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Abstract

While significant progress has been made in the image

captioning task, video description is still in its infancy due

to the complex nature of video data. Generating multi-

sentence descriptions for long videos is even more chal-

lenging. Among the main issues are the fluency and coher-

ence of the generated descriptions, and their relevance to

the video. Recently, reinforcement and adversarial learning

based methods have been explored to improve the image

captioning models; however, both types of methods suffer

from a number of issues, e.g. poor readability and high re-

dundancy for RL and stability issues for GANs. In this work,

we instead propose to apply adversarial techniques during

inference, designing a discriminator which encourages bet-

ter multi-sentence video description. In addition, we find

that a multi-discriminator “hybrid” design, where each dis-

criminator targets one aspect of a description, leads to the

best results. Specifically, we decouple the discriminator to

evaluate on three criteria: 1) visual relevance to the video,

2) language diversity and fluency, and 3) coherence across

sentences. Our approach results in more accurate, diverse,

and coherent multi-sentence video descriptions, as shown

by automatic as well as human evaluation on the popular

ActivityNet Captions dataset. 1

1. Introduction

Being able to automatically generate a natural language

description for a video has fascinated researchers since the

early 2000s [27]. Despite the high interest in this task and

ongoing emergence of new datasets [13, 29, 75] and ap-

proaches [67, 69, 76], it remains a highly challenging prob-

lem. Consider the outputs of the three recent video descrip-

tion methods on an example video from the ActivityNet

Captions dataset [3, 29] in Figure 1. We notice that there

are multiple issues with these descriptions, in addition to the

errors with respect to the video content: there are seman-

tic inconsistencies and lack of diversity within sentences,

as well as redundancies across sentences. There are mul-

tiple challenges towards more accurate and natural video

1https://github.com/jamespark3922/adv-inf.

Figure 1: Comparison of the state-of-the-art video descrip-

tion approaches, Transformer [76], VideoStory [13], Move-

ForwardTell [67], and our proposed Adversarial Inference.

Our approach generates more interesting and accurate de-

scriptions with less redundancy. Video from ActivityNet

Captions [3, 29] with three segments (left to right); red/bold

indicates content errors, blue/italic indicates repetitive pat-

terns, underscore highlights more interesting phrases.

description. One of the issues is the size of the available

training data, which, despite the recent progress, is lim-

ited. Besides, video representations are more complex than

e.g. image representations, and require modeling temporal

structure jointly with the semantics of the content. More-

over, describing videos with multiple sentences, requires

correctly recognizing a sequence of events in a video, main-

taining linguistic coherence and avoiding redundancy.

Another important factor is the target metric used in the

description models. Most works still exclusively rely on the

automatic metrics, e.g. METEOR [31], despite the evidence

that they are not consistent with human judgments [24, 57].

Further, some recent works propose to explicitly optimize

for the sentence metrics using reinforcement learning based

methods [35, 46]. These techniques have become quite

widespread, both for image and video description [1, 67].
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Despite getting higher scores, reinforcement learning based

methods have been shown to lead to unwanted artifacts,

such as ungrammatical sentence endings [15], increased ob-

ject hallucination rates [47] and lack of diverse content [36].

Overall, while informative, sentence metrics should not be

the only way of evaluating the description approaches.

Some works aim to overcome this issue by using the ad-

versarial learning [9, 53]. While Generative Adversarial

Networks [14] have achieved impressive results for image

and even video generation [21, 43, 63, 77], their success in

language generation has been limited [55, 71]. The main

issue is the difficulty of achieving stable training due to the

discrete output space [4, 5]. Another reported issue is lack

of coherence, especially for long text generation [20]. Still,

the idea of learning to distinguish the “good” natural de-

scriptions from the “bad” fake ones, is very compelling.

Rather than learning with adversarial training, we pro-

pose a simpler approach, Adversarial Inference for video

description, which relies on a discriminator to improve the

description quality. Specifically, we are interested in the

task of multi-sentence video description [48, 70], i.e. the

output of our model is a paragraph that describes a video.

We assume that the ground-truth temporal segments are

given, i.e. we do not address the event detection task, but

focus on obtaining a coherent multi-sentence description.

We first design a strong baseline generator model trained

with the maximum likelihood objective, which relies on a

previous sentence as context, similar to [13, 67]. We also

introduce object-level features in the form of object detec-

tions [1] to better represent people and objects in video. We

then make the following contributions:

(1) We propose the Adversarial Inference for video de-

scription, where we progressively sample sentence candi-

dates for each clip, and select the best ones based on a

discriminator’s score. Prior work has explored sampling

with log probabilities [12], while we show that a specifi-

cally trained discriminator leads to better results in terms of

correctness, coherence, and diversity (see Figure 1).

