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Abstract—Medical IoT devices are rapidly becoming part
of management ecosystems for pandemics such as COVID-19.
Existing research shows that deep learning (DL) algorithms have
been successfully used by researchers to identify COVID-19 phe-
nomena from raw data obtained from medical IoT devices. Some
examples of IoT technology are radiological media, such as
CT scanning and X-ray images, body temperature measurement
using thermal cameras, safe social distancing identification using
live face detection, and face mask detection from camera images.
However, researchers have identified several security vulnera-
bilities in DL algorithms to adversarial perturbations. In this
article, we have tested a number of COVID-19 diagnostic methods
that rely on DL algorithms with relevant adversarial examples
(AEs). Our test results show that DL models that do not con-
sider defensive models against adversarial perturbations remain
vulnerable to adversarial attacks. Finally, we present in detail
the AE generation process, implementation of the attack model,
and the perturbations of the existing DL-based COVID-19 diag-
nostic applications. We hope that this work will raise awareness
of adversarial attacks and encourages others to safeguard DL
models from attacks on healthcare systems.

Index Terms—Adversarial examples (AEs), COVID-19, deep
learning (DL), medical IoT.

I. INTRODUCTION

R
ECENTLY, medical IoT devices have become increas-

ingly connected to the Internet as part of the con-

nected healthcare ecosystem. In order to automate healthcare

processes, machine learning and deep learning (DL) applica-

tions are used to access hospitals’ electronic health records
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and medical records generated by medical IoT devices. Due

to the widespread epidemic caused by the human-to-human

spreading pattern of COVID-19, healthcare authorities have

used medical IoT devices to diagnose COVID-19 patients.

In order to facilitate quicker diagnoses, DL models are used

in areas, such as symptom inferencing through ultrasound,

CT scan images, X-ray images, noninvasive face recognition-

based hospital profile checking, ICU data collection, and

others. However, researchers have shown that the existing DL

algorithms have major flaws through which an attacker can

compromise the security of the DL model itself [1].

Existing DL models use training data to train a set of

parameters, which is then termed a model [2], [3]. During

the inferencing phase, when given a new COVID-19 input

sample, the DL model infers the corresponding output. For

example, in the case of a DL algorithm that uses CT scan

images as classifiers, a doctor inputs a new CT scan image

and the model returns the classification results, i.e., positive or

negative for COVID-19. Existing research has shown that all

steps in a DL model, from training to inference, may be sub-

ject to adversarial attacks. Attackers can mislead DL models

by perturbing certain aspects of the DL process without being

discovered [4]. Fig. 1 provides an illustration of an adversar-

ial example (AE) that can fool a DL algorithm into failing to

recognize a photograph of a human wearing a mask by adding

a skillfully crafted perturbation [5].

As shown in the figure, before the attack, the DL algo-

rithm correctly classifies the input image and detects a mask

on a subject with 98.7% accuracy, while below, after the

input image is poisoned with the perturbation, the algorithm

falsely classifies the subject as maskless with a confidence

level of 99.13%. Data from medical IoT devices can be evaded,

extracted, poisoned, and inferred by adversaries. This makes

DL algorithms used in COVID-19 applications vulnerable

to attacks. AE detection from the existing media, such as

images, audio, and video, is becoming increasingly common.

Agarwal et al. [5] have proposed a universal image-agnostic

adversarial perturbation detection system that uses pixel value

and PCA as its features and SVM as its classifier. A detailed

survey of the existing AE for compromising DNN-based facial

recognition systems along with effective countermeasures has

been presented by Goswami et al. [6]. While many researchers

have studied image-based AE, audio-based and speech-based

AE are increasingly gaining attention. An adversarial attack
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Fig. 1. Illustration of an AE as malware on a medical IoT application.

against DNN-based X-ray and CT scan recognition systems

in which the classifier is targeted for both targeted and non-

targeted AEs is shown in [7]. Yahya et al. [8] have proposed

a design using a targeted watermark that generates AEs and

techniques to evaluate the impact of the embedded AEs.

