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Abstract

Graph deep learning models, such as graph con-
volutional networks (GCN) achieve state-of-the-art
performance for tasks on graph data. However,
similar to other deep learning models, graph deep
learning models are susceptible to adversarial at-
tacks. However, compared with non-graph data the
discrete nature of the graph connections and fea-
tures provide unique challenges and opportunities
for adversarial attacks and defenses. In this pa-
per, we propose techniques for both an adversar-
ial attack and a defense against adversarial attacks.
Firstly, we show that the problem of discrete graph
connections and the discrete features of common
datasets can be handled by using the integrated gra-
dient technique that accurately determines the ef-
fect of changing selected features or edges while
still benefiting from parallel computations. In ad-
dition, we show that an adversarially manipulated
graph using a targeted attack statistically differs
from un-manipulated graphs. Based on this obser-
vation, we propose a defense approach which can
detect and recover a potential adversarial pertur-
bation. Our experiments on a number of datasets
show the effectiveness of the proposed techniques.

1 Introduction

Graphs are commonly used to model many real-world
relationships, such as social networks [Newman et al.,
2002], citation networks, transaction networks [Ron and
Shamir, 2013], and the control-flow graphs of computer pro-
grams [Allen, 1970]. Compared with the traditional machine
learning methods [Bhagat et al., 2011; Xu et al., 2013], graph
deep learning models have recently pushed forward the state-
of-the-art for machine learning tasks on graph data [Kipf
and Welling, 2017; Veličković et al., 2018; Cao et al., 2016;
Henaff et al., 2015]. In particular, graph convolutional net-
works (GCN) [Bruna et al., 2013; Edwards and Xie, 2016]

and its recent variants [Kipf and Welling, 2017] perform con-
volution operations in the graph domain by aggregating and
combining the information of neighboring nodes. In these
techniques, both node features and the graph structure (the
edges between nodes) are used by the model.

A common predictive task on graph data is node classifi-
cation: Given a graph, features for all nodes, and labels for
a subset of nodes, the goal is to predict the labels for the un-
labelled nodes. The labels of the nodes can be, for example,
the topics of papers in citation networks, or customer types in
e-commerce networks.

Deep learning methods are often criticized for their lack of
robustness [Goodfellow et al., 2015]. This has been demon-
strated by the ease of crafting adversarial examples that fool
the deep neural networks and give incorrect predictions by
adding small perturbations to the examples that are unnotice-
able to humans. These perturbations are termed adversarial
attacks, and they are major obstacles for deep learning ap-
plications especially if they are to be used in safety-critical
scenarios. Graph neural networks are no exception: a ma-
licious user can manipulate their profile, connect to targeted
users, or connect to fake users they have created purposefully
in order to mislead a graph deep learning system. Similarly,
adding fake comments to specific products can fool the rec-
ommender systems of a website.

The key challenge that limits the simple adoption of ex-
isting adversarial attack techniques used in non-graph data
on graph convolutional networks is that the edges and the
features of the graph data are typically discrete. To ad-
dress this challenge, a recent work uses reinforcement learn-
ing or genetic algorithm based methods [Dai et al., 2018]

to find the adversarial graph. Zügner et al [Zügner et al.,
2018] proposes to attack a simplified surrogate model and
exploit the transferability of adversarial attacks to attack the
graph convolutional networks. They also show that despite
the discreteness of graphs, gradient-based attacks such as
fast gradient sign method (FGSM) can also achieve attacks
in some cases. Nevertheless, the gradient-based approaches
may achieve sub-optimal attack performance due to the in-
accurate gradients on discrete data. We note that in the case
of weighted graphs with continuous features attacks could be
aimed at the weights of the edges and may avoid this problem.

In this paper, we show that using integrated gradients we
can calculate the model change caused by flipping a discrete
edge or feature accurately. Integrated gradients approximate
Shapley values [Hart, 1989; Lundberg and Lee, 2016] by in-
tegrating partial gradients with respect to input features from
a reference input to the input of interest. Integrated gradients
greatly improve the efficiency and accuracy of the node and
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edge selection in comparison to iterative methods.