(2) Specifically, we propose the “hybrid discriminator”,

which combines three specialized discriminators: one mea-

sures the language characteristics of a sentence, the sec-

ond assesses its relevance to a video segment, and the third

measures its coherence with the previous sentence. Prior

work has considered a “single discriminator” for adversar-

ial training to capture both the linguistic characteristics and

visual relevance [53, 9]. We show that our “hybrid discrim-

inator” outperforms the “single discriminator” design.

(3) We compare our proposed approach to multiple base-

lines on a number of metrics, including automatic sentence

scores, diversity and repetition scores, person correctness

scores, and, most importantly, human judgments. We show

that our Adversarial Inference approach leads to more accu-

rate and diverse multi-sentence descriptions, outperforming

GAN and RL based approaches in a human evaluation.

2. Related Work

We review existing approaches to video description, in-

cluding recent work based on reinforcement and adversar-

ial learning. We then discuss related works that also sample

and re-score sentence descriptions, and some that aim to de-

sign alternatives to automatic evaluation metrics.

Video description. Over the past years there has been an

increased interest in video description generation, notably

with the broader adoption of the deep learning techniques.

S2VT [58] was among the first approaches based on LSTMs

[19, 11]; some of the later ones include [38, 49, 52, 68,

72, 73]. Most recently, a number of approaches to video

description have been proposed, such as replacing LSTM

with a Transformer Network [76], introducing a reconstruc-

tion objective [59], using bidirectional attention fusion for

context modeling [61], and others [7, 13, 33].

While most works focus on “video in - one sentence out”

task, some aim to generate a multi-sentence paragraph for

a video [48, 54, 70]. Recently, [69] propose a fine-grained

video captioning model for generating detailed sports nar-

ratives, and [67] propose the Move Forward and Tell ap-

proach, which localizes events and progressively decides

when to generate the next sentence. This is related to the

task of dense captioning [29], where videos are annotated

with multiple localized sentences but the task does not re-

quire to produce a single coherent paragraph for the video.

Reinforcement learning for caption generation. Most

deep language generation models rely on Cross-Entropy

loss and during training are given a previous ground-truth

word. This is known to cause an exposure bias [42], as

at test time the models need to condition on the predicted

words. To overcome this issue, a number of reinforcement

learning (RL) actor-critic [28] approaches have been pro-

posed [45, 46, 74]. [35] propose a policy gradient optimiza-

tion method to directly optimize for language metrics, like

CIDEr [57], using Monte Carlo rollouts. [46] propose a

Self-Critical Sequence Training (SCST) method based on

REINFORCE [66], and instead of estimating a baseline, use

the test-time inference algorithm (greedy decoding).

Recent works adopt similar techniques to video descrip-

tion. [40] extend the approach of [42] by using a mixed loss

(both cross-entropy and RL) and correcting CIDEr with an

entailment penalty. [65] propose a hierarchical reinforce-

ment learning approach, where a Manager generates sub-

goals, a Worker performs low-level actions, and a Critic de-

termines whether the goal is achieved. Finally, [32] propose

a multitask RL approach, built off [46], with an additional

attribute prediction loss.

GANs for caption generation. Instead of optimizing for
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hand-designed metrics, some recent works aim to learn

what the “good” captions should be like using adversarial

training. The first works to apply Generative Adversarial

Networks (GANs) [14] to image captioning are [53] and

[9]. [53] train a discriminator to distinguish natural human

captions from fake generated captions, focusing on caption

diversity and image relevance. To sample captions they rely

on Gumbel-Softmax approximation [22]. [9] instead rely on

policy gradient, and their discriminator focuses on caption

naturalness and image relevance. Some works have applied

adversarial learning to generate paragraph descriptions for

images/image sequences. [34] propose a joint training ap-

proach which incorporates multi-level adversarial discrim-

inators, one for sentence level and another for coherent

topic transition at a paragraph level. [64] rely on adver-

sarial reward learning to train a visual storytelling policy.

[60] use a multi-modal discriminator and a paragraph level

language-style discriminator for their adversarial training.