A novel method of generating AE using generative adversarial

networks (GANs) from benign input images, instead of only

focusing on the constraints that make the generated perturbed

image look similar to the benign image, is presented in [9].

In order to mitigate AE, researchers have proposed multiple

solutions. For example, the work presented in [10] used

blockchain to store the existing known and benign attributes

and parameters of each of the DL models and then turned

them into explainable AI allowing high-level users to ver-

ify whether a particular model has been compromised or

not. Xu et al. [11] developed from images with adversarial

patches and audio media a lightweight AE detection model

that can mitigate physical adversarial attacks. Blockchain was

used by Goel et al. [12] to stop the alteration of input data,

feature vectors, model attributes, classifiers, and the final

decision-making process. In order to mislead the attacker’s

classifier, Jia et al. [13] proposed an AE defense mecha-

nism that can effectively defend against membership inference

attacks.

While researchers have made extraordinary advancements

in the design of defense mechanisms against AE using differ-

ent types of media, the attacks on medical IoT devices used

in COVID-19 diagnosis still require further study. Because

healthcare databases and services have been subject to ran-

somware attacks in the past, and because healthcare systems

are currently overwhelmed with COVID-19 patients, the study

of these adversarial attack vectors is urgent, especially to

uncover the vulnerabilities of medical IoT devices using DL

algorithms. However, little research has been conducted in this

domain. Although much work has been done in the area of AE,

to the best of our knowledge, this is one of the first studies of

adversarial attacks on COVID-19 DL applications. The main

innovations of this article are as follows.

Fig. 2. Design of AE to generate false acceptances (creating the false
impression that COVID-19 negative and positive samples are equal) and false
rejections (a truly positive COVID-19 sample is labeled negative).

Fig. 3. Illustration of an AE fooling a DL algorithm into either false rejection
or false acceptance.

1) We have studied six different DL applications used to

diagnose COVID-19.

2) We have researched the relevant AE to mount attacks

on the COVID-19 diagnostic systems.

3) We have presented multimodal AE attacks on diversified

COVID-19 diagnostic systems.

The remainder of this article is organized as follows.

Section II presents system design as an AE. Section III outlines

the system implementation. The test results are summarized in

Section IV, and Section V concludes this article and introduces

our vision for future study.

II. COVID-19 ADVERSARIAL EXAMPLE

FRAMEWORK DESIGN

Proposed AE Generation Environment: Since COVID-19

results in respiratory disorders, different medical IoT-based
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Fig. 4. (Top two rows with red circles) Six COVID-19 DL-based applications have been tested within the scope of this research with the normal recognition
rate shown within the red circles. (Bottom two rows with blue circles) After a DL-based adversarial perturbation attack, the recognition ability of DL algorithms
is compromised, though human experts can still recognize the actual class.

testing methods are available that can lead to a diagnosis,

detection, and recognition of the viral infection. Researchers

have used DNN algorithms to recognize COVID-19 symptoms

from various testing modalities. In this article, we have stud-

ied researchers’ existing works and open source initiatives,

testing and evaluating the ability of candidate DL algorithms

to diagnose COVID-19 from medical IoT devices [14]. Some

examples of IoT media used are radiological media, such

as CT scan and X-ray images and face mask detection from

camera images. Fig. 2 shows a generic AE in which DL-based

perturbations are added to the existing COVID-19 benign

samples to craft attacks on either targeted or nontargeted

samples, which results in either a false acceptance or false

rejection scenario.

Fig. 3 illustrates the architecture through which benign and

AE data sets are used to train benign and adversarial DL

algorithms. In the case of a white-box attack, we assume

an attacker has access to the underlying architecture, gradi-

ent, training process, training data, the defense method, and

parameters of the victim learning model. In the case of a black-

box attack, an attacker is assumed to have only access to the

underlying DL network’s input/output and the training data set.