Compared with adversarial attacks, the defense against ad-
versarial attacks in graph models has not been well-studied.
In this paper, we show that one key reason for the vulnera-
bility of graph deep learning models, in particular GCNs, is
that these models use a weighted mean of the features of their
neighbors and therefore heavily rely on the aggregate infor-
mation of their neighborhood when making predictions. We
have investigated the perturbations made by the existing at-
tack techniques on GCNs and found that adding edges which
connect to nodes with very different features from those in
the original neighborhood plays a key role in all of the attack
methods. In this paper, we show that statistical analysis of the
node features can identify the edges inserted by adversarial
attacks. For nodes with bag-of-words (BOW) features we use
the Jaccard index to find nodes with features that are highly
dissimilar to the other neighbors. We show that by removing
such edges we are able to defend against targeted adversarial
attacks without decreasing the accuracy of the GCN models.
Our results on a number of real-world datasets show the ef-
fectiveness and efficiency of the proposed attack and defense.

2 Preliminaries

2.1 Graph Convolutional Network

Given an attributed graph G = (A,X ), A ∈ [0, 1]N×N is
the adjacency matrix and X ∈ [0, 1]N×D represents the D-
dimensional binary node features, the indices for the nodes
are V = {1, 2, ..., N} and for the features F = {1, 2, ..., D}.
We now consider the task of semi-supervised or transduc-
tive node classification where a subset of nodes VL ⊆ V
are labelled with one class from the set of classes C =
{1, 2, ..., cK}. The aim is to predict the class for the unla-
belled nodes given the labelled nodes.

In this work, we focus on graph convolutional networks
(GCN) [Kipf and Welling, 2017], a well-established method
for semi-supervised node classifications. For GCN, initially,
H0 = X; the GCN model then applies the following rule to
aggregate the neighboring features:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

where Ã = A + IN is the adjacency matrix of the graph

G with self connections added, D̂ is a diagonal matrix with

D̃i,i = ΣjÃij , and σ is the activation function to introduce
non-linearity. Each of the above equation corresponds to one
graph convolution layer. A fully connected layer with soft-
max loss is usually used after L layers of graph convolution
layers for the classification. A two-layer GCN is commonly
used for semi-supervised node classification tasks [Kipf and
Welling, 2017]. The model can, therefore, be described as:

Z = f(X,A) = softmax(Âσ(ÂXW (0))W (1)) (2)

where Â = D̃− 1
2 ÃD̃− 1

2 . Â is essentially the symmetri-

cally normalized adjacency matrix. W (0) and W (1) are the
input-to-hidden and hidden-to-output weights, respectively.

2.2 Gradients Based Adversarial Attacks

Gradients are commonly used to construct adversarial attacks
deep learning models [Yuan et al., 2019]. One can either
use the gradients of the loss function or the gradients of the
model output with respect to (w.r.t.) the input to construct
the attacks. Two examples of these methods are Fast Gradi-
ent Sign Method (FGSM) attack and Jacobian-based Saliency
Map Approach (JSMA) attack. Fast Gradient Sign Method
(FGSM) [Ian J. Goodfellow, 2014] generates adversarial ex-
amples by perturbing the input along the direction of the sign
of gradients of loss function w.r.t. each pixel for image data.
The adversarially perturbed input is given by:

x
′

= x+ ǫsign(∇Jθ(x, l)) (3)

where ǫ is the magnitude of the perturbation. J is the loss of
the model, θ are the model parameters, x is the model input,
and l is the label of x.