Their multi-modal discriminator resembles the standard dis-

criminator design of [9, 53]. In contrast, we decouple the

multi-modal discriminator into two specialized discrimina-

tors, Visual and Language, and use a Pairwise discriminator

for sentence pairs’ coherence. Importantly, none of these

works rely on their trained discriminators during inference.

Two recent image captioning works propose using dis-

criminator scores instead of language metrics in the SCST

model [6, 36]. We implement a GAN baseline based on this

idea, and compare it to our approach.

Caption sampling and re-scoring. A few prior works

explore caption sampling and re-scoring during inference

[2, 18, 56]. Specifically, [18] aim to obtain more image-

grounded bird explanations, while [2, 56] aim to generate

discriminative captions for a given distractor image. While

our approach is similar, our goal is different, as we work

with video rather than images, and aim to improve multi-

sentence description with respect to multiple properties.

Alternatives to automatic metrics. There is a growing in-

terest in alternative ways of measuring the description qual-

ity, than e.g. [39, 31, 57]. [8] train a general critic network

to learn to score captions, providing various types of cor-

rupted captions as negatives. [51] use a composite metric, a

classifier trained on the automatic scores as input. In con-

trast, we do not aim to build a general evaluation tool, but

propose to improve the video description quality with our

Adversarial Inference for a given generator.

3. Generation with Adversarial Inference

In this section, we present our approach to multi-

sentence description generation based on our Adversarial

Inference method. We first introduce our baseline genera-

tor G and then discuss our discriminator D. The task of

D is to score the descriptions generated by G for a given

video. This includes, among others, to measure whether

the multi-sentence descriptions are (1) correct with respect

to the video, (2) fluent within individual sentences, and (3)

form a coherent story across sentences. Instead of assigning

all three tasks to a single discriminator, we propose to com-

pose D out of three separate discriminators, each focusing

on one of the above tasks. We denote this design a hybrid

discriminator (see Figure 3).

While prior works mostly rely on discriminators for joint

adversarial training [9, 53], we argue that using them dur-

ing inference is a more robust way of improving over the

original generator. In our Adversarial Inference, the pre-

trained generator G presents D with the sentence candidates

by sampling from its probability distribution. In its turn, our

hybrid discriminator D selects the best sentence relying on

the combination of its sub-discriminators. The overview of

our approach is shown in Figure 2.

3.1. Baseline Multi­Sentence Generator: G

Given L clips [v1, v2, ..., vL] from a video v, the task of

G is to generate L sentences [s1, s2, ..., sL], where each sen-

tence si matches the content of the corresponding clip vi.

As the clips belong to the same video and are thus contex-

tually dependent, our goal is to not only generate a sentence

that matches its visual content, but to obtain a coherent and

diverse sequence of sentences, i.e. a natural paragraph.

Our generator follows a standard LSTM decoder [11, 19]

to generate individual sentences si with encoded represen-

tation of vi as our visual context. Typically, for each step

m, the LSTM hidden state hi
m expects an input vector that

encodes the visual features from vi as well as the previous

word wi
m−1. For our visual context, we use motion, RGB

images, and object detections as features for each video

clip, and follow the settings from [62, 67] to obtain a sin-

gle vector representation of each feature using a temporal

attention mechanism [68]2. The three vectors are concate-

nated to get the visual input v̄im. To encourage coherence

among consecutive sentences, we additionally append the

last hidden state of the previous sentence hi−1 as input to

the LSTM decoder [13, 67]. The final input to the LSTM

decoder for clip vi at time step m is defined as follows:

hi
m = LSTM(v̄im, wi

m−1, h
i−1),

with h0 = 0,
(1)

We follow the standard Maximum Likelihood Estima-

tion (MLE) training for G, i.e. we maximize the likelihood

of each word wi
m given the current LSTM hidden state hi

m.

3.2. Discriminator: D

The task of a discriminator D is to score a sentence s

w.r.t. a video v as D(s|v) ∈ (0, 1), where 1 indicates a

2For details, please, see the supplemental material.
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Figure 2: The overview of our Adversarial Inference approach. The Generator progressively samples candidate sentences for

each clip, using the previous sentence as context. The Hybrid Discriminator scores the candidate sentences, and chooses the

best one based on its visual relevance, linguistic characteristics and coherence to the previous sentence (details in Figure 3).

positive match, while 0 is a negative match. Most prior

works that perform adversarial training for image caption-

ing [6, 9, 36, 53], rely on the following “single discrimi-

nator” design. D is trained to distinguish human ground-

truth sentences as positives vs. sentences generated by G

and mismatched ground truth sentences (from a different

video) as negatives. The latter aim to direct the discrimina-

tor’s attention to the sentences’ visual relevance.

