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Abstract

Time-series data arises in many real-world applications (e.g., mobile health) and deep
neural networks (DNNs) have shown great success in solving them. Despite their success,
little is known about their robustness to adversarial attacks. In this paper, we propose a
novel adversarial framework referred to as Time-Series Attacks via STATistical Features
(TSA-STAT). To address the unique challenges of time-series domain, TSA-STAT employs
constraints on statistical features of the time-series data to construct adversarial examples.
Optimized polynomial transformations are used to create attacks that are more effective (in
terms of successfully fooling DNNs) than those based on additive perturbations. We also
provide certified bounds on the norm of the statistical features for constructing adversarial
examples. Our experiments on diverse real-world benchmark datasets show the effectiveness
of TSA-STAT in fooling DNNs for time-series domain and in improving their robustness.

1. Introduction

We are seeing a significant growth in the Internet of Things (IoT) and mobile applications
which are based on predictive analytics over time-series data collected from various types
of sensors and wearable devices. Some important applications include smart home automa-
tion (Aminikhanghahi, Wang, & Cook, 2018), mobile health (Ignatov, 2018), smart grid
management (Zheng, Yang, Niu, Dai, & Zhou, 2017), and finance (Ozbayoglu, Gudelek,
& Sezer, 2020). Deep neural networks (DNNs) have shown great success in learning ac-
curate predictive models from time-series data (Wang, Yan, & Oates, 2017). In spite of
their success, very little is known about the adversarial robustness of DNNs for time-series
domain. Most of the prior work on adversarial robustness for DNNs is focused on image
domain (Kolter & Madry, 2018) and natural language domain (Wang, Singh, & Li, 2019)
to a lesser extent. Adversarial methods rely on small perturbations to create worst possi-
ble scenarios from a learning agent’s perspective. These perturbations are constructed by
bounding lp-norm (with p=2 or ∞, and sometimes p=1) and depend heavily on the input
data space: they can be a small noise to individual pixels of an image or word substitutions
in a sentence. Adversarial examples expose the brittleness of DNNs and motivate methods
to improve their robustness.

Time-series domain poses unique challenges (e.g., sparse peaks, fast oscillations) that
are not encountered in both image and natural language processing domains. The standard
approach of imposing an lp-norm bound is not applicable as it doesn’t capture the true
similarity between time-series instances. Consequently, lp-norm constrained perturbations
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can potentially create adversarial examples which correspond to a completely different class
label. There is no prior work on filtering methods in the signal processing literature to
automatically identify such invalid adversarial candidates. Hence, adversarial examples from
prior methods based on lp-norm will confuse the learner when they are used to improve the
robustness of DNNs via adversarial training, i.e., augmenting adversarial examples to the
original training data. In other words, the accuracy of DNNs can potentially degrade on
real-world time-series data after adversarial training. Indeed, our experiments corroborate
this hypothesis on diverse real-world datasets.

Figure 1: Conceptual illustration of adversarial regions for different attack strategies for
three classes shown in blue, orange, and yellow colors. The dotted circles repre-
sent adversarial regions based on lp-norm using standard additive perturbations.
The green areas correspond to adversarial regions of TSA-STAT based on statis-
tical constraints and polynomial transformations. The dotted circles cover mul-
tiple classes (invalid adversarial examples) and green areas cover only the true
class label (valid adversarial examples). The intersection of green area and cor-
responding dotted circle represents valid additive perturbations with statistical
constraints. Statistical constraints allow us to create valid adversarial examples
and polynomial transformations expand the valid adversarial region.

In this paper, we propose a novel framework referred to as Time-Series Attacks via
STATistical Features (TSA-STAT) and provide certified bounds on robustness. TSA-STAT
relies on three key ideas. First, we create adversarial examples by imposing constraints on
statistical features of the clean time-series signal. This is inspired by the observation that
time-series data are comprehensible using multiple statistical tools rather than the raw
data (Ignatov, 2018; Christ, Kempa-Liehr, & Feindt, 2016; Ge & Ge, 2016). The statis-
tical constraints allow us to create valid adversarial examples that are much more similar
to the original time-series signal when compared to lp-norm constrained perturbations as
demonstrated in Section 6.1. Second, we employ polynomial transformations to create ad-
versarial examples. For a given polynomial transformation with fixed parameters and an
input time-series signal, we get an adversarial time-series as the output. We theoretically
prove that polynomial transformations expand the space of valid adversarial examples over
traditional additive perturbations, i.e., identify blind spots of additive perturbations. Our
experiments demonstrate that polynomial transformation based attacks are more effective
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(in terms of successfully fooling time-series DNNs) than those based on additive pertur-
bations. Third, to create attacks of different types, we solve an appropriate optimization
problem to identify the parameters of the polynomial transformation via gradient descent.
Certifiable robustness studies DNN classifiers whose prediction for any input X is verifiably
constant within some neighborhood around X, e.g., lp ball. We derive a certified bound for
robustness of adversarial attacks using TSA-STAT. Our TSA-STAT framework and certi-
fication guarantees are applicable to DNNs for time-series domain with different network
structures.

Figure 1 provides a conceptual illustration that captures the intuition behind TSA-STAT
to create more effective and valid adversarial examples over lp-norm constrained attacks:
statistical constraints allow us to create valid adversarial examples and polynomial trans-
formations extend the space of valid adversarial examples. Our experiments demonstrate
the practical benefits of extending the space of valid adversarial examples over those from
prior lp-norm based methods. One potential advantage of the overall approach is the trans-
ferability of the attack to different input instances and deep models, which we evaluate in
our experiments. We employ TSA-STAT to create a variety of adversarial attacks (single-
instance and universal) under both white-box and black-box settings. We demonstrate that
the above three ideas collectively overcome the limitations of prior work in the image domain
to create effective adversarial examples to meet the unique needs of the time-series domain.
Experimental results on diverse real-world time-series datasets show that the TSA-STAT
framework creates more effective adversarial attacks to fool DNNs when compared to prior
adversarial methods.

Contributions. The key contribution of this paper is the development, theoretical analysis,
and experimental evaluation of the TSA-STAT framework. Specific contributions include:

• Development of a principled approach to create targeted adversarial examples for
the time-series domain using statistical constraints and polynomial transformations.
Theoretical analysis to prove that polynomial transformations expand the space of
valid adversarial examples over additive perturbations.

• Derivation of a certified bound for adversarial robustness of TSA-STAT that is appli-
cable to any deep model for time-series domain.

• Comprehensive experimental evaluation of TSA-STAT on diverse real-world bench-
mark datasets and comparison with state-of-the-art baselines. The source code of
TSA-STAT algorithms is available at https://github.com/tahabelkhouja/Time-Series-
Attacks-via-STATistical-Features

2. Problem Setup

Let X ∈ Rn×T be a multi-variate time-series signal, where n is the number of channels
and T is the window-size of the signal. For this input space, we consider a DNN classifier
Fθ : Rn×T → Y , where θ stands for weights/parameters and Y is the set of candidate
(classification) labels. For example, in a health monitoring application using physiological
sensors for patients diagnosed with cardiac arrhythmia, we use the measurements from
wearable devices to predict the likelihood of a cardiac failure.
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Table 1: Mathematical notations used in this paper.

VARIABLE DEFINITION

Fθ DNN classifier with parameters θ

Rn×T Time-series input space, where n is the number of channels
and T is the window-size

Y Set of output class labels

PT Polynomial transformation on the input space Rn×T
ak Coefficient in Rn×T of the polynomial transformation defined

in Section 4

Si(X) A statistical feature of time-series input X

Sm(X) A set of m statistical features of time-series X

ytarget The class-label in Y which an attack intends for DNN classifier Fθ
to predict

N (·, ·) Multivariate Gaussian distribution

δ Certified bound for a given time-series input X
and DNN classifier Fθ

Xadv is called an adversarial example of input X if:{
Xadv

/
‖Xadv −X‖p ≤ ε and Fθ(X) 6= Fθ(Xadv)

}
where ε defines the neighborhood of highly-similar examples for input X to create worst-
possible outcomes from the learning agent’s perspective and ‖.‖p stands for lp norm. Given
a DNN classifier Fθ and time-series signal X with class label y, our goal is to create a valid
adversarial example Xadv which belongs to the semantic space of the true class label y.
Table 1 summarizes the different mathematical notations used in this paper.

Challenges for time-series domain. The standard lp-norm based distance doesn’t cap-
ture the unique characteristics (e.g., fast-pace oscillations, sharp peaks) and the appropriate
notion of invariance for time-series signals. As a consequence, perturbations based on lp-
norm can lead to a time-series signal that semantically belongs to a different class-label
as illustrated in Figure 1. Indeed, our experiments demonstrate that small perturbations
result in adversarial examples whose distance (l2 and l∞-norm) from the original time-series
signal is greater than the distance between time-series signals from two different class la-
bels (see Section 6.1). Therefore, there is a great need for studying adversarial methods
focused on deep models for the time-series domain by exploiting the structure and unique
characteristics of time-series signals. The goal of this paper is to precisely fill this gap in
our knowledge.