The Jacobian-based Saliency Map Approach (JSMA) at-
tack was first proposed in [Papernot et al., 2016]. It uses per-
turbations that force the model to mis-classify the example
point into a specific target class. Specifically, given a feed-
forward neural network F and example point X, the Jacobian
is computed by:

∇F (X) =
∂F (X)

∂X
=

[

∂Fj(X)

∂xi

]

i∈1...N,j∈1...M

(4)

where the dimensions for the model output (number of
classes) and the input are M and N , respectively. The aim is

to maximize the output for the target class c, F (c)(X), whiles
minimizing the output for the other classes j 6= c to decrease.
This is accomplished by exploiting the adversarial saliency
map which is defined by:

S(X, c) =

{

0, if
∂Fc(X)

∂X
< 0 or Σj 6=t

∂Fj(X)
∂X

> 0
∂Fc(X)

∂X
|Σj 6=t

∂Fj(X)
∂X

|, otherwise

}

(5)

The adversarial attack is created by starting from a selected
example point and iteratively perturbing the example point in
the direction of S(X, c) a small amount until the predicted
label changes. For an untargeted attack, the prediction score
is minimized for the winning class in a similar fashion.

2.3 Defense for Adversarial Examples

Defense against adversarial attacks have been studied in the
context of convolutional neural networks for image classifi-
cation [Xu et al., 2018; Papernot and McDaniel, 2018]). For
images, the feature space is continuous and adversarial ex-
amples are crafted with small additive perturbations. There-
fore, in some cases, adding some randomization to the im-
ages at the testing time can help defend against adversarial at-
tacks [Xie et al., 2018]. Other forms of input pre-processing,
such as local smoothing [Xu et al., 2018] and image com-
pression [Shaham et al., 2018] have also been used to defend
against attacks. These forms of pre-processing work due to
the fact that neighboring pixels of natural images are typi-
cally correlated. Adversarial training [Tramèr et al., 2018]

introduces generated adversarial examples to the training data
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to enhance the robustness of the model. For graph convolu-
tional networks, Dai et al. [Dai et al., 2018] briefly introduces
the possibility of defending adversarial examples by dropping
some edges during the training. However, this method barely
improves the robustness of the model.

3 Integrated Gradients Guided Attack

Due to their assumption of continuous features in the in-
put pixel space, FGSM and JSMA are not well-studied for
graph models. Furthermore, recent explorations into graph
adversarial attack techniques show that simply applying these
methods may not lead to successful attacks [Zügner et al.,
2018; Dai et al., 2018]. These works have addressed this
problem by either attacking a simplified surrogate model or
reinforcement learning based methods which are typically
computationally expensive.

The node features in many graph datasets are often either
bag-of-words or categorical features which take on binary
values of 0 or 1. Furthermore, the edges in a graph are also
represented by binary values of 0 or 1 in the adjacency ma-
trix. When attacking the model, the adversarial perturbations
are therefore limited to either changing 1 to 0 or vice versa.
The main issue of applying vanilla FGSM and JSMA in graph
models is the fact that the gradients are calculated locally at
the current example point. In particular, given a target node

t, for FGSM attack, ∇JW (1),W (2)(t) =
∂J

W (1),W (2) (t)

∂X
mea-

sures the feature importance of all nodes to the loss function
value. Here, X is the feature matrix, each row of which de-
scribes the features for a node in the graph. For a specific
feature j of node n, a larger value of ∇JW (1),W (2)

in
indi-

cates increasing the value of feature j locally will decrease
the confidence of the predictions for the target node. How-
ever, changing the value of feature j to 1 may not help for
two reasons: firstly, the feature value might already be 1; sec-
ondly, the GCN model is not a linear function and therefore
the local gradient does not necessarily predict the result of a
large change in value. This argument applies to JSMA. For
example, a simple ReLU network f(x) = ReLU(x − 0.5)
as an example, when x is increased from 0 to 1, the function
value increases by 0.5. However, computing the gradient at
x = 0 gives 0, which does not predict this increase. To ad-
dress this, we propose an integrated-gradient based method.
Integrated gradients were initially proposed by [Sundarara-
jan et al., 2017] to provide sensitivity and implementation
invariance for feature attribution in the deep neural networks,
particularly the convolutional neural networks for images.