For a given generator G, the discriminator D is trained

with the following objective:

max
1

N

N∑

j=1

LD(vj), (2)

where N is the number of training videos. For a video vj

a respective term is defined as:

LD(vj) = Es∈S
vj
[log(D(s|vj))] +

µ · Es∈SG
[log(1−D(s|vj))] +

ν · Es∈S\vj
[log(1−D(s|vj))],

(3)

where Svj is the set of ground truth descriptions for vj ,

SG are generated samples from G, S\vj are ground truth

descriptions from other videos, µ, ν are hyper-parameters.

3.2.1 Hybrid Discriminator

In the “single discriminator” design, the discriminator is

given multiple tasks at once, i.e. to detect generated “fakes”,

which requires looking at linguistic characteristics, such

as diversity or language structure, as well the mismatched

“fakes”, which requires looking at sentence semantics and

relate it to the visual features. Moreover, for multi-sentence

description, we would also like to detect cases where a sen-

tence is inconsistent or redundant to a previous sentence.

To obtain these properties, we argue it is important to

decouple the different tasks and allocate an individual dis-

criminator for each one. In the following we introduce our

visual, language and pairwise discriminators, which jointly

constitute our hybrid discriminator (see Figure 3). We use

the objective defined above for all three, however, the types

of negatives vary by discriminator.

Visual Discriminator. The v isual discriminator DV de-

termines whether a sentence si refers to concepts present in

a video clip vi, regardless of fluency and grammatical struc-

ture of the sentence. We believe that as the pre-trained gen-

erator already produces video relevant sentences, we should

not include the generated samples as negatives for DV . In-

stead, we use the mismatched ground truth as well as mis-

matched generated sentences as our two types of negatives.

While randomly mismatched negatives may be easier to dis-

tinguish, hard negatives, e.g. sentences from videos with the

same activity as a given video, require stronger visual dis-

criminative abilities. To improve our discriminator, we in-

troduce such hard negatives, after training DV for 2 epochs.

Note, that if we use an LSTM to encode our sentence

inputs to DV , it may exploit the language characteristics to

distinguish the generated mismatched sentences, instead of

looking at their semantics. To mitigate this issue, we replace

the LSTM encoding with a bag of words (BOW) representa-

tion, i.e. each sentence is represented as a vocabulary-sized

binary vector. The BOW is further embedded via a linear

layer, and thus we obtain our final sentence encoding ωi.

Similar to G, DV also considers multiple visual features,

i.e. we aggregate features from different misaligned modal-

ities (video, image, objects). We individually encode each

feature f using temporal attention based on the entire sen-

tence representation ωi. The obtained vector representa-

tions v̂if are then fused with the sentence representation ωi,

using Multimodal Low-rank Bilinear pooling (MLB) [25],
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Figure 3: An overview of our Hybrid Discriminator. We

score a sentence si for a given video clip vi and a previous

sentence si−1.

which is known to be effective in tasks like multi-modal re-

trieval or VQA. The score for visual feature f and sentence

representation ωi is obtained as follows:

pif = σ(tanh(UT v̂if )⊙ tanh(V Tωi)), (4)

where σ is a sigmoid, producing values in (0, 1), ⊙ is the

Hadamard product, U , V are linear layers. Instead of con-

catenating features v̂if as done in the generator, here we de-

termine the scores pif between the sentence and each modal-

ity, and learn to weigh them adaptively based on the sen-

tence. The intuition is that some sentences are more likely

to require video features (“a man is jumping”), while oth-

ers may require e.g. object features (“a man is wearing a

red shirt”). Following [37], we assign weights λi
f to each

modality based on the sentence representation ωi:

λi
f =

ea
T
f ωi

∑
j e

aT
j
ωi

, (5)

where aj are learned parameters. Finally, the DV score

is the sum of the scores pif weighted by λi
f :

DV (s
i|vi) =

∑

f

λi
fp

i
f . (6)

Language Discriminator. Language discriminator DL

focuses on language structure of an individual sentence si,

independent of its visual relevance. Here we want to ensure

fluency as well as diversity of sentence structure that is lack-

ing in G. The ActivityNet Captions [29] dataset, that we

experiment with, has long (over 13 words on average) and

diverse descriptions with varied grammatical structures. In

initial experiments we observed that a simple discriminator

is able to point out a obvious mismatches based on diversity

of the real vs. fake sentences, but fails to capture fluency or

repeating N-grams. To address this, in addition to generated

sentences from G, DL is given negative inputs with a mix-

ture of randomly shuffled words or with repeated phrases

within a sentence.