In the case of a gray-box attack, the adversary has knowledge

about the target DL network, its gradients and parameters,

and data used during the training process, except the defense

mechanism. We have also developed a DL algorithm that

misclassifies facial recognition and works in a nontargeted

mode [15]. In this mode, the DL algorithm fails to recog-

nize the face in the image or video. The AE used attributes

ResNet-101 with kernel size = 1 and type = uniform. We have

used ResNet-101, kernel size = 30, and type = uniform and

ResNet-101, kernel size = 300, and type = uniform. Behind

the scenes, the DL prediction model was fooled to predict

the input sample as a microphone, a Windsor tie, and a tie,

respectively.

Fig. 4 shows the six targeted applications we built for the

proof of concept. The purposes of these applications are to:

1) recognize whether a subject is wearing a mask from a live

camera feed; 2) maintain DL-based QR codes as immuniza-

tion certificates; 3) add explainability of GRAD-CAM DL

algorithms; 4) recognize COVID-19 from CT scan images;

5) detect noninvasive biometrics and identify social distanc-

ing from a live camera feed; and 6) recognize COVID-19 from

X-ray image analysis. As the figure shows, we have developed

six AE DL models that can add noise or perturbations specific

to the type of media used in COVID-19 diagnosis.
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Fig. 5. Illustration of a nontargeted AE fooling different COVID-19 diagnostic measures by fooling the (a) DL model to recognize COVID-19 from X-ray
images, (b) DL model to recognize COVID-19 from CT scan images, and (c) face mask recognition processes.

III. PROOF OF CONCEPT IMPLEMENTATION

We have developed the sample applications shown in Fig. 4

to test their suitability with regards to COVID-19 and AE

attacks. We have implemented each application as part of the

proof of concept through various opensource libraries, such

as PyTorch, Tensorflow, Keras, and CV2. OpenPose, Docker,

Django, NGINX, React, Plotly, and Dash have been used

for the Web framework. On an Ubuntu Linux system, we

have outfitted the local edge server with NVIDIA GeForce

RTX 2080 Ti 11-GB GPU drivers, CUDA 10.0, and cuDNN

v7.6.4 for TensorFlow 2.0

Different AE models have been developed to perturb dif-

ferent COVID-19 diagnosis applications. For example, an

application has been created to perturb a COVID-19 social

distancing alert system that is based on regular and CCTV

cameras. The DL algorithm is designed to measure closeness

and identify human bodies standing 6 ft apart by leveraging

both YoloV4 and Darknet using the COCO data set. We have

designed an AE perturbation of the classifier that can drop

the “person.” Similarly, we have designed an AE classifier for

each of the six COVID-19 applications shown in Fig. 3. In

each of these cases, we have input an original COVID-19

diagnostic sample into our designed AE generator, which

adds a trained patch to the base DL network responsible for

COVID-19 phenomena detection.

The perturbation added to the DL network is responsible

for compromising the rankings of the recognition results by

decreasing the true-positive scores while increasing the false-

positive scores. In order to assess the attack success rate,

several metrics have been defined, such as true-positive class

loss and true-positive shape loss. The former is concerned

with decreasing the score of the genuine class by increasing

the score of the AE-proposed perturbed class. The latter is

concerned with misplacing the location of the bounding box

by pointing the correct object detection algorithm to a spatial

location further away from the desired object location, thereby
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Fig. 6. Illustration of a targeted AE attacking a DL-based QR code generation system to alter COVID-19 test results to a target color, i.e., green, red, or
yellow.

causing misclassification. Fig. 5 shows a subset of the imple-

mented AE algorithms for perturbing X-ray images, CT scan

images, and images containing individuals wearing face masks

in public places.

