they are also more likely to accumulate small pertur-

bations in the lower layers that are amplified in the higher layers

and, thus, have a substantial impact on the final output.

From Table II, the other five CNNs have significantly higher

attack success rates than does VGG16, especially DenseNet121.

The attack success rate of DenseNet121 is also higher than

that of other CNNs. VGG16 has the simplest structure and

includes no complex modules. Consequently, VGG16 has the

lowest attack success rate by ASIs. DenseNet121 has a very

dense connection structure that directly connects all the layers.

The input to each layer consists of the feature maps of all the

preceding layers. Therefore, the small perturbations in ASIs are

accumulated and enlarged through the feature map aggregation,

causing DenseNet121 to be more vulnerable to attacks.

D. Attack Selectivity of ASIs

By collecting statistics on the predicted labels of ASIs, we

found that the predicted label distribution of ASIs is highly

concentrated. Fig. 13 shows the distribution and the proportion

of the predicted labels of ASIs generated by the FGSM attack

on GoogLeNet on MSTAR. The predicted labels of the ASIs

concentrate primarily on a few classes and most of the classes

only distributed a small number of ASIs. Fig. 13(a) shows the

nature of the fourth- and fifth-order truncation. We will call it a
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Fig. 10. The middle-layer features of the SAR image in Fig. 9(a) extracted by VGG16.

Fig. 11. The SAR image in Fig. 9(a) outputs a 512-D feature vector through the convolutional layer of VGG16.

kth-order truncation when it is larger than a certain constant k.

Fig. 13(b) shows that these 4–5 classes account for more than

90% of all the predicted classes, indicating that ASIs are more

likely to be misidentified as these 4–5 classes. For example,

the ASIs generated by the original SAR images of class T72

were classified as class T62, class ZIL131, and class BMP2,

comprising 38.13%, 34.53%, and 22.30%, respectively, whereas

the remaining classes accounted for only 5.04%.

The aggregation of the predicted labels of ASIs is related to

the distribution of the original SAR images in the feature space,

and it is also affected by the attack selectivity of the ASIs. In

general, the distribution of the original SAR images belonging

to the same class is concentrated in the feature space, and there is

always a decision boundary closest to these images. The attack

selectivity makes an original image tend to choose to cross the

closest decision boundary to generate an AE. Consequently, the

predicted labels of ASIs generated by the original SAR images of

the same class are highly concentrated. In Fig. 2, the distribution

of the three classes is relatively concentrated. Most samples of

class A are closer to the classification boundary P2. Since the

AEs generated by the nontarget attack algorithm have attack

selectivity, the predicted labels of AEs generated by the original

samples of class A are highly concentrated, and most of the

predicted labels are class C.
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TABLE III
AVERAGE CONFIDENCE OF ASIS

Fig. 12. The feature vector in Fig. 11 outputs a 10-D prediction vector through
the fully connected layer of VGG16, and each dimension represents a class.

Fig. 14 shows the sample-boundary distance of the SAR

images. In Fig. 13, GoogLeNet classified the ASI generated by

the SAR original image of class BTR70 as class 2S1. Class 2S1

corresponds to the class with the maximum proportion in class

BTR70 of Fig. 13(b), so we randomly select an image from the

original images of class RRT70 to generate an AE, and this AE is

most likely to be misclassified as class 2S1. The class calculated

from the AESD of this original image is also class 2S1, which

corresponds to the class of the shortest bar in Fig. 14 and is the

same as the class most likely to be attacked. The result illustrates

that AESD can explain the attack selectivity of ASIs.

To verify the reliability of AESD, we counted the proportion

of the predicted labels of ASIs that matched the classes indicated

by AESD, i.e., the accuracy of AESD, as shown in Table IV. Min-

Dist-1 is the proportion of the predicted labels of ASIs that are

the same as the classes pointed by AESD. Because the AESD is

obtained based on the sample-boundary distance and the sample-

boundary distance is calculated approximately, we also count

Min-Dist-3, which is the proportion of the predicted labels of

ASIs that are the same as one of the classes represented by the

smallest three sample-boundary distances. From Table IV, on

MSTAR, the average accuracy of Min-Dist-1 for the six CNNs

is 81.84%, and the average accuracy of Min-Dist-3 is 97.35%.

On SENSAR, the average accuracy of Min-Dist-1 is 68.60%,

and the average accuracy of Min-Dist-3 is 89.88%. These results

show that AESD is reliable in explaining the attack selectivity

of ASIs.

In Table IV, the accuracy of AESD when using BIM is

generally lower than the accuracy of AESD when using FGSM.