To obtain a DL score, we encode a sentence si with a

bidirectional LSTM, concatenate both last hidden states, de-

noted as h̄i, followed by a fully connected layer and a sig-

moid layer:

DL(s
i) = σ(WLh̄

i + bL). (7)

Pairwise Discriminator. Pairwise discriminator DP

evaluates whether two consecutive sentences si−1 and si

are coherent yet diverse in content. Specifically, DP scores

si based on si−1. To ensure coherence, we include “shuf-

fled” sentences as negatives, i.e. the order of sentences in a

paragraph is randomly changed. We also design negatives

with a pair of identical sentences (si = si−1) and option-

ally cutting off the endings (e.g. “a person enters and takes

a chair” and “a person enters”) to avoid repeating contents.

Similar to DL above, we encode both sentences with a

bidirectional LSTM and obtain h̄i−1 and h̄i. We concate-

nate the two vectors and compute the DP score as follows:

DP (s
i|si−1) = σ(WP [h̄

i−1, h̄i] + bP ). (8)

Note, that the first sentence of a video description para-

graph is not assigned a pairwise score, as there is no previ-

ous sentence.

3.3. Adversarial Inference

In adversarial training for caption generation, G and D

are first pre-trained and then jointly updated, where the dis-

criminator improves the generator by providing feedback to

the quality of sampled sentences. To deal with the issue of

non-differentiable discrete sampling in joint training, sev-

eral solutions have been proposed, such as Reinforcement

Learning with variants of policy gradient methods or Gum-

bel softmax relaxation [6, 9, 53]. While certain improve-

ment has been shown, as we discussed in Section 1, GAN

training can be very unstable.

Motivated by the difficulties of joint training, we present

our Adversarial Inference method, which uses the discrim-

inator D during inference of the generator G. We show

that our approach outperforms a jointly trained GAN model,

most importantly, in human evaluation (see Section 4).

During inference, the generator typically uses greedy

max decoding or beam search to generate a sentence based
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on the maximum probability of each word. One alterna-

tive to this is sampling sentences based on log probability

[12]. Instead, we use our Hybrid Discriminator to score

the sampled sentences. Note, that we generate sentences

progressively, i.e. we provide the hidden state representa-

tion of the previous best sentence as context to sample the

next sentence (see Figure 2). Formally, for a video clip

vi, a previous best sentence si−1
∗ and K sampled sentences

si1, s
i
2, ...s

i
K from the generator G, the scores from our hy-

brid discriminator can be used to compare the sentences and

select the best one:

si∗ = si
argmaxj=1..KD(si

j
|vi,s

i−1

∗ ))
, (9)

where sij is the jth sampled sentence. The final discrimi-

nator score is defined as:

D(sij |v
i, si−1

∗ ) = α ·DV (s
i
j |v

i) +

β ·DL(s
i
j) + γ ·DP (s

i
j |s

i−1
∗ ),

(10)

where α, β, γ are hyper-parameters.

4. Experiments

We benchmark our approach for multi-sentence video

description on the ActivityNet Captions dataset [29] and

compare our Adversarial Inference to GAN and other base-

lines, as well as to state-of-the-art models.

4.1. Experimental Setup

Dataset. The ActivityNet Captions dataset contains 10,009

videos for training and 4,917 videos for validation with

two reference descriptions for each3. Similar to prior work

[76, 13], we use the validation videos with the 2nd refer-

ence for development, while the 1st reference is used for

evaluation. While the original task defined on ActivityNet

Captions involves both event localization and description,

we run our experiments with ground truth video intervals.

Our goal is to show that our approach leads to more correct,

diverse and coherent multi-sentence video descriptions.

Visual Processing. Each video clip is encoded with 2048-

dim ResNet-152 features [17] pre-trained on ImageNet [10]

(denoted as ResNet) and 8192-dim ResNext-101 features

[16] pre-trained on the Kinetics dataset [23] (denoted as

R3D). We extract both ResNet and R3D features at every

16 frames and use a temporal resolution of 16 frames for

R3D. The features are uniformly divided into 10 segments

as in [62, 67], and mean pooled within each segment to

represent the clip as 10 sequential features. We also run

the Faster R-CNN detector [44] from [1] trained on Visual

Genome [30], on 3 frames (at the beginning, middle and end

3The two references are not aligned to the same time intervals, and even

may have a different number of sentences.

of a clip) and detect top 16 objects per frame.We encode the

predicted object labels with bag of words weighted by de-

tection confidences (denoted as BottomUp). Thus, a visual

representation for each clip consists of 10 R3D features, 10

ResNet features, and 3 BottomUp features.