The integrated gradient is defined as follows: for a given

model F : Rn → [0, 1], where x ∈ Rn is the input, x
′

is
the baseline input (e.g., a black image for image data). The
integrated gradient is the path integral of the gradient along a

path from x
′

to the input x. Namely, for the ith feature of x,
the integrated gradients (IG) is given as follows:

IGi(F (x)) ::= (xi − x
′

i)×

∫ 1

α=0

∂F (x
′

+ αx(x− x
′

))

∂xi

dα

(6)

For GCN on graph data, we propose a generic attack frame-
work. Given the adjacency matrix A, feature matrix X , and
the target node t, we compute the integrated gradients for
function FW (1),W (2)(A,X, t) w.r.t. I where I is the input
for the attack. I = A indicates edge attacks while I = X
indicates feature attacks. When F is the loss function of the
GCN model, we call this attack technique IG-FGSM. Simi-
larly, when F is the prediction output of the GCN model we
call the attack technique IG-JSMA. For a targeted IG-JSMA
or IG-FGSM attack, the optimization goal is to maximize the
value of F . Therefore, for the features with a value of 1 or
edges that exist in the graph, we select those which have the
lowest negative IG scores and either, for features, set their
value to 0 or, for edges, remove them. In contrast, the untar-
geted IG-JSMA attack aims to minimize F for the winning
class; therefore for features with a value of 1, we set those
which have the highest positive IG scores to 0, and similarly
for edges in the graph we remove those which have the high-
est positive IG scores.

For the baseline input We use either all-zero or all-one fea-
ture/adjacency matrices to represent the 1→ 0 or 0→ 1 per-
turbations. When removing a specific edge or changing a fea-
ture from 1 to 0, we set the adjacency matrix A or feature
matrix X respectively to all-zeros. On the contrary, to add
edges or features, we set either A or X respectively to an all-
one matrix. To keep the direction of gradients consistent and
ensure the computation is tractable, IG(F (X,A, t))[i, j] (for
edge attack) is approximated as follows:







Aij

m
× Σm

k=1
∂F ( k

m
×(Aij−0))

∂Aij
, removing edges

1−Aij

m
× Σm

k=1
∂F (Aij+

k
m

×(1−Aij))

∂Aij
, adding edges

(7)

Algorithm 1 shows the pseudo-code for untargeted IG-
JSMA attack. We compute the integrated gradients of the
prediction score for the winning class c w.r.t. the entries of A
and X . The integrated gradients are then used as a measure
of the importance of changing specific features or edges in
the graph G. Note that we only compute the importance of
adding edges if the edge does not exist before and only com-
pute the importance of changing a feature to 1 if it is currently
0 and vice versa. Therefore, for a feature or an edge with high
importance, we simply flip the binary value.

While setting the number of steps m for computing inte-
grated gradients, one size does not fit all. Therefore, we en-
large the number of steps while attacking the nodes with low
classification margins until the required accuracy is achieved.
Moreover, the calculation can be done in an incremental way
if we increase the number of steps by integer multiples.

To ensure the perturbations are unnoticeable, the graph
structure and feature statistics should be preserved. The spe-
cific properties to preserve depend on the application require-
ments. For our IG based attacks, we check against these
application-level requirements while selecting an edge or a
feature for perturbation. In practice, this process can be ef-
ficient as many statistics can be pre-computed and updated
incrementally [Zügner et al., 2018].
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Algorithm 1: IG-JSMA - Integrated Gradient Guided un-
targeted JSMA attack on GCN

Input: Graph G(0) = (A(0), X(0)), target node v0
F : the GCN model trained on G(0)

budget ∆: the maximum number of
perturbations.