3. Related Work

Adversarial methods. Prior work for creating adversarial examples mostly focus on image
and natural language processing (NLP) domains (Kolter & Madry, 2018; Wang et al., 2019).
For the image domain, such methods include general attacks such as Carlini & Wagner (CW)
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attack (Carlini & Wagner, 2017) and universal attacks (Moosavi-Dezfooli, Fawzi, Fawzi, &
Frossard, 2017). CW is an instance-specific attack that relies on solving an optimization
problem to create adversarial examples by controlling the adversarial confidence score to
fool the target deep model. Universal attacks are a class of adversarial methods that are not
input-dependent. The goal of universal attacks is to create a universal perturbation that
can be added to any input to create a corresponding adversarial example. The Frank-Wolfe
attack (Chen, Zhou, Yi, & Gu, 2020) improves the optimization strategy for adversarial
examples to overcome the limitations of projection methods.

Recent work regularizes adversarial example generation methods to obey intrinsic prop-
erties of images. The work of (Laidlaw & Feizi, 2019) enforces a smoothness regularizer
on the adversarial output such that similar-color pixels are perturbed following the same
direction. Other works have employed spatial transformation within a perceptual threshold
(Xiao, Zhu, Li, He, Liu, & Song, 2018) or a semantic-preserving transformation (Hosseini,
Xiao, Jaiswal, & Poovendran, 2017) to regularize the output. These methods exploit the
intrinsic characteristics of images to control and regularize the algorithm to create adver-
sarial examples. Expectation Over Transformation (EOT) (Athalye, Engstrom, Ilyas, &
Kwok, 2018b) approach creates robust adversarial examples that are effective over an entire
distribution of transformations by maximizing an expectation of the log-likelihood given
transformed inputs. These transformations include perceptual distortion of a given image
such as rotation or texture modification. RayS method (Chen & Gu, 2020) was also pro-
posed to improve the search over adversarial examples using a sanity check that is specific
for the image domain.

(Baluja & Fischer, 2018) proposed to use Adversarial Transformation Network (ATN)
to automatically create adversarial examples for any given input. The role of polynomial
transformation function in our TSA-STAT framework is similar to ATN. However, poly-
nomial transformation functions are simpler and does not require hyper-parameter tuning.
(Karim, Majumdar, & Darabi, 2020) investigated the use of ATNs for time-series data. The
main findings include ATN fails to find adversarial examples for many inputs and not all
targeted attacks are successful to fool DNNs.

While adversarial attacks perturb pixel values in the image domain, they perturb char-
acters and words in the NLP domain. For example, adversarial attacks may change some
characters to obtain an adversarial text which seems similar to the reader, or change the
sentence structure to obtain an adversarial text which is semantically similar to the orig-
inal input sentence (e.g., paraphrasing). One method to fool text classifiers is to employ
the saliency map of input words to generate adversarial examples while preserving meaning
under the white-box setting (Samanta & Mehta, 2017). A second method named DeepWord-
Bug (Gao, Lanchantin, Soffa, & Qi, 2018) employs a black-box strategy to fool classifiers
with simple character-level transformations. Since characteristics of time-series (e.g., fast-
pace oscillations, sharp peaks) are different from images and text, most transformations
in both domains are not applicable to time-series data. As a consequence, prior methods
are not suitable for the time-series domain. Our proposed TSA-STAT method employs
constraints on statistical features of time-series and polynomial transformations to create
effective adversarial examples for time-series domain.

Certified robustness. Early studies of adversarial robustness relied on empirical defenses.
The most successful empirical defense known so far is adversarial training (Tramer, Carlini,
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Brendel, & Madry, 2020) that employs adversarial algorithms to augment training data.
This method is intuitive as it relies on feeding DNNs with adversarial examples in order
to be robust against adversarial attacks. Other defense methods have been designed to
overcome the injection of adversarial examples and the failure of deep models. (Athalye,
Carlini, & Wagner, 2018a) proposed different attack techniques to show that a defense
method such as obfuscated gradients is unable to create a robust deep model. Distillation
technique (Papernot, McDaniel, Wu, Jha, & Swami, 2016) has also been proposed as a
defense against adversarial perturbations. It was shown empirically that such techniques
can reduce the success rate of adversarial example generation. (Tramèr, Kurakin, Papernot,
Goodfellow, Boneh, & McDaniel, 2018) analyzed adversarial training and its transferability
property to explain how robust deep models should be attained. To improve adversarial
training through a min-max optimization formulation, (Xiong & Hsieh, 2020) tries to learn
a recurrent neural network to guide the optimizer to solve the inner maximization problem
of the min-max training objective. However, such defense methods either offer specialized
solutions or unquantifiable improvement in robustness for a given adversarial attack strat-
egy. Importantly, for time-series domain, as lp-norm based perturbations may not guarantee
preserving the semantics of the true class label, adversarial examples may mislead the deep
model during the adversarial training phase.

To improve over empirical defenses, the concept of certifiable robustness was introduced.
A deep model is certifiably robust for a given input X, if the prediction of X is guaranteed
to be constant within a small neighborhood of X, e.g., lp ball. (Raghunathan, Steinhardt,
& Liang, 2018) provide certificates for one-hidden-layer neural networks using semi-definite
relaxation. In (Hein & Andriushchenko, 2017), certification is an instance-specific lower
bound on the tampering required to change the classifier’s decision with a small loss in
accuracy. In a recent work (Cohen, Rosenfeld, & Kolter, 2019; Li, Chen, Wang, & Carin,
2019), the robustness of deep models against adversarial perturbation is connected to ran-
dom noise. These methods certify adversarial perturbations for deep models under the l2
norm. (Cohen et al., 2019) defined two families for certification methods: 1) Exact methods
report the existence or the absence of a possible adversarial perturbation within a given
bound. This goal has been achieved using feed-forward multi-layer neural networks based
on Satisfiability Modulo Theory (Huang, Kwiatkowska, Wang, & Wu, 2017) or modeling
the neural network as a 0-1 Mixed Integer Linear Program (Fischetti & Jo, 2018). However,
these methods suffer from scalability challenges. 2) Conservative methods either confirm
that a given network is robust for a given bound or report that robustness is inconclusive (Li
et al., 2019). Our proposed robustness certificate for TSA-STAT falls in the conservative
category and extends the recent method based on random noise (Li et al., 2019).

Adversarial attacks for time-series domain. There is little to no principled prior work
on adversarial methods for time-series domain. (Fawaz, Forestier, Weber, Idoumghar, &
Muller, 2019) employed the standard Fast Gradient Sign method with l2-norm bound (Ku-
rakin, Goodfellow, & Bengio, 2016) to create adversarial noise with the goal of reducing
the confidence of deep convolutional models for classifying uni-variate signals. Network dis-
tillation is also employed to train a student model for creating adversarial attacks (Karim
et al., 2020). In an orthogonal work, the study from (Siddiqui, Mercier, Munir, Dengel,
& Ahmed, 2019) concluded that time-series signals are highly-complex, and their inter-
pretability is ambiguous. Additionally, there is no previous work on certification algorithm
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for time-series domain. Prior methods can only certify the deep models using lp-norm and
are not specific to time-series domain. Adversarial examples can also be studied for regres-
sion tasks over time-series data. However, there is very limited work in this direction as
explained by (Siddiqui et al., 2019). These methods consider Euclidean distance and employ
standard methods from the image domain such as FGSM (Mode & Hoque, 2020). In an
orthogonal/complementary direction, generative adversarial networks are used to impute
missing values in time-series data (Luo, Zhang, Cai, & Yuan, 2019; Luo, Cai, ZHANG, Xu,
& xiaojie, 2018).

In summary, existing methods for the time-series domain are lacking in the following
ways: 1) Do not create targeted adversarial attacks; 2) Employ lp-norm based perturba-
tions1, which do not take into account the unique characteristics of time-series data; and
3) Do not provide theoretical guarantees for adversarial robustness. This paper overcomes
these drawbacks and improves the state-of-the-art in adversarial robustness for time-series
domain through the proposed TSA-STAT framework.

4. The TSA-STAT Framework

In this section, we first provide a high-level overview of the TSA-STAT framework. Subse-
quently, we describe the key elements, and instantiate the framework to create white-box
and black-box attacks.

Figure 2: High-level overview of the TSA-STAT framework to create adversarial examples
using optimized polynomial transformations. Given an input time-series signal
X, a target label ytarget, a DNN classifier Fθ, and a set of statistical features
S, TSA-STAT solves an optimization problem over two different losses to find
the parameters of the polynomial transformation: 1) A statistical loss to ensure
that original time-series signal X and the generated adversarial example Xadv

are highly similar by imposing constraints on their statistical features; and 2) A
classification loss to make sure that the DNN classifier Fθ classifies the generated
adversarial example Xadv with the target class label ytarget. The optimized poly-
nomial transformation will take the time-series signal X as input and produce
adversarial example Xadv as output.