We consider that a reasonable and possible reason is that BIM

is an iterative algorithm and it recalculates the perturbation

in each iteration. The ASIs may continuously cross different

TABLE IV
ACCURACY OF AESD

decision boundaries during the iterative process. However, the

AESD we proposed is calculated by the finally generated ASIs.

Thus, our method ignores the iterative process, which results

in the predicted labels of ASIs generated by the iterative attack

algorithm matching the AESD with a lower accuracy rate than

those of the single-step attack algorithm.

E. Parameter Sensitivity Analysis

By adjusting the hyperparameters of CNNs, the model accura-

cies can be improved to a certain extent. From the perspective of

hyperparameters, we maintain that changing the image-related

hyperparameters should also have an impact on the attack suc-

cess rate of ASIs. Therefore, we used MSTAR to analyze the

sensitivity of the attack success rate of ASIs to changes in the

image parameters (size and number of channels).

1) Sensitivity Analysis of the Number of Channels: To ana-

lyze the effect of the number of channels on the attack success

rate of ASIs, we trained CNNs using SAR images read in both

RGB and GRAY modes. The RGB mode makes two copies

of the single-channel image in the channel direction to form a

three-channel image.

A CNN is a black-box model, which is different from tra-

ditional machine learning models that require artificial design

features, such as color and texture. A CNN can learn a pattern

from data to extract the features it can distinguish, and these
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Fig. 13. Distribution and the proportion of the predicted labels of ASIs generated by FGSM attack GoogLeNet on MSTAR. (a) Distribution of the predicted
labels of ASIs. The titles over the bar graphs indicate the classes to which the original SAR images belong. (b) Proportion of the predicted labels of ASIs. The tags
in the centers of the ring charts indicate the class to which the original SAR images belong.

features are incomprehensible to humans. Regardless of whether

it is applied to an optical image or a SAR image, a CNN is

based on the pattern learned in the data and, thus, has the

ability to correctly classify images. Because the principle of

SAR imaging is different from that of optical sensors, there is

a considerable amount of noise and artifacts in SAR images.

These are the characteristics that optical images do not have, and

a CNN designed in combination with these characteristics has

higher accuracy in recognizing SAR images. In our experiment,

we did not use CNNs specially designed for SAR images,

and only common CNNs were used. For the recognition of a

common CNN, there is no obvious difference between optical

images and SAR images. Moreover, the grayscale information

of the optical images has a great correlation with the amplitude

information of the SAR images, so the adversarial properties of

the SAR images and the optical images are similar on the digital

level.

TABLE V
CLASSIFICATION ACCURACY OF CNNS TRAINED WITH RGB AND GRAY

MODES AND THE ATTACK SUCCESS RATES OF ASIS GENERATED

BY THE RGB MODE AND GRAY MODE

However, the CNN classification model trained on optical

images is more likely to be fooled against the adversarial images

than the CNN classification model trained on SAR images.

Increasing the number of channels of SAR images improves

the attack success rate of ASIs. From Table V, using FGSM and
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Fig. 14. Sample-boundary distance of the SAR images. We selected one SAR image randomly from each class of the test dataset and calculated the sample-
boundary distances of these images. The class of the color of the bar indicated by the red arrow in the figure indicates the predicted label of ASI, and the class of
the color of the shortest bar is the class indicated by AESD.

Fig. 15. Attack success rate trends of the ASIs as the input image size changes. (a) Image was not processed after center-cropping the image. (b) Image was
resized to 128× 128 after center-cropping the image.
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BIM, the attack success rates of the three-channel ASIs of all

CNNs are higher than those of the single-channel ASIs. Com-

pared with SAR images, optical images contain more bands, and

the AEs of optical images can carry more adversarial information

and are more likely to fool a CNN from misclassification.

2) Sensitivity Analysis of the Size: To analyze the impact of

image size on the attack success rate, we cropped the MSTAR

images to six different sizes: 128× 128, 112× 112, 96× 96,

80× 80, 64× 64, and 48× 48. Then, we used two methods in

the experimental analysis: one performed no processing on the

center-cropped image, and the other resized the center-cropped

image to128× 128. Fig. 15 shows that decreasing the image size

can reduce the attack success rate of ASIs, and different attack

algorithms and model structures have different sensitivities to

the sizes of ASIs.

For VGG16 and GoogLeNet, ASIs generated by FGSM and

BIM reduce the attack success rate when the image size is

reduced, and the attack success rate still maintains a significant

downward trend even after being zoomed to the same size.