Output: Modified graph G
′

= (A
′

, X
′

).
1 Procedure Attack()
2 //compute the importance scores for edges and

features.
3 se ← calculate edge importance(A)
4 sf ← calculate feature importance(X)
5 //sort nodes and edges according to their scores.
6 features← sort by importance(s f)
7 edges← sort by importance(s e)
8 f← features.first, e← edges.first

9 while |A
′

−A|+ |X
′

−X| < ∆ do
10 //decide which to perturb
11 if se[e] > sf [f ] then
12 flip feature f
13 f← f.next

14 else
15 flip edge e
16 e =← e.next

17 end

18 end
19 return G′

4 Defense for Adversarial Graph Attacks

In order to defend against adversarial targeted attacks on
GCNs, we first assume that the GCN model is trained on a
graph modified by an adversarial attack. Adversarial attacks
on deep learning systems are transferable to models with sim-
ilar architecture and trained on the same dataset, therefore any
model trained on the attacked graph will most likely show the
same behavior as the model used to craft the attack. A pos-
sible defense in this scenario is to make the adjacency matrix
trainable. By learning selected edge weights during the train-
ing process, there is the potential to change the graph struc-
ture enough to make the attack crafted using vanilla GCN on
the original graph not effective.

We verify this idea by making the edge weights trainable
in GCN models. For the CORA-ML dataset, we select a node
that is correctly classified by a trained model. An adver-
sarially modified graph was then constructed by using net-
tack [Zügner et al., 2018]. Without any defense, the target
node is misclassified with the confidence of 0.998 after the
attack. Our defense technique is then used. Starting with the
adversarially modified graph we train the GCN model with-
out making any additional modifications on the loss function,
with the exception of adding selected trainable edge weight.
Interestingly, with such a simple defense method, the target
node is correctly classified with the confidence of 0.912 after
the attack.

To explain why the defense works, we observe the follow-
ing: firstly, perturbing edges is more effective than modifying
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Figure 1: Histograms for the Jaccard similarities between connected
nodes before and after FGSM attack.

the features in all the attacks (i.e., FGSM, JSMA, nettack, and
IG-JSMA). We have observed that feature-only perturbations
generally fail to change the predicted class of the target node.
Moreover, the attack approaches tend to favor adding edges
over removing edges.

Secondly, nodes with more neighbors are more difficult to
attack than those with fewer neighbors. This is also consistent
with the observations in [Zügner et al., 2018] that nodes with
higher degrees have higher classification accuracy in both the
clean and the attacked graphs.

Finally, the attacks tend to connect the target node to nodes
with considerably different features and labels. We have ob-
served that this is the most effective way to perform attacks.
We verify this observation using the CORA-ML dataset using
the Jaccard similarity score. Given two nodes u and v with
n binary features, the Jaccard similarity score measures the
overlap that u and v share with their features. Each feature of
u and v can either be 0 or 1. The Jaccard similarity score is
then given by:

Ju,v =

∑n
i=1 uivi

∑n
i=1 ui + vi − uivi

. (8)

Note that our defense mechanism is generic, while the sim-
ilarity measures may vary among different datasets, in partic-
ular for other types of features we may use different similarity
measures such as the cosine similarity or the correlation co-
efficient.

We train a two-layer GCN on the CORA-ML dataset and
study the nodes that are classified correctly with high proba-
bility (i.e. ≥ 0.8). For these nodes, Figure 1 shows the his-
tograms for the Jaccard similarity scores between connected
nodes before and after the FGSM attack. We note that the
adversarial attack significantly increases the number of neigh-
bors which have very low similarity scores to the target nodes.
This also holds for nettack [Zügner et al., 2018]. For exam-
ple, we enable both feature and edge attacks for nettack and
attack the node 200 in the GCN model trained on CORA-ML
dataset. Given the node degree of 3, the attack removes the
edge 200→ 1582 because node 1582 and node 200 are simi-
lar (J1582,200 = 0.113). Meanwhile, the attacks add edge 200
→ 1762 and 200→ 350, and node 200 shares no feature sim-
ilarity with the two nodes. No features were perturbed in this
experiment.