1. A concurrent work (Belkhouja, Yan, & Doppa, 2022) developed min-max optimization methods to ex-
plicitly train robust deep models for time-series domain based on the global alignment kernel measure.

1441



Belkhouja & Doppa

Overview of TSA-STAT. Our framework creates targeted adversarial examples using
polynomial transformations. For a given input time-series signal X, a target label ytarget,
a set of statistical features S and a DNN classifier Fθ, TSA-STAT generates adversarial
examples using two key ideas: 1) Constraints on the statistical features to regularize the
similarity of adversarial example Xadv to the original time-series X; and 2) A polynomial
transformation that allows us to explore a larger space of adversarial examples over the
traditional additive perturbations. Figure 2 provides a high-level overview of the TSA-STAT
framework. The effectiveness of adversarial examples critically depends on the coefficients
of the polynomial transformation. TSA-STAT solves an optimization problem over two
different losses via gradient descent to find the parameters of the polynomial transformation.
First, a statistical loss is employed to ensure that original time-series signal X and the
generated adversarial example Xadv are highly similar by imposing constraints on their
statistical features. Second, a classification loss to make sure that the DNN classifier Fθ
classifies the generated adversarial example Xadv with the target class label ytarget. The
polynomial transformation with the optimized parameters will take the time-series signal
X as input and produce adversarial example Xadv as output.

4.1 Key Elements

1) Statistical constraints. Time-series data is often analyzed using diverse statistical
tools (Montgomery, Jennings, & Kulahci, 2015). Machine learning models have achieved
good classification performance using statistical features of time-series data (Fulcher &
Jones, 2014). These prior studies motivate us to use statistical features of time-series
data to develop adversarial algorithms. We propose a new definition to create adversarial
examples for time-series signals. Let Sm(X) = {S1(X), S2(X), · · · , Sm(X)} be the set of
statistical features of a given input X (e.g., mean, standard deviation, kurtosis). We define
an adversarial example Xadv derived from X as follows:{

∀ 1 ≤ i ≤ m, ‖Si(Xadv)− Si(X)‖∞ ≤ εi
and Fθ(X) 6= Fθ(Xadv)

(4.1)

where εi is the bound for the ith statistical feature. Using this definition, we call to
change the conventional lp distance-based neighborhood-similarity to one based on statis-
tical features for creating valid adversarial examples. We conjecture that this definition
is better suited for adversarial examples in time-series domain. Indeed, our experiments
strongly support this claim.

2) Polynomial transformation-based attacks. To explore larger and powerful space of
valid adversarial examples when compared to traditional additive perturbations, we propose
polynomial transformation based attacks. The aim of this approach is to find a transfor-
mation over the input space that creates effective adversarial attacks. This transformation
considers the entire time-series input to decide the output for each channel and time-step
of the adversarial example. Hence, we propose an adversarial transformation on the input
time-series space. We define polynomial transformation PT : Rn×T → Rn×T as follows:

Xadv = PT (X) = PT (Xi,j) ∀(i, j) ∈ [n]× [T ] (4.2)
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where X ∈ Rn×T is the input time-series signal and Xadv is the corresponding adversarial
example. The key idea is to create a threat model that does not require calling back
the deep model for every new adversarial attack. Our goal is to preserve dependencies
between features of the input space by having a transformation PT (·) that depends on the
input time-series X, unlike the standard additive perturbations. Inspired by power series
(Drensky & Holtkamp, 2006), we approximate this transformation PT (·) using a polynomial
representation with a chosen degree d: PT (X) =

∑d
k=0 ak X

k+O(Xd+1), where ak ∈ Rn×T
denote the polynomial coefficients and O stands for Big O notation.

Theorem 1. For a given input space Rn×T and d ≥ 1, polynomial transformations allow
more candidate adversarial examples than additive perturbations in a constrained space. If
X ∈ Rn×T and PT : X →

∑d
k=0 ak X

k, then ∀Xadv s.t. ‖Si(Xadv)− Si(X)‖∞ ≤ εi:{
Xadv = PT (X), ∀ak

}
)
{
Xadv = X + δ, ∀δ

}
, Si ∈ Sm(X)

⋃
Identity.

The above theorem states that polynomial transformations expand the space of valid
adversarial examples and identify blind spots of additive perturbations. In other words,
the theorem explains that some of the adversarial examples created using polynomial trans-
formations are not possible using standard additive perturbations. We show through the
proof provided in Appendix A that an example created using a standard additive pertur-
bation can be created by a polynomial transformation, however, the inverse is not always
true. This theorem motivates the use polynomial transformations within the TSA-STAT
framework instead of additive perturbations in order to uncover more adversarial examples.

3) Optimization based adversarial attacks. To create powerful adversarial examples
to fool the deep model Fθ(X), we need to find optimized coefficients ak, ∀ k=0 to d, of the
polynomial transformation PT (X). Our approach is based on minimizing a loss function
L using gradient descent that a) Enforces an input signal X to be mis-classified to a target
class ytarget (different from true class label y∗ ∈ Y ); and b) Preserves close proximity to
statistical features in the given set Sm.

Classification loss. To achieve the mis-classification goal, we employ the formulation
of (Carlini & Wagner, 2017) to define a loss function:

Llabel({ak}, X) = max

[
max

y 6=ytarget

(
Zy

(
d∑

k=0

ak X
k

))
−Zytarget

(
d∑

k=0

ak X
k

)
, ρ

]
(4.3)

where ρ < 0. This loss function will ensure that the adversarial example will be moving
towards the space where it will be classified by the DNN as class ytarget with a confidence
|ρ| using the output of the pre-softmax layer {Zy}y∈Y .

Statistical loss. To satisfy the constraints on statistical features of the set Sm, we
propose another loss function. This loss function overcomes the impractical use of projection
functions on the statistical feature space.

Lstat({ak}, X,Sm) ,
∑
Si∈Sm

‖Si(
d∑

k=0

ak X
k)− Si(X)‖∞ (4.4)
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Combined loss. The final loss function L that we want to minimize to obtain coeffi-
cients ak of the polynomial transformation PT (·) is as follows:

L({ak}, X,Sm) = βlabel × Llabel({ak}, X) + βstat × Lstat({ak}, X,Sm) (F)

where βlabel and βstat are hyper-parameters that can be used to change the trade-off between
the adversarial classification loss Llabel and the statistical loss Lstat. We note that our
experiments showed good results with the simple configuration of βlabel=1 and βstat=1.

4.2 Instantiations of TSA-STAT

White-box setting. Our goal is to create targeted adversarial attacks on a classifier
Fθ. Adversarial transformation Xadv for a single-instance X: Xadv = PT ytarget(X) =∑d

k=0 ak X
k s.t.: {

‖Si(Xadv)− Si(X)‖∞ ≤ εi ∀Si ∈ Sm

Fθ(Xadv) = ytarget

where ytarget is the target class-label of the attack.

We employ gradient descent based optimizer to minimize the loss function in Equation F
over {ak}0≤k≤d, where d is the polynomial degree for PT (·). The parameter ρ introduced in
Equation 4.3 plays an important role here. ρ will push gradient descent to minimize mainly
the second term when the first one plateaus at ρ first. Otherwise, the gradient can minimize
the general loss function by pushing Llabel({ak}, X) to −∞, which is counter-productive for
our goal.

We can also extend this procedure to create adversarial examples under universal pertur-
bations. A universal perturbation generates a single transformation that is applicable for
any input X ∈ Rn×T . We introduce a targeted universal attack in this setting as:

Xadv = PT ytarget(X) =

d∑
k=0

ak X
k s.t. PT (F (Xadv) = ytarget) > (1− et) (4.5)

where et represents the error probability of creating an adversarial example that Fθ
would classify it with label y 6= ytarget. Our proposed algorithm analyzes a given set of
inputs to find coefficients {ak}0≤k≤d that would push image of multiple inputs T F(X) =∑d

k=0 ak X
k to the decision boundary of a target class-label ytarget defined by the classifier

Fθ. As the algorithms for both universal attack and instance-specific attack are similar and
follow the same general steps, we present the universal attack algorithm of TSA-STAT in
Algorithm 1. The instance-specific attack is a special-case of the universal attack: Since the
universal algorithm generates a single polynomial transformation that is applicable for any
time-series X, the instance-specific transformation is just applicable for a single time-series
X. Algorithm 1 can degenerate to the case of instance-specific attack by changing the value
of l (the number of time-series inputs) in Line 2 to the value of 1 and optimize over only
one time-series X.

Black-box setting. Black-box attacks are adversarial examples that are created with no
knowledge about the target deep model parameters θ. In the best scenario, the attacker has
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the ability to query the target model to get the predicted label for any input time-series X.
This allows the creation of a proxy deep model to mimic the behavior of the target model.
This technique can be more effective when a target scenario is well-defined (Tramer et al.,
2020; Papernot, McDaniel, Goodfellow, Jha, Celik, & Swami, 2017). For the instantiation
of TSA-STAT, we consider the general case where we do not query the black-box target DL.
We create adversarial examples using optimized transformations as in white-box setting and
prove through experimental results that the same transformations generalize to fool other
black-box deep learning models.