Fig. 6 shows an example attempt at the implementation of

AE in a COVID-19 QR code management system that relies on

human face recognition as a noninvasive biometric identifier

to obtain each user’s immunization certificate. The application

uses blockchain to store the QR code status, COVID-19 status

(+ve, −ve, or suspect), and off-chain link to the encrypted face

image. Every time a user’s COVID-19 status is checked, the

user has to show his or her face and QR code and share it with

the face recognition DL application, which pulls the user’s

immutable data from the blockchain. In order to attack the

application, we have taken a sample user’s image and QR code

and used them as a backdoor. After successful training, the AE

was able to poison the actual DL application and make targeted

attacks as shown in Fig. 6. The speech AE algorithm was

tested against 80 normal users’ coughing sounds, 100 AEs,

and 20 COVID-19 patients’ coughing sounds. All of the audio

samples had a 16-kHz sampling rate. The computer that we

used had an NVIDIA GeForce RTX 2080Ti GPU. The average

time it took to generate speech AE for a 1-s normal sound file

was approximately 55 s.

IV. TEST RESULTS

We have tested the existing adversarial methods in this

study, including FGSM, MI-FGSM, Deepfool, L-BFGS,

C&W, BIM, Foolbox, PGD, and JSMA [16]. Our goal is to

compromise the existing DL algorithms so that each recog-

nition system misclassifies data with the fewest number of

perturbations. We assume that evasion, poisoning, extraction,

and inference-type attacks are all possible and that the com-

plete knowledge of each DL model is available to generate

white-box attacks. We also assume that both the training and

test data sets can be poisoned. In the case of nontargeted

attacks, our algorithms aim to minimize actual class activation

so that any class other than the correct one will be identified.

In the case of targeted attacks, our AE algorithms are designed

to predict a specific incorrect COVID-19 class, as designing

a COVID-19 diagnostic system that classifies a positive sample

as negative is far more dangerous than the one that interprets

its class as unknown.

Fig. 7 shows two important parameters we observed dur-

ing AE generation: 1) adversarial loss and 2) the magnitude

of distortions. Each AE targeting a COVID-19 application is

designed separately, as the underlying DL models are all dif-

ferent. Fig. 7 shows an example of a radiological AE that

has been developed to poison X-ray-based and CT-scan-based

COVID-19 diagnostic applications. We have looked at these

two parameters to obtain the optimal value of perturbations

that will yield the best misclassification results.

Fig. 8 shows the perturbation values and adversarial losses

for 9000 iterations. This curve provides us with a way to mea-

sure the quality of the AE generation process. The white-box

AE was tested using Python-based Foolbox to attack PyTorch,

Keras ResNet50, and TensorFlow models. Using Foolbox, we

can alter the maximum likelihood of the underlying COVID-19

samples. Foolbox API can be configured to use underlying

attack models such as FGSM. In the case of radiological DL

applications, the attack model continuously monitors the gra-

dients until the actual label is misclassified. In order to mount

a black-box attack, we used Clarifai REST API models and

manipulated SGD to monitor the scores and decrease classifier
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Fig. 7. Test results of AE generation for attacks on radiological media, such as X-ray and CT scan images: batch iterations during (a) epoch 0, (b) epoch 1,
(c) epoch 2, (d) epoch 3, and (e) final adversarial loss and distortions values.

performance. In order to test the deepfake AE, we used Google

cloud SDK coupled with VNC viewer to visualize the GUI on

the NVIDIA Tesla P100 GPU-enabled instance on the cloud.

Using Google DL VM, we tested different DL image combina-

tions, such as PyTorch 1.3.0 with fastai m38 and TensorFlow

1.15 m41 with CUDA 10.0. We installed Faceswap and VNC

server on the Google DL VM. Additionally, we stole the

existing DL models, even those in the black-box mode. The

existing DL as a Service (DLaaS) models not only reveal the

final label but the confidence values as well. This valuable

information is fed into our AE DL model to reverse-engineer

and uncover the weights of the intermediate nonlinear lay-

ers, as model stealing is much more efficient than training

a new adversarial model from scratch. We tested the effects

of poisoning the training data set for both targeted and non-

targeted attacks (lowering prediction accuracy). We observed

the results of different metrics, such as the percentage of the

training set that needs to be poisoned or perturbed to attain

certain reduction percentages in the recognition rate. We also

observed different combinations of accuracy as well as false-

positive and false-negative rates with respect to the ratio of

the set of original data sets and the set of poisoned data

sets.