This result is consistent with our observations. Com-
pared with deep convolutional neural networks (for image
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data) which often have many more layers and parameters
than graph neural networks GCN models are relatively shal-
low. The GCN model essentially aggregates features from the
neighborhood of each node at each layer. For a target node,
an adversarially crafted graph attempts to connect the nodes
with different features and labels to maximally change the ag-
gregated neighborhood features. Correspondingly, while re-
moving edges, the attack tends to remove the edges connect-
ing the nodes that are most similar to the target node. The
edge attacks are more effective due to the fact that adding or
removing one edge affects all the feature dimensions during
the aggregation. In contrast, modifying one feature only af-
fects one dimension in the feature vector and the perturbation
can be easily masked by other neighbors of nodes with high
degrees.

Based on these observations, we make another hypothesis
that the above defense approach works because the model as-
signs lower weights to the edges that connect the target node
to the nodes are dissimilar in terms of features. To verify this,
we plot the learned weights and the Jaccard similarity scores
of the end nodes for the edges starting from the target node
(see Figure 2). Note that for the target node we choose, the
Jaccard similarity scores between every neighbor of the target
node and itself are larger than 0 in the clean graph. The edges
with zero similarity scores are all added by the attack. As
expected, the model learns low weights for most of the edges
with low similarity scores so that the perturbations have much
lower influence to the prediction of the target node.

To make the defense more efficient, we do not even need to
use trainable edge weights as the defense. Learning the edge
weights inevitably introduces extra parameters to the model,
which may affect the scalability and accuracy of GCN mod-
els. A simple approach that is potentially as effective can be
constructed by noting that in the majority of datasets nodes
generally do not connect to nodes that have no feature sim-
ilarities. In addition, the learning-based defense technique
essentially assigns low weights to the edges connecting two
dissimilar nodes.

Our simple defense approach is pre-processing based. We
perform a pre-processing on a given graph before training.
We check the adjacency matrix of the graph and inspect the
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Figure 2: The normalized learned edge weights and the Jaccard sim-
ilarity scores for the end nodes of the edges. Each value of the x-axis
represents an edge in the neighborhood of the target node.

edges. All the edges that connect nodes with low similar-
ity score (e.g., Ju,v = 0) are selected as candidates to re-
move. Although the clean graph may also have a small num-
ber of such edges, we find that removing these edges does
little harm to the prediction of the target node. On the con-
trary, the removal of these edges may improve the prediction
in some cases. This is intuitive as aggregating features from
nodes that differ sharply from the target often over-smooths
the node representations. In fact, a recent study [Wu et al.,
2019] shows that the non-linearity and multiple weight matri-
ces at different layers do not contribute much to the predictive
capabilities of GCN models but introduce unnecessary com-
plexity. For example, [Zügner et al., 2018] uses a simplified
surrogate model to achieve the attacks on GCN models for
the same reason.

The proposed defense is computationally efficient as it only
makes one pass to the existing edges in the graph, thus having
the complexity of O(N) where N is the number of edges. For
large graphs, calculating the similarity scores can be easily
parallelized in implementation.

Finally, we note that this simple pre-processing defense
shares similarities with defense techniques in image classi-
fication which smooth the images. They both are based on
the assumption that the neighborhood of either the pixel in
image datasets or the node in graphs datasets are typically
highly correlated.

5 Evaluation

We use the widely used CORA-ML [McCallum et al., 2000],
CITESEER [Bojchevski and Günnemann, 2018] and Pol-
blogs [Adamic and Glance, 2005] datasets. The overview of
the datasets is listed below.

We split each graph into a labeled (20%) set and an un-
labeled set of nodes (80%). Among the labeled nodes, half
of them are used for training while the rest are used for val-
idation. For the Polblogs dataset, since there are no feature
attributes, we set the attribute matrix to an identity matrix.

5.1 Transductive Attack

As mentioned, due to the semi-supervised or transductive set-
ting, the models are not regarded as fixed while attacking. Af-
ter perturbing either features or edges, the model is retrained
for evaluating the attack effectiveness. To verify the effec-
tiveness of the attack, we select the nodes with different pre-
diction scores. Specifically, we select in total 40 nodes which
contain the 10 nodes with top scores, 10 nodes with the low-
est scores and 20 randomly selected nodes. We compare the
proposed IG-JSMA with several baselines including random
attacks, FGSM, and nettack.