Algorithm 1 Optimized universal adversarial transformation

Input: A set of l inputs {Xi}li=1; d, maximum degree; ytarget, target class; Fθ, target model;
Sm, statistical feature set; η, learning rate
Output: {ayk}0≤k≤d, y∈Y
1: Random initialization of {ayk}.
2: for i=1 to l do
3: if Fθ(Xi) 6= ytarget then
4: ŷ ← Fθ(Xi)

5: δ ← ∇{aŷk}L({aŷk}, Xi,Sm) ∀k

6: ∀k : {aŷk} ← {a
ŷ
k} − η × δ

7: end if
8: end for
9: return {ayk}0≤k≤d, y∈Y

5. Certified Bounds for Adversarial Robustness of TSA-STAT

In this section, we propose a novel certification approach for adversarial robustness of the
TSA-STAT framework. Given a time-series input X ∈ Rn×T and a classifier Fθ, our overall
goal is to provide a certification bound δ on the ‖ · ‖∞ over the statistical features Sm(X)
of the time-series signal X. Traditionally, the certification bound is a constant δ that
constrains the distance between an input X and a perturbed version Xadv=X + nP (nP
is a multi-variate noise) as shown in Figure 3(a). Using TSA-STAT, our goal is to derive
a certification bound δ that constraints the difference between the statistical features of a
given time-series input X and a perturbed version X + nP as shown in Figure 3(b). This
bound will guarantee the robustness of classifier Fθ in predicting Fθ(Xadv) = Fθ(X) for
any adversarial time-series Xadv such that

∑
Si∈Sm ‖Si(Xadv) − Si(X)‖∞ ≤ δ, where Si is

a statistical feature (e.g., a vector of mean values, one for each time-series channel) and ∞
norm takes the maximum of the difference between statistical feature values for each channel
separately (e.g., maximum of the difference between mean for each channel separately).

As explained in Section 3, there are two families for certification methods, namely,
exact and conservative. It has been shown that exact certification approaches do not scale
well with the network in question (Cohen et al., 2019). Hence, we propose a certification
algorithm that belongs to the conservative family. Our aim is to provide a bound that asserts
that the prediction of Fθ(X) remains unchanged for any adversarial instance Xadv such that
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(a) (b)

Figure 3: Conceptual illustration of the perturbation region of an input X with respect to
noise nP as considered by (a) Standard l2 norm where δ is a constant representing
the Euclidean distance between X and X + nP ; and (b) Statistical constraints
as considered by TSA-STAT, where δ is a constant representing the cumulative
sum of the maximum difference between statistical features computed over X
and X + nP for each time-series channel separately. Si represents one statistical
feature (e.g., mean), and Si(X) and Si(X + nP ) represent the vector of values
for a given statistical feature, one for each time-series channel (e.g., a vector of
mean values for each channel).

‖Si(Xadv)−Si(X)‖∞ is bounded by δ. State-of-the-art methods such as Gaussian smoothing
(Cohen et al., 2019) rely on the Euclidean distance to measure the similarity between the
original input and its adversarial example. Since TSA-STAT investigates statistical features
of time-series for similarity purposes, the l2 bounds derived by prior work are not sufficient
to cover time-series adversarial examples. The certification provided in prior work cannot
be extended to assess the robustness of DNNs for time-series domain as TSA-STAT relies
on complex statistical features. To overcome this challenge, we propose a new robustness
certification approach for TSA-STAT that is well-suited for time-series domain by bounding
the statistical features. Intuitively, we aim to provide a certification for an input X that
considers the statistical feature space of the time-series signal X. TSA-STAT’s certification
relies on adding random multi-variate perturbation nP to quantify the robustness of the
classifier on the surrounding region using statistical constraints as shown in Figure 4.

1. If the classifier Fθ predicts a class-label on the perturbation Xadv which differs from
the prediction on the original time-series signal X, then the classifier is prone to
adversarial attacks on the input.

2. If the classifier Fθ yields the correct classification in spite of all the perturbations, then
it is easy to say that the classifier is robust against any perturbation (represented by
nP ) on the time-series input X.

3. If the classifier Fθ yields the correct classification on most perturbation cases, then
we develop an algorithmic approach to compute the conditions that nP must satisfy
in order to not affect the classifier’s prediction. Therefore, the certification bound can
be deduced.
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Figure 4: High-level illustration of the TSA-STAT certification approach to estimate the
statistical perturbation space of a given time-series input X where the classifier
Fθ is robust. This illustration is for mean only. For a given number of iterations,
we repeatedly generate perturbations nP and n0 and add them to the time-series
X to assess the robustness of classifier Fθ using the mean statistical feature.
nP ∼ N (µP , ·) is generated to mimic the perturbation that can affect the input
time-series signal by producing EP (probability distribution over candidate class
labels) that is used to characterize the robustness of classifier Fθ for predicting
the same label for time-series X. n0 ∼ N (0, ·) is generated as an arbitrary noise
that does not affect the mean vector (statistical feature for each channel) of X
and produces E0 (probability distribution over candidate class labels) needed for
the computation of the certification bound δ. Once δ is estimated, TSA-STAT
guarantees the robustness of classifier Fθ for predicting Fθ(Xadv)=Fθ(X) for any
Xadv such that ‖µ(Xadv)− µ(X)‖∞ ≤ δ, where µ(.) is the vector of mean values,
one for each time-series channel separately and∞ norm takes the maximum value
of a given vector.

Our certification study relies on Rényi Divergence (Van Erven & Harremos, 2014). Rényi
divergence is a generalization of the well-known Kullback-Leibler (KL) divergence (Van Er-
ven & Harremos, 2014). For a positive order α 6= 1 and two probability distributions
EP=(p1, · · · , pk) and E0=(p0

1, · · · , p0
k), which are estimated in our case, the Rényi diver-

gence is defined as:

Dα(EP‖E0) =
1

α− 1
ln

(
k∑
i=1

pαi · (p0
i )

1−α

)
(5.1)

For the purpose of this paper, we define the estimated probability distribution EP as
the empirical probabilities pi that the class i is predicted by Fθ on X + nP (nP being a
random perturbation). Our TSA-STAT framework is general to handle multivariate time-
series data. Hence, we define a multi-variate Gaussian distribution N (µ,

∑
) characterized
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Algorithm 2 TSA-STAT Certification Algorithm

Input: A multivariate time-series signal X, Fθ, DNN classifier; Y , the set of class labels
Parameters: µP , multivariate mean;

∑
, covariance matrix; n, the number of iterations

Output: ŷ, predicted class label; δ, certification bound

1: for i=1 to MAX do
2: Generate nP ∼ N (µP ,

∑
) and n0 ∼ N (0,

∑
)

3: Compute ŷp(i)=Fθ(X + nP ) and ŷ0(i)=Fθ(X + n0)
4: end for
5: Estimate EP={pj =

∑MAX
i=1 I[[ŷp(i)==j]]

MAX }j∈Y
6: Estimate E0={p0

j =
∑MAX
i=1 I[[ŷ0(i)==j]]

MAX }j∈Y
7: if argmax

j∈Y
pj 6= argmax

j∈Y
p0
j then

8: return Certification declined

9: else if max
j∈Y

pj equals 1 then

10: return predicted label ŷ = argmax
j∈Y

pj and certification bound δ = ‖µP ‖∞
11: else
12: Compute the upper bound:

δ2 = max
α 6=1

2

α ·
∑(S)

·

(
− ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α

))

13: return predicted label ŷ=argmax
j∈Y

pj and certification bound δ

14: end if

by a mean vector µ and a covariance matrix
∑

to generate nP . To compute the divergence
between multi-variate Gaussian distributions, the expression is provided by the following
Lemma (Gil, Alajaji, & Linder, 2013).

Lemma 1. For two multivariate Gaussian distributions N (µ1,
∑

1) and N (µ2,
∑

2):

Dα(N (µ1,
∑

1

)‖N (µ2,
∑

2

)) =
α

2
(µ1 − µ2)T

∑
α

(µ1 − µ2)− 1

2(α− 1)
ln

|
∑

α |
|
∑

1 |1−α|
∑

2 |α

, where
∑

α = α
∑

1 +(1− α)
∑

2.