These results show that VGG16 and GoogLeNet are sensitive to

changes in the size of ASIs and that reducing the sizes of ASIs

is not the direct cause of the decline in the attack success rate.

Instead, other factors regarding ASIs lead to the decrease.

For InceptionV3, the attack success rate of ASIs generated

by FGSM decreases as the image size decreases, and they still

maintain a significant downward trend even after being zoomed

to the same size. The attack success rate of ASIs generated by

BIM remains basically flat. These results show that InceptionV3

is sensitive to the size of ASIs generated by FGSM. The reduc-

tion in image size also affects other factors that indirectly reduce

the attack success rate. The attack success is not sensitive to the

size of ASIs generated by BIM, and reducing the image size

does not cause a significant decrease in the attack success rate.

For ResNet50, ResNeXt50, and DenseNet121, the attack

success rates of ASIs generated by FGSM also decrease as

the image size decreases. After the images are zoomed to the

same size, the attack success rate does not decrease; instead,

it fluctuates, whereas the attack success rate of ASIs generated

by BIM remains basically unchanged. The results show that

ResNet50, ResNeXt50, and DenseNet121 are sensitive to the

sizes of ASIs generated by FGSM, and the reduction in image

size leads directly to a decrease in the attack success rate. They

are not sensitive to variations in the sizes of ASIs generated by

BIM.

In our experiments, SAR images read in RGB mode are three

copies of single-band images in the channel direction, which

does not increase the effective information in the image. The

classification accuracy is not improved, but the robustness of the

CNN is reduced. The center-cropped SAR image removes part

of the background information in the image but does not reduce

the effective information in the image, so the accuracy of the

CNN has not decreased, but the robustness has been improved.

The more effective the information in the image extracted by

the CNN is, the higher the classification accuracy of the CNN.

The less redundant the information of the image used to train

the CNN is, the more robust the model. The balance between

accuracy and robustness should be considered when using CNN.

V. CONCLUSION AND DISCUSSION

In this article, we used FGSM and BIM to generate AEs of

SAR image classification models based on CNNs. The results

show that CNNs trained on SAR images are very susceptible to

ASIs, and the more complex the structure of the CNN is, the

easier it is for the CNN to be successfully attacked by ASIs.

We then proposed AESD to expound on the attack selectivity of

ASIs, which provided the theoretical basis for targeted attacks.

Finally, we analyzed the effects of parameters, such as image size

and number of channels, on the attack success rates of ASIs. The

results show that reducing the image size and number of channels

can reduce the attack success rate of ASIs. Our work provides

an experimental reference for the attack and defense capabili-

ties of various CNNs against AEs in SAR image classification

models.

The proposal of AESD provides theoretical guidance for our

next work. We will design new attack and defense methods based

on the aforementioned research in the future. On the one hand,

specifying the attack direction on the basis of AESD can make

the original sample cross the decision boundary with almost

the shortest distance and reach the space of the specified class

to quickly achieve the target attack. On the other hand, AESD,

which is used to quantify the attack selectivity of AEs as a feature

of the sample, can be used to detect whether the input sample is

an AE.

However, many problems still require further research. Be-

cause there are no pixel-level labels of the SAR target, we are

forced to study the AEs of SAR images by perturbing the whole

image. If only perturbations are generated for the target, the

pixel-level labeling of the target is required. We can discard

the AP in the background and only add the AP to the target to

enable the target to be incorrectly recognized by the CNN. The

rationale could be adopted as follows: We can create a mask

based on the pixel-level label (the value of the target area is 1,

and the value of the background area is 0). Then, the gradient

of the loss function to the input image can be calculated and

multiplied by the mask to change only the pixel occupied by the

target, which can achieve the purpose of only adding the AP to

the target.

Our current experiment is purely digital, i.e., we have not

implemented AE physically. Currently, it is extremely difficult

and expensive for us to obtain SAR images at any time to

test the attack effect of AEs in the physical world. The task

of generating AEs in the remote sensing field under realistic

physical constraints is still an unresolved problem. Physical

attacks can be performed by changing properties, such as re-

flectivity, for example by adding materials or changing surface

textures. Using the material reflection feature database, we can

determine the set of achievable reflection perturbations. We can

limit the AP that we generate through the perturbation set to

meet the reflection characteristics of these materials and ensure

that the AP can be restored in the real world. AEs are very

susceptible to environmental changes (such as light, clouds,

etc.), and physical AEs should be robust to such changes. While

the exact mechanism for enhancing the robustness of AEs is

beyond the scope of our manuscript, we hope that interested
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researchers can start related research to jointly solve the current

problems.
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