To evaluate the effectiveness of the attack, we calculate the
classification margin. For a target node v, the classification

Dataset Nodes Features Edges

CORA-ML 2708 1433 5429

Citeseer 3327 3703 4732

Polblogs 1490 - 19025

Table 1: Statistics of the datasets.
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Dataset CORA Citeseer Polblogs

JSMA 0.04 0.06 0.04

IG JSMA 0.00 0.01 0.01

Table 2: The ratio of correctly classified nodes under JSMA and
IG-JSMA attacks.

margin of v is Zv,c − maxc
′
6=cZv,c

′ where c is the ground
truth class, Zv,c is the probability of class c given to the node
v by the graph model. A lower classification margin indi-
cates better attack performance. Figure 3 shows the classi-
fication margins of nodes after re-training the model on the
modified graph. We found that IG-JSMA outperforms the
baselines. More remarkably, IG-JSMA is quite stable as the
classification margins have much less variance. Just as stated
in [Zügner et al., 2018], the vanilla gradient-based methods,
such as FGSM are not able to capture the actual change of
loss for discrete data.

To demonstrate the effectiveness of IG-JSMA, we also
compare it with the original JSMA method where the saliency
map is computed by the vanilla gradients.

Table 2 compares the ratio of correctly classified nodes af-
ter the JSMA and IG-JSMA attacks for 100 random sampled
nodes. A lower value is better as this indicates more nodes
are misclassified. We can see that IG-JSMA outperforms the
JSMA attack. This shows that the saliency map computed by
integrated gradients approximates the change patterns of the
discrete features/edges better.

Figure 4 gives an intuitive example of this. For a target
node in the graph, given a two-layer GCN model, the predic-
tion of the target node only relies on its two-hop ego network.
We define the importance of a feature/an edge as follows: For
a target node v, The brute-force method to measure the im-
portance of the nodes and edges is to remove one node or one
edge at a time in the graph and check the change of prediction
score of the target node.

Assume the prediction score for the winning class c is pc.
After removing the edge (i, j) by settingAij to 0, pc changes

to p
′

c. We define the importance of the edge by ∆pc
= p

′

c−pc.
To measure the importance of a node, we remove all the edges
connected to the node and again see how the prediction scores
change. These values can be regarded as the ground truth
importance scores.

Both vanilla gradients and integrated gradients are approx-
imations of the ground truth importance scores. The node im-
portance can be approximated by the sum of the gradients of
the prediction score w.r.t. all the features of the node as well
as the gradients w.r.t. to the entries of the adjacency matrix.

In Figure 4, the node color represents the class of the node.
Round nodes indicate positive importance scores while dia-
mond nodes indicate negative importance scores. The node
size indicates the value of the positive/negative importance
score: a larger node means higher importance. Similarly, red
edges are the edges which have positive importance scores
while blue edges have negative importance scores and thicker
edges correspond to more important edges in the graph. Fi-
nally, the pentagon represents the target node in the attack.

Figure 4a, 4b and 4c show the node importance results

Dataset no defense w/ defense

CORA-ML 80.9± 0.6 80.7 ± 0.7

Citeseer 69.5 ± 0.7 69.6 ± 0.8

Table 3: Accuracy (%) of models on clean data with/without the pro-
posed defense. We remove the outliers (i.e., accuracy ≤ 75%/65%
for CORA-ML/Citeseer) due to the high variance.

of brute-force, vanilla gradients and integrated gradients ap-
proach respectively (# of steps = 20). The vanilla gradients re-
veal little information about node/edge importance as almost
all the edges have non-zero importance scores and it is diffi-
cult to see the relative node/edge influence. However, in the
brute-force case, we notice that the majority of edges are not
important for the target node. Compared to the brute-force
method the vanilla gradients underestimate the importance of
the nodes. The integrated gradients, as shown in Figure 4c is
consistent with the ground truth produced by brute-force ap-
proach shown in Figure 4a. With only 20 steps along the path,
integrated gradients provide accurate approximations for the
importance scores. This shows the integrated gradients ap-
proach as effective as the brute-force technique when used to
guide the adversarial attacks on graphs with discrete values.