Lemma 1 provides the expression of the divergence using the parameters of the multivariate
Gaussian distributions. Consequently, we use it to produce the following theorem to provide
certification bound over the mean of the time-series input space for adversarial robustness of
TSA-STAT. For this purpose, we require a second multivariate Gaussian distribution N (·, ·)
to estimate E0 and to compute the divergence provided in Lemma 1. Therefore, we use an
arbitrary distribution N (0,

∑
) with a zero-vector mean. This way, the mean feature of the

input time-series signal will not be disturbed. For a computationally-efficient derivation of
the certification bound, we use the same covariance matirx

∑
as the multi-variate Gaussian

distribution that generated nP .
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Theorem 2. Let X ∈ Rn×T be an input time-series signal. Let nP ∼ N (µP ∈ Rn,
∑

) and
n0 ∼ N (0,

∑
). Given a classifier Fθ : Rn×T → Y that produces a probability distribution

(p1, · · · , pk) over k labels for Fθ(X + nP ) and another probability distribution (p0
1, · · · , p0

k)
for Fθ(X + n0). To guarantee that argmax

pi
pi = argmax

p0i

p0
i , the following condition must

be satisfied:

‖µP ‖2∞ ≤ max
α 6=1

2

α ·
∑(S)

·

(
−ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α
))

where ‖µP ‖∞ is the maximum perturbation over the mean of each time-series channel

and
∑(S) is the sum of all elements of

∑
.

This new certification formulation is suitable for the time-series domain, as it takes into
account the different channels of the time-series signal input and adversarial attacks using
TSA-STAT explore a larger space of valid adversarial examples using statistical constraints
and polynomial transformations. In the Appendix A, we provide a discussion of the unique
contributions of this Theorem compared to the certification method of (Li et al., 2019).

To derive the certification bound for a given time-series signal X ∈ Rn×T and a classifier
Fθ, we employ two different noise distributions to generate two different noise samples that
we denote nP ∈ Rn×T and n0 ∈ Rn×T , where n is the number of channels and T is the
window size of the time-series signal. nP ∼ N (µP , ·) is generated to mimic the perturbation
that can affect the input time-series signal by producing EP (probability distribution over
candidate class labels) that is used to characterize the robustness of classifier Fθ for predict-
ing the same label for time-series X. n0 ∼ N (0, ·) is generated as an arbitrary noise that
does not affect the mean vector (statistical feature for each channel) of X and produces E0
(probability distribution over candidate class labels) needed for the computation of the cer-
tification bound. If both perturbations result to the same classifier prediction, we compute
the tolerable perturbation’s upper bound δ = max ‖µP ‖∞. As ‖µP ‖∞ is upper-bounded by
the RHS term of Theorem 2, the maximum value for ‖µP ‖∞ is the RHS term.

The upper bound δ guarantees that for any noise nP with a mean feature for each channel
constrained by δ, the classifier’s prediction is robust on the perturbed input X + nP . In
other words, following the formulation used in Equation 4.4, if for an adversarial time-series
signal Xadv such that ‖Si(Xadv) − Si(X)‖∞ ≤ δ where Si is the statistical feature mean
(a vector of mean values, one for each channel) and ∞ norm takes the maximum of the
difference between mean values for each channel separately, then Fθ(Xadv) = Fθ(X). We
provide Algorithm 2 to automatically assess the robustness of a classifier Fθ on a given
multivariate time-series signal X as input. To generalize this result for other statistical
features, we provide Lemma 2. Both proofs are present in Appendix A.

Lemma 2. If a certified bound δ has been generated for the mean of input time-series signal
X ∈ Rn×T and classifier Fθ, then certified bounds for other statistical/temporal features can
be derived consequently.
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6. Experiments and Results

In this section, we discuss the experimental evaluation of TSA-STAT along different dimen-
sions and compare it with prior methods.

6.1 Experimental Setup

Datasets. To evaluate the proposed TSA-STAT framework, we employed diverse uni-
variate and multi-variate time series benchmark datasets (Bagnall, Lines, Vickers, & Keogh,
2020; Dua & Graff, 2017; Kwapisz, Weiss, & Moore, 2011). Complete details are provided in
Table 2. We employ the standard training/validation/testing splits from these benchmarks.
Table 2 describes each dataset employed in our evaluation: acronym to represent the dataset,
the number of classes, and the dimensions of each input time-series signal.

Table 2: Description of different benchmark time-series datasets.

NAME ACRONYM CLASSES INPUT SIZE (n× T )

Chlorine Concentration CC 3 1×166

Synthetic Control SC 6 1× 30

Cylinder-Bell-Funnel CBF 3 1×128

CricketX CX 12 1×300

CricketY CY 12 1×300

CricketZ CZ 12 1×300

Human Activities
and Postural Transitions HAPT 12 6×200

WISDM WD 6 3×200

Character Trajectories ChT 20 3×182

Algorithmic setup. We employ three different 1D-CNN architectures –A0, A1, and A2–
to create three deep models as target DNN classifiers: WB for white-box setting, and BB1
and BB2 for the black-box setting respectively. WB is a model using A0 to evaluate the
adversarial attack under a white-box setting, and trained using clean training examples.
BB1 and BB2 use the architectures A1 and A2 respectively to evaluate the black-box set-
ting. The architecture information of the deep learning models are presented in Table 3.
To further evaluate the effectiveness of attacks, we create models that are trained using
augmented data from baselines attacks that are not specific to the image domain: Fast
Gradient Sign method (FGS) (Kurakin et al., 2016) that was used by (Fawaz et al., 2019),
Carlini & Wagner (CW) (Carlini & Wagner, 2017), and Projected Gradient Descent (PGD)
(Madry, Makelov, Schmidt, Tsipras, & Vladu, 2017). Finally, we evaluate the performance
of adversarial examples from TSA-STAT on two RNN models. To effectively test the trans-
ferability of adversarial transformations, we only use the knowledge of WB model. We
assume that the framework is unaware of all other deep models. For FGS and PGD algo-
rithms, we employed a minimal perturbation factor (ε < 0.4) for two main reasons. First,
larger perturbations significantly degrade the overall performance of adversarial training.
We also want to avoid the risk of leaking label information (Madry et al., 2017). Sec-
ond, while analyzing the datasets, we found that there are time-series signals from different
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Table 3: Details of DNN architectures. C: Convolutional layers, K: kernel size, P: max-
pooling kernel size, and R: rectified linear layer.

C K C K P R R

A0 x x 66 12 12 1024 x

A1 x x 20 12 2 512 x

A2 100 5 50 5 4 200 100

Figure 5: Convergence of different
statistical constraints for i ≤ 1

Figure 6: Convergence of different
statistical constraints for i ≤ 4

classes that are separated by a distance less than what an lp-norm bounded perturbation
engenders. Therefore, lp-norm bounded attacks will create adversarial examples that are
inconsistent (i.e., examples for a semantically different class label) for adversarial training.
For example, in the case of CC dataset, there are time-series signals from different classes
with l2-distances ≤ 0.3, while FGS’s average perturbation is around 0.3 for ε = 0.3. If we
employ l∞-distance, CW causes several signal perturbations with l∞-norm ≥ 1.5 on HAPT
dataset, whereas many time-series signals with different class labels have l∞-distances < 1.5.
We observed similar findings in most of the other datasets.

For TSA-STAT, we use βlabel=1 and βstat=1 for the loss function in Equation F in all
our experiments. TSA-STAT’s attack algorithm and adversarial training have both shown
good performance with this simple configuration. Therefore, we chose not to fine-tune
the hyper-parameters βlabel and βstat to avoid additional complexity. We use constraints
over statistical features including mean, standard deviation, kurtosis, skewness, and root
mean square (Brockwell & Davis, 2016) of an input time-series signal. We explain the
methodology that was used to select these statistical features below.

6.2 Selection of Statistical Features and Degree of Polynomial Transformation

We initially started with the following statistical features of time-series signals: Sm={Mean
(µ), Standard deviation (σ), Median, Mode, Interquartile range (iq), Skewness, Kurtosis,
Root mean square (rms), Auto-correlation (ac)}. To decide on the most appropriate subset
to use for all our TSA-STAT experiments, we ran a convergence test on

∑
i ‖Si(X ′) −

Si(Xref )‖∞ using a subset of the data from WD. We note that the TSA-STAT framework
can be used with both l2 norm and l∞ norm on the statistical features. For X ∈ Rn×T , we
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have one statistical feature for each channel, i.e., Si(X) ∈ Rn. Our goal from constraining
Si(X) is to guarantee that for all the n channels, the value of the statistical feature is less
than the given bound. Hence, the use of l∞ norm is straightforward. However, any other
norm can be used. To demonstrate the generality of TSA-STATE, we provide a comparison
between l2 norm and l∞ norm on the statistical features in Figure 13. As Figure 5 illustrates,
we ran the convergence test at first on each Si ∈ Sm individually (i ≤ 1). We eliminate
the statistical feature Si which does not converge properly in contrast to other statistical
constraints, and repeat the experiment each time by increasing i. Figure 6 illustrates the
step at i ≤ 4. We conclude from both Figures 5 and 6 that our approach empirically satisfies
the εi bound presented in Equation 4.1. Hence, for all our TSA-STAT experiments, we
choose Sm={Mean µ, Standard deviation σ, Skewness, Root mean square} or Sm={Mean
µ, Standard deviation σ, Kurtosis, Root mean square}. We did not increase i further
to avoid increasing the time-complexity of the proposed algorithm for negligible benefits.
We have observed similar patterns for all other datasets. We note that it is not possible
to use the basic PGD method to satisfy the constraint over

∑
i ‖Si(X ′) − Si(Xref )‖∞: a

projection function on the statistical feature space is not a straightforward projection as in
the Euclidean space.