Additionally, we tested for DL inference poisoning. We

leveraged another type of attack that has been found to be

very efficient on the existing black-box DL models, back-

door attacks. The backdoor provides access to the training

phase of the model and allows us to update the model. In

order to create a backdoor, we first trained our model with

a poisoned set of targeted training data sets. We applied

this AE to an existing one-shot learning-based facial recog-

nition model. Our developed algorithm learns both the target

regions as well as target styles of the noise that will be

added to the original test image. A similar procedure is



RAHMAN et al.: ADVERSARIAL EXAMPLES—SECURITY THREATS TO COVID-19 DEEP LEARNING SYSTEMS IN MEDICAL IoT DEVICES 9609

Fig. 8. Test results of AE generation: effect of σ values.

performed for other types of media such as audio. During

the adversarial learning phase, the algorithm learns about mis-

classification rates, the average number of changed features,

adversarial strength, content preservation, stealthiness scores,

and smoothness enhancements.

Due to the widespread availability of COVID-19 data sets—

such as the CORD data set from the Allen Institute for

AI—and the fact that some data sets include both COVID-19

patients’ public data and their attributes, we could poison

data as well as launch classified inference attacks. We could

inject fake audio, images, and other types of media into the

training data set so that the learned classifier is misconfigured.

Our developed algorithm adjusts the hyperparameters of the

added noise threshold as shown in Figs. 7 and 8 that would

fool humans as well as DL-based defense mechanisms. Due

to the very specific nature of COVID-19 patients’ data sets,

which may include CT scan images, we only need to add ran-

dom small white noise patches in order to change the state

of the lung, e.g., dark black regions made to look whiter or

white regions made to look blackish, depending on the target

of the attack.

V. CONCLUSION

The present study examined nine COVID-19 DL applica-

tions that allow for the rapid diagnosis of the pathogen. These

six modalities of DL-based COVID-19 diagnosis have been

widely used by researchers. However, researchers have dis-

covered different types of attacks on these nine types of DL

applications. We tested these six applications from opensource

libraries and carefully observed the models in order to design

AEs for each type and identify the vulnerabilities of these

models. In this article, we have presented our findings, which

show promising results. We have found that the existing DL

applications are vulnerable to AE attacks, requiring further

research, attention, and implementation of appropriate defense

mechanisms, safeguards, and controls before these applications

are used in real-life healthcare [17] facilities.

In the future, we will target to improve the efficiency of

DL poisoning. We also plan to target more types of AE appli-

cations used in the COVID-19 diagnostic domain. In this

research, we only studied and presented on the generation of

AE and deployment results. Although we tested only a few

machine learning algorithms and their vulnerabilities, we will
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expand our horizons by targeting remaining popular frame-

works, such as XGBoost, CatBoost, GPy, and others. In the

future, we will study the detection and defense mechanisms

used in the COVID-19 DL poisoning process. In particular,

we will investigate the use of blockchain to mitigate AE

attacks on COVID-19 applications. Another key area that we

will explore is transferable AE, in order to suggest better

defense mechanisms against inference and model poisoning.

We did not explore the AEs targeting COVID-19-related spe-

cific objectives such as fooling DL algorithms through physical

or real-life object perturbations. Our algorithms must be tested

against real-world attacks, as these require a larger number

of perturbations that will be visible to human subjects. We

will also research additional attack vector dimensions, such as

pose, facial expression, changing target region, distance and

elevation from the camera, and others within the poisoned data

set, in order to examine how adversarial loss in a targeted deep

neural network can work against adversarial defense mecha-

nisms. Since medical IoT devices are frequently targeted by

malware, we intend to study the use of static and dynamic

malware in the form of perturbations and noise vectors to gen-

erate AEs. We will use industry-standard tools, such as IBM

ART, to evaluate and defend our algorithms against adversarial

threats.
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