5.2 Defense

In the following, we study the effectiveness of the pro-
posed defense technique under different settings. We use
the CORA-ML and Citeseer datasets that have features for
the nodes. We first evaluate whether the proposed defense
method affects the performance of the model. Table 4 shows
the accuracy of the GCN models with/without the defense.

We find that the proposed defense was cheap to use as the
pre-processing of our defense method almost makes no neg-
ative impact on the performance of the GCN models. More-
over, the time overhead is negligible. Enabling defense on
the GCNs models for the two datasets increases the run time
of training by only 7.52s and 3.79s, respectively. Note that
run time results are obtained using our non-optimized Python
implementation.

For different attacks, we then evaluate how the classifi-
cation margins and accuracy of the attacked nodes change
with/without the defense. As in the experiments of trans-
ductive attack, we select 40 nodes with different prediction
scores. The statistics of the selected nodes are the follow-
ings: For CORA-ML and Citeseers datasets, we train the

Dataset/Attack
CM (w/ attack) Accuracy (w/ attack)

w/ defense no defense w/ defense no defense

CORA/FGSM 0.299 ± 0.741 -0.833 ± 0.210 0.625 0.025

CORA/JSMA 0.419 ± 0.567 -0.828 ± 0.225 0.775 0

CORA/nettack 0.242 ± 0.728 -0.839 ± 0.343 0.600 0.025

CORA/IG-JSMA 0.397 ± 0.553 -0.897 ± 0.114 0.750 0

Citeseer/FGSM 0.451 ± 0.489 -0.777 ± 0.279 0.825 0.025

Citeseer/JSMA 0.501 ± 0.531 -0.806 ± 0.186 0.775 0.05

Citeseer/nettack 0.421 ± 0.468 -0.787 ± 0.332 0.775 0.025

Citeseer/IG-JSMA 0.495 ± 0.507 -0.876 ± 0.186 0.800 0.025

Table 4: Classification margins and error rates (%) for the GCN
models with different attacks.
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Figure 3: The classification margin under different attack techniques.

(a) Ground Truth (b) Vanilla Gradients (c) Integrated Gradients

Figure 4: The approximations of node/edge importance.

GCN models on the clean graphs. The selected nodes have
classification margins of 0.693 ± 0.340 and 0.636 ± 0.419,
respectively.

The results are given in Table 4. First of all, without de-
fenses, most of the selected nodes are misclassified as the ac-
curacy is always under 0.05 for any attacks. By enabling the
defense approach, the accuracy can be significantly improved
regardless of the attack methods. This, to some degree, shows
that all the attack methods seek similar edges to attack and the
proposed defense approach is attack-independent. Although
a few nodes were still misclassified with the defense, the pre-
diction confidence for their winning class is much lower since
the classification margins increase. Therefore, it becomes
harder to fool the users because manual checks are gener-
ally involved in predictions with low confidence. Overall, the
proposed defense is effective even though we only remove the
edges that connect nodes with Jaccard similarity score of 0.

6 Conclusions and Discussion

Graph neural networks (GNN) significantly improved the an-
alytic performance on many types of graph data. However,
like deep neural networks in other types of data, GNN suf-
fers from robustness problems. In this paper, we gave in-
sight into the robustness problem in graph convolutional net-
works (GCN). We proposed an integrated gradients based at-
tack method that outperformed existing iterative and gradient-
based techniques in terms of attack performance. We also
analyzed attacks on GCN and revealed the robustness issue
was rooted in the local aggregation in GCN. We give an ef-
fective defense method to improve the robustness of GCN
models. We demonstrated the effectiveness and efficiency of
our methods on benchmark data. Although we use the GCN
model as a case in this paper, both the attack and defense prin-
ciples are applicable to other variations of GNNs due to the
fact that these models are also aggregation-based.
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