Figure 7: Performance of TSA-STAT based universal adversarial attacks using polynomial
transformations with different degrees on multiple DNN models.

Regarding the degree of polynomial transformation for TSA-STAT, we employ d=1
and d=2 in all our experiments. Figure 7 shows the impact of different degrees used for
the polynomial adversarial transformation when tested on the WD dataset noting that
we observed similar patterns for all other datasets. Degree 0 corresponds to the standard
constant δ additive perturbation. While the adversarial attack is still functional, degrees ≥ 1
showed improved effectiveness of adversarial attacks. Starting from degree 3, the attack’s
effectiveness did not increase significantly. To prevent increasing the time-complexity of the
optimization method to find the coefficients of polynomial transformation, we chose degrees
d=1 and d=2 to evaluate our TSA-STAT framework.
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6.3 Results and Discussion

Spatial distribution of TSA-STAT outputs. One of the claims of this work is that
adversarial examples relying on lp-norm bounds are not applicable for time-series domain.
To evaluate this claim, we employ a t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Maaten & Hinton, 2008) technique to visualize the adversarial examples generated by
TSA-STAT and PGD, an lp-norm based attack. t-SNE provides a dimensionality reduction
method that constructs a probability distribution for the high-dimensional samples to create
a reduced feature space where similar instances are modeled by nearby points and dissimilar
instances are modeled by distant points.

Figure 8: t-Distributed Stochastic Neighbor Embedding showing the distribution of natural
and adversarial examples from TSA-STAT and PGD. Adversarial examples from
TSA-STAT are more or equally similar to the original time-series input than
PGD-based adversarial examples.

Figure 8 illustrates a representative example of the spatial distribution between same-
class data of HAPT and WD, and their respective adversarial examples using TSA-STAT
and PGD. We can clearly see that TSA-STAT succeeds in preserving the similarity between
the original and adversarial example pairs, and in most cases, better than PGD.

Effectiveness of adversarial examples from TSA-STAT. All following experiments
were repeated 10 times and we report the averaged results (variance was negligible). We have
used the standard benchmark training, validation, and test split on the datasets. We imple-
mented the TSA-STAT framework using TensorFlow (Abadi, Agarwal, Barham, Brevdo,
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Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard,
Jia, Józefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schus-
ter, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals,
Warden, Wattenberg, Wicke, Yu, & Zheng, 2016) and the baselines using the CleverHans
library (Papernot, Faghri, Carlini, Goodfellow, Feinman, Kurakin, Xie, Sharma, Brown,
Roy, Matyasko, Behzadan, Hambardzumyan, Zhang, Juang, Li, Sheatsley, Garg, Uesato,
Gierke, Dong, Berthelot, Hendricks, Rauber, & Long, 2018). We employ ρ=-20 for Llabel

in Equation 4.3. The choice was due to the observations made from Figures 9 and 10. A
low value of ρ has worse performance on generalization to unseen data or black-box mod-
els. However, higher values of ρ slow down the convergence on each data point. Hence,
we picked a confidence value of ρ at which the fooling rate performance did not increase
significantly.

Figure 9: Performance of the fooling rate
on a subset of WD dataset with
a variable ρ for the instance-
specific attack setting.

Figure 10: Performance of the fooling
rate on a subset of WD
dataset with a variable ρ for
the universal attack setting.

Adversarial examples are generated for L < 0.1 with a maximum of 5×103 iterations of
gradient descent using the learning rate η=0.01. We construct a group of transformations
{PT (X, y)}y∈Y , one for each class y in Y . The transformation to be used depends on the
initial output class-label predicted by the deep model for the given input X. Therefore, the
universal transformation PT (X, y) =

∑d
k=0 a

y
k X

k will transform the inputs of the same
class-label into adversarial outputs belonging to the target class-label. A targeted attack
is a more sophisticated attack, which exposes the vulnerability of a DNN model better
than an untargeted attack. From an attacker’s perspective, having an attack model that
allows choosing the target classification label of the adversarial example is better. Hence,
we use targeted attacks for our experimental setup to show that TSA-STAT has the best
opportunity for exploring time-series adversarial examples. We run the algorithm repeatedly
on all the different class labels as targets. If the maximum iteration number is reached, we
select the coefficients {ayk} with the lowest corresponding loss.

We show the effectiveness of created adversarial examples for different settings (white-
box, black-box etc.) to fool deep models for time-series domain. We evaluate TSA-STAT
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using the attack efficiency metric αEff ∈ [0, 1] over the created adversarial examples. αEff
(higher means better attacks) measures the capability of targeted adversarial examples to
fool a given DNN classifier Fθ to output the class-label ytarget (i.e., targeted attacks). Figure
11 shows the results for instance-specific targeted attacks under white-box and black-box
settings on different deep models. Figure 12 shows the results for universal attacks using
TSA-STAT. Unlike instance-specific attacks, universal attacks are created by directly using
the resulting polynomial transformation PT (·). Recall that for black-box attacks, we do
not query the target deep model at any phase. While comparing TSA-STAT based attack
with the existing attacks using success rate provides an assessment about the performance
of different attacks, it does not show which attack is stronger. To investigate the real
performance of TSA-STAT, we show the effectiveness of the TSA-STAT based attack to
fool deep models for time-series domain using both standard and adversarial training. If
any baseline algorithm were better attacks than TSA-STAT, the adversarial training using
that baseline will be robust towards TSA-STAT’s attacks.

Figure 11: Results for TSA-STAT instance-specific adversarial examples on different deep
models trained with clean data and adversarial training baselines.

We can observe from both Figures 11 and 12 that on the multivariate WD and HAPT
dataset, the fooling rate is good across all settings. Adversarial examples created by opti-
mized PT (·) are highly effective as αEff ≥ 0.7 for most cases. For CC and SC datasets, we
see a lower performance for TSA-STAT, essentially at the level of FGS on CC. We believe
that this is due to the effect of lp-bounded adversarial examples that mislead the deep mod-
els during adversarial training. Additionally, we show in Figure 13 that using l2 norm or l∞
norm on the statistical features has no difference in the general performance of TSA-STAT
based attacks. Finally, Figure 14 shows the results of different deep models after adversar-
ial training using adversarial examples from different methods including TSA-STAT. This
performance is relative to the clean testing set of the data. We can easily observe from the
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Figure 12: Results for TSA-STAT universal adversarial examples on different deep models
trained with clean data and adversarial training baselines.

Figure 13: Results for TSA-STAT instance-specific adversarial examples on different deep
models trained with clean data and adversarial training baselines using l∞
(shown in Blue) and l2 (shown in Green) norm on the statistical features.

results of using FGS, CW, and PGD for adversarial training (degrades overall performance),
the validity of our claim: lp distance-based perturbation lacks true-label guarantees and can
degrade the overall performance of deep models on real-world data. On the other hand, by
using the adversarial examples from TSA-STAT, the overall performance did not decrease
and has improved for some datasets: for SC, the accuracy increased from 90% to 97% for
WB, and accuracy on CC improved from 83% to 96% for BB2. We observe that FGS was
the worst method in terms of preserving the performance of deep models.
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We conclude from the experiments to test the effectiveness of adversarial examples from
TSA-STAT that indeed using statistical features is well-justified for adversarial time-series
data. If the standard Lp-norm-based methods from the image domain were to be very
effective for the time-series domain:

• TSA-STAT based attacks will not be able to fool the models using baselines as a
defense method as shown in Figures 11 and 12.

• Adversarial training on clean data using baseline methods would have outperformed
TSA-STAT unlike the observations from Figure 14.

Figure 14: Results for adversarial training using adversarial examples from different meth-
ods including TSA-STAT, FGS, CW, PGD, and standard training (Clean) on
clean testing data for different deep models.

Certified bounds. Using Algorithm 2, we can infer the robustness of an input X by
calculating the upper bound δ that limits the tolerable adversarial perturbation over the
‖ · ‖∞. Hence, for any generated perturbation on X which employs δ̂ ≤ δ, the classification
result is guaranteed to remain the same. In other words, for a given time-series X and
its robustness bound δ, the perturbation δ̂ can take any value ≤ δ. As a consequence,
the classification of a time-series input X with the perturbation δ̂ is stable/certified. For
the following experiments, we employ MAX = 5 × 103. For the generation of Σ, we use
a random algorithm to generate a semi-definite positive matrix that has parameter σ as
diagonal elements.

Figure 15 shows the classification accuracy on testing set under the attack of different
possible δ̂ with various choices of σ = ‖

∑
i,i ‖∞ for the multivariate Gaussian np and nq of
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the Algorithm 2 (noting that we observed similar findings on other datasets). σ refers to
the diagonal element of the covariance matrix

∑
. As an example, for WD dataset where

(µP = 0.1, σ = 0.1): At δ̂ = 0, we have a testing accuracy of 0.83, which translates to the
fact that 83% of the testing set is robust to the given perturbation and 19% of the testing
test is vulnerable to adversarial attacks. We also observe that the larger the value of σ is,
the faster the curve declines. This shows that inputs are unstable with respect to robustness
to noises with higher σ.

Figure 15: Certification lower bound accuracy on the testing data with varying (µP , σ) for
Algorithm 2.

Figure 16 shows the robustness in accuracy of the deep model against perturbation δ̂ (In
blue). It illustrates the classification accuracy on the testing set under attacks with different
possible δ̂ values using (µP=0.01, σ=0.1,MAX=103) as parameters of the multivariate
Gaussian for Algorithm 2. Consider the analysis for WD dataset as an example. At δ̂ = 0,
we have a test accuracy of 0.83, which translates to the fact that 83% of the test set inputs
are robust to the given perturbation and 17% of the test is vulnerable to adversarial attacks.
At δ̂=1, the plot shows that around 28% of the dataset has a certified bound δ ≥ 1.

The same figure shows the influence of adversarial training on the certification bound of
the deep model via Algorithm 2. We also provide a comparison using Gaussian augmenta-
tion (Dodge & Karam, 2017) to show the substantial role of TSA-STAT in using statistical
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features vs. using a standard Gaussian noise. We can observe the effect of adversarial train-
ing with TSA-STAT on increasing the robustness of most inputs on the different datasets.
For example, on HAPT dataset, the initial region of δ̂ ≤ 1.5, the robustness of several inputs
have increased (20% increase at δ̂=0 and 10% increase at δ̂=1.0).

Figure 16: Robustness results with adversarial training. Comparison of the accuracy of
Original model (standard training without adversarial examples) and adversarial
training based on TSA-STAT and Gaussian augmentation. This figure illustrates
that TSA-STAT is a better method to improve the robustness of deep model as
it has the highest accuracy for a given δ̂ for most datasets.

Transferability of attacks. Prior work has shown that RNN models are competitive with
1D-CNNs for time-series domain. Therefore, we evaluate the transferability of adversarial
examples from WB (1D-CNN) to an RNN model. Table 4 shows the percentage of dataset
that has targeted adversarial capabilities to fool a Long short-term memory (LSTM) model
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Table 4: Results for transferability of TSA-STAT attacks across RNN models.
CC SC HAPT WD CBF CX CY CZ ChT

LSTM 39% 80% 37% 50% 89% 58% 58% 57% 5.7%

GRU 49% 71% 43% 41% 87% 56% 53% 55% 5.5%

and a Gated recurrent unit (GRU) model using TSA-STAT. We can observe that TSA-
STAT attacks have the transfer potential to fool other deep models such as RNNs. From
Table 4, we make the following observations. First, TSA-STAT is able to generate targeted
adversarial examples that are able to fool RNN models. Second, the fooling efficiency
increases αEff → 0.8 if we employ TSA-STAT in an untargeted setting for most of the
datasets. Since this paper only studies the setting of no queries to the target deep model,
the attacks would have an increased efficiency if the target deep model is available for label
queries (Papernot et al., 2017). Finally, we observe poor attack performance specifically on
the ChT dataset under any black-box setting. This low performance is not restricted to the
attacks from TSA-STAT. CW attacks on ChT also have poor transferability performance
in black-box settings (αEff ≤ 0.1). The analysis of robustness of this dataset is shown in
Figure 16. We can clearly observe the low robustness performance and resilience to noise
of the original model. Hence, specific analysis is needed to adapt to datasets such as ChT,
where adaptive attacks should be pursued (Tramer et al., 2020).

Comparison with the work of (Karim et al., 2020). We mentioned in the related
Work section that there is a recent work that proposed an approach for studying adversarial
attacks for the time-series domain (Karim et al., 2020). This method employs network dis-
tillation to train a student model for creating adversarial attacks. We provide a comparison
between TSA-STAT and the network distillation approach to show the effectiveness of our
proposed framework. First, the method in (Karim et al., 2020) is severely limited: only a
small number of target classes yield to a generation of adversarial examples and the method
does not guarantee a generation of adversarial example for every input. (Karim et al., 2020)
showed that for many datasets, this method creates a limited number of adversarial exam-
ples in the white-box setting. To test the effectiveness of this attack against TSA-STAT, we
employ adversarial training using adversarial examples generated by the model proposed
in (Karim et al., 2020) under the black-box setting. We use the code 2 provided by the
authors to generate the adversarial examples using this baseline method.

Figure 17 shows the fooling rate of TSA-STAT generated attacks on different datasets.
We can conclude that adversarial training using (Karim et al., 2020) does not improve
the robustness of the models against our proposed attack. Additionally, we show a direct
comparison between TSA-STAT and (Karim et al., 2020) using the attack performance
in Figure 18. This figure shows the results comparing both attack performances under
the white-box setting WB. We observe that the attack success rate (αref ) of TSA-STAT
outperforms the adversarial attacks created by (Karim et al., 2020) method. Figure 19
shows the effectiveness of adversarial examples generated from (Karim et al., 2020) on the
deep models created via adversarial training using augmented data from TSA-STAT. We

2. https://github.com/titu1994/Adversarial-Attacks-Time-Series.git
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can see that using TSA-STAT for adversarial training results in a robust model against any
attack generated by the method in (Karim et al., 2020).

Figure 17: Results for effectiveness of TSA-STAT on deep models via adversarial training
using the augmented data generated from (Karim et al., 2020).

Figure 18: Results for the effectiveness of TSA-STAT and (Karim et al., 2020) method
under the white-box setting WB.

Figure 19: Results of TSA-STAT based adversarial training performance on predicting the
true labels of adversarial attacks generated by (Karim et al., 2020).

6.4 Summary of Key Experimental Findings

Our comprehensive experimental evaluation demonstrated that TSA-STAT is an effective
adversarial framework for time-series domain. We briefly summarize the main experimental
findings below.

• The similarity measure based on statistical features of time-series used by TSA-STAT
is more effective in capturing the unique characteristics of time-series data when com-
pared to the standard algorithms which rely on lp-norm distance (Figure 8).

• Figures 11 and 12 demonstrate that the instance-specific and universal adversarial
attacks created by TSA-STAT are very effective in fooling DNNs for time-series clas-
sification tasks and evading adversarial training based on adversarial examples created
by prior methods.
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• Adversarial examples created by TSA-STAT provide better true-label guarantees (ex-
amples belonging to the semantic space of true label) than those based on prior meth-
ods relying on lp-norm distance. As a result, adversarial training based on TSA-STAT
improves the robustness of deep models more than adversarial training with prior
methods (Figure 14).

• Figure 16 demonstrates that adversarial training based on TSA-STAT provides better
robustness certification for time-series classifiers than prior methods.

• Table 4 results show that TSA-STAT supports transferability: optimized polynomial
transformations can be reused to create effective adversarial examples for unseen deep
models and time-series signals.

7. Conclusions

We introduced the TSA-STAT framework to study adversarial robustness of deep models for
time-series domain. TSA-STAT relies on two key ideas to create more effective adversarial
examples for the time-series domain: 1) Constraints over statistical features of time-series
signals to preserve similarities between original input and adversarial examples; and 2)
Polynomial transformations to expand the space of valid adversarial examples compared
to prior methods. TSA-STAT synergistically combines these two key ideas to overcome
the drawbacks of prior methods from the image domain which rely on lp-distance and are
not suitable for the time-series domain. We provided theoretical and empirical analysis
to explain the importance of these two key ideas in making TSA-STAT more suitable
to create adversarial attacks for the time-series domain. We also provided certification
guarantees for adversarial robustness of the TSA-STAT framework. We theoretically derived
the computation of certification bound for TSA-STAT and provided a concrete algorithm
that can be used with any deep model for the time-series domain. Finally, we empirically
demonstrated the effectiveness of TSA-STAT on diverse real-world datasets and different
deep models in terms of fooling rate and improved robustness with adversarial training.
Our work concludes that time-series domain requires separate investigation for robustness
analysis due to its unique characteristics and shows the effectiveness of the TSA-STAT
framework towards this goal.
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Appendix A. Proofs

A.1 Proof of Theorem 1

For a given input space Rn×T and d ≥ 1, polynomial transformations allow more candidate
adversarial examples than additive perturbations in a constrained space. If X ∈ Rn×T and
PT : X →

∑d
k=0 ak X

k, then ∀Xadv s.t. ‖Si(Xadv)− Si(X)‖∞ ≤ εi:

{
Xadv = PT (X), ∀ak

}
)
{
Xadv = X + δ, ∀δ

}

, Si ∈ Sm(X)
⋃
Identity.

Let X ∈ Rn×T and d ≥ 1. Let PT (·) a polynomial adversarial transformation such that
PT : X →

∑d
k=0 ak X

k. We want to prove that a polynomial transformation can create an
adversarial example Xadv that is out of the scope for additive perturbation with a constant δ.
The main condition on Xadv is that ‖Si(Xadv)−Si(X)‖∞ ≤ εi with Si ∈ Sm(X)

⋃
Identity.

In other words, if the given condition is satisfied, we will have:

{
Xadv = PT (X), ∀ak

}
)
{
Xadv = X + δ, ∀δ

}

Suppose A be the space of all possible adversarial examples
{
Xadv = PT (X), ∀ak

}
and B

be the space of all possible adversarial examples
{
Xadv = X + δ, ∀δ

}
• Si = Identity: For Xadv = PT (X):

‖Xadv −X‖∞ ≤ εi

‖
d∑

k=0

ak X
k −X‖∞ ≤ εi

‖a0 + (a1 − 1)X +

d∑
k=0

ak X
k‖∞ ≤ εi

Without loss of generality, let us consider ‖ · ‖∞ on the component l ≤ n.

|a0 + (a1 − 1)Xl +
d∑

k=0

ak X
k
l | ≤ εi

|a0 + β({ak, Xl})| ≤ εi

Then Xadv ∈ B only if the function β({ak, Xl}) = 0 and |a0| ≤ εi. Hence, by construction
on the set of {ak}, if |a0| > εi, we can create Xadv such that |a0 + β({ak, Xl})| ≤ εi. Hence,
we have Xadv ∈ A and Xadv /∈ B (β depends on X, so it cannot be considered as a constant
perturbation δ to be in B).
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• Si ∈ Sm(X): Let us start with Si(·) = µ(·). Similar to the previous case, and if we
consider ‖ · ‖∞ on the component l ≤ n:

‖µ(Xadv)− µ(X)‖∞ ≤ εi∣∣∣∣µ( d∑
k=0

ak X
k
l

)
− µ(Xl)

∣∣∣∣ ≤ εi∣∣∣∣ T∑
j=0

∑d
k=0 ak X

k
l,j

T
−

T∑
j=0

Xl,j

T

∣∣∣∣ ≤ εi∣∣∣∣ T∑
j=0

a0 + (a1 − 1)Xl,j +
∑d

k=0 ak X
k
l,j

T

∣∣∣∣ ≤ εi
If Xadv ∈ B, then ‖µ(Xadv) − µ(X)‖∞ = |

∑T
j=0

a0
T |. With the same construction logic as

in the previous case, we can end with Xadv ∈ A and Xadv /∈ B. For the remaining cases of
Si(·) used in this work, as they are correletaed with µ, similar construction can be used.

A.2 Proof of Theorem 2

Let X ∈ Rn×T be an input time-series signal. Let nP ∼ N (µP ,
∑

) and n0 ∼ N (0,
∑

).
Given a classifier Fθ : Rn×T → Y that produces a probability distribution (p1, · · · , pk) over
k labels for Fθ(X + nP ) and another probability distribution (p0

1, · · · , p0
k) for Fθ(X + n0).

To guarantee that argmax
pi

pi = argmax
p0

p0, the following condition must be satisfied:

‖µP ‖2∞ ≤ max
α 6=1

2

α ·
∑(S)

·

(
−ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α
))

where ‖µP ‖∞ is the maximum perturbation over the mean of the input’s channels and
∑(S)

is the sum of all elements of
∑

.
To prove this theorem, we call for a second Lemma provided in (Li et al., 2019)):

Lemma 3. Let EP and E0 be two probability distributions where EP=(p1, · · · , pk) and
E0=(p0

1, · · · , p0
k). If arg max

pi∈EP
pi 6= arg max

p0i∈E0
p0
i , then:

Dα(EP‖E0) ≥ −ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α
)

(A.1)

where p(1) and p(2) are respectively the largest and second largest pi ∈ EP .

This Lemma provides a lower bound of the Rényi divergence for changing the index of
the maximum of EP , which is useful for the derivation of our certification bound. If the es-
timated distributions EP and E0 have different indices for the maximum class probabilities,
then Dα(EP‖E0) < RHS of Equation A.1.

Let X ∈ Rn×T an input time-series signal, nP ∼ N (µP ,
∑

) and n0 ∼ N (0,
∑

), and
a DNN classifier Fθ : Rn×T → Y that produces a probability distribution over k candi-
date class labels: EP=(p1, · · · , pk) for Fθ(X + nP ) and another probability distribution
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E0=(p0
1, · · · , p0

k) for Fθ(X + n0).

As a direct result from Lemma 1:

Dα(EP‖E0) = α
2 (µP − 0)T

∑
α(µP − 0)− 1

2(α−1) ln
|
∑
α |

|
∑
|1−α|

∑
|α

where
∑

α = α
∑

+(1− α)
∑

=
∑

.

This results to:

Dα(EP‖E0) =
α

2
µTP
∑

µP −
1

2(α− 1)
ln(1)

=
α

2
µTP
∑

µP

Since ∀i : µP,i ≤ ‖µP ‖∞, we get

Dα(EP‖E0) =
α

2
µTP
∑

µP =
α

2

∑
i

∑
j

µP,i × µP,j ×
∑

i,j

≤ α

2
‖µP ‖2∞

∑(S)

where
∑(S) is the sum of all elements of

∑
.

To guarantee that argmax
pi

pi = argmax
p0i

p0
i , the following condition must be satisfied

from Lemma 3:

Dα(EP‖E0) < −ln(1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α

This implies:

α

2
‖µP ‖2∞

∑(S)
< −ln(1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α

which leads us to:

‖µP ‖2∞ <
2

α×
∑(S)

×

(
−ln(1− p(1) − p(2) + 2

(
1

2

(
p1−α

(1) + p1−α
(2)

)) 1
1−α
)

Hence, our result.

While the proposed certification in Theorem 2 uses the Lemma3 provided in (Li et al.,
2019), the derivation of the bound is different in terms of the following aspects that are not
covered in (Li et al., 2019) :

• The use of a multivariate Gaussian distribution of the noise. The main difference
in our work is that we use a multivariate Gaussian distribution (Lemma 1) that is
characterized by mean vector µ and a covariance matrix

∑
. This general formulation
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of multivariate Gaussian distributions results in the conclusion of Theorem 1 because
it is applied on multivariate inputs X ∈ Rn×T . However, the standard Gaussian
noise with 0-value mean and a single-value standard deviation σ employed in (Li et.
al., 2019) is limited for our case. The theoretical analysis in (Li et al., 2019) is not
general to the multivariate Gaussian distributions used in our work. This is due to
the fact that the Renyi divergence of the noise distribution in (Li et. al., 2019) can
be upper-bounded by a factor of the L2 norm. This upper bound is not applicable for
the multivariate Gaussian noise. Hence, we provide the proof of Theorem 2 to derive
a certification robustness. The approach in (Li et al., 2019) can only be used for
univariate time-series data. We provided a more general derivation for multi-variate
time-series.

• The certification in (Li et al., 2019) is only provided for the Euclidean distance. For
the theoretical analysis of TSA-STAT, we had to introduce the statistical features of
time-series instead of euclidean distance. Hence, we proposed in our proof the use of
a mean vector µP . This proof is not similar to the one provided in (Li et al., 2019).
Additionally, we provided Lemma 2 with proof to extend the certification to other
statistical features.

A.3 Proof of Lemma 2

If a certified bound δ has been generated for the mean of input time-series signal X ∈ Rn×T
and classifier Fθ, then certified bounds for other statistical/temporal features can be derived
consequently.

In this section, we will work on other statistical constraints used in our experimental
evaluation. Let X ∈ Rn×T an time-series input signal. Let Σ be the positive semi-definite
covariance matrix used for the additive multivariate Gaussian noise. The bound on the
mean δ value is given by TSA-STAT certification algorithm. As ‖Si(X)‖∞ is equal to the
value of Si on one of the channels n, let us consider for simplicity of this proof only that
channel. Hence, the derivation of the bounds for other statistical features is as follows:

• RMS =
∑ x2i

n

σ2 =
∑ (xi − µ)2

n
=
∑ x2

i − 2xiµ+ µ2

n
= RMS2−2µ

∑ xi
n

+
∑ µ2

n
= RMS2−µ2

⇒ max‖RMS‖∞ = δ2 + σ2

• Skewness g =
∑ (xi−µ)3

n×σ3

Let G(µ) =
∑ (xi−µ)3

n

∂G

∂µ
=
∑ ∂

∂µ

(xi − µ)3

n
= −3×

∑ (xi − µ)2

n
6= 0 ∀µ as (σ 6= 0)

Therefore, G(µ) is monotonic ⇒ max‖g‖∞ = G(δ)|
σ3
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• Kurtosis k =
∑ (xi−µ)4

n×σ4 − 3

Let K(µ) =
∑ (xi−µ)4

n , following the previous result on the skewness:

∂K

∂µ
=
∑ ∂

∂µ

(xi − µ)4

n
6= 0 ∀µ

Therefore, K(µ) is monotonic ⇒ max‖k‖∞ = |K(δ)|
σ4 − 3
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