Language Processing. The sentences are “cut” at a maxi-

mum length of 30 words. The LSTM cells’ dimensionality

is fixed to 512. The discriminators’ word embeddings are

initialized with 300-dim Glove embeddings [41].

Training and Inference. We train the generator and dis-

criminators with cross entropy objectives using the ADAM

optimizer [26] with a learning rate of 5e−4. One batch con-

sists of multiple clips and captions from the same video, and

the batch size is fixed to 16 when training all models. The

weights for all the discriminators’ negative inputs (µ, ν in

Eq. 3), are set to 0.5. The weights for our hybrid discrimi-

nator are set as α = 0.8, β = 0.2, γ = 1.0. Sampling temper-

ature during discriminator training is 1.0; during inference

we sample K = 100 sentences with temperature 0.2. When

training the discriminators, a specific type of a negative ex-

ample is randomly chosen for a video, i.e. a batch consists

of a combination of different types of negatives.

Baselines and SoTA. We compare our Adversarial Infer-

ence (denoted MLE+HybridDis) to: our baseline genera-

tor (MLE); multiple inference procedures, i.e. beam search

with size 3 (MLE+BS3), sampling with log probabili-

ties (MLE+LP) and inference with the single discriminator

(MLE+SingleDis); Self Critical Sequence Tranining [46]

which optimizes for CIDEr (SCST); GAN models built off

[6, 36] with a single discriminator4, with and without a cross

entropy (CE) loss (GAN, GAN w/o CE). Finally, we also

compare to the following state-of-the-art methods: Trans-

former [76], VideoStory [13] and MoveForwardTell [67],

whose predictions we obtained from the authors.

4.2. Results

Automatic Evaluation. Following [67], we conduct our

evaluation at paragraph-level. We include standard met-

rics, i.e. METEOR [31], BLEU@4 [39] and CIDEr-D [57].

However, these alone are not sufficient to get a holistic view

of the description quality, since the scores fail to capture

content diversity or detect repetition of phrases and sen-

tence structures. To see if our approach improves on these

properties, we report Div-1 and Div-2 scores [53], that mea-

sure a ratio of unique N-grams (N=1,2) to the total num-

ber of words, and RE-4 [67], that captures a degree of N-

gram repetition (N=4) in a description5. We compute these

scores at video (paragraph) level, and report the average

4We have tried incorporating our hybrid discriminator in GAN training,

however, we have not observed a large difference, likely due to a large

space of training hyper-parameters which is challenging to explore.
5For Div-1,2 higher is better, while for RE-4 lower is better.
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Per video Overall Per act. Per video

Method METEOR BLEU@4 CIDEr-D Vocab Sent RE-4 ↓ Div-1 ↑ Div-2 ↑ RE-4 ↓

Size Length

MLE 16.70 9.95 20.32 1749 13.83 0.38 0.55 0.74 0.08

GAN w/o CE 16.49 9.76 20.24 2174 13.67 0.35 0.56 0.74 0.07

GAN 16.69 10.02 21.07 1930 13.60 0.36 0.56 0.74 0.07

SCST 15.80 10.82 20.89 941 12.13 0.52 0.47 0.65 0.11

MLE + BS3 16.22 10.79 21.81 1374 12.92 0.48 0.55 0.71 0.11

MLE + LP 17.51 8.70 12.23 1601 18.68 0.48 0.48 0.69 0.12

MLE + SingleDis 16.29 9.25 18.17 2291 13.98 0.37 0.59 0.75 0.07

MLE + SingleDis w/ Pair 16.16 9.32 18.72 2375 13.75 0.37 0.60 0.77 0.06

(Ours) MLE + HybridDis w/o Vis 16.33 8.92 17.29 2462 14.43 0.34 0.59 0.76 0.06

(Ours) MLE + HybridDis w/o Lang 16.44 9.37 19.44 2697 13.77 0.30 0.59 0.78 0.05

(Ours) MLE + HybridDis w/o Pair 16.60 9.56 19.39 2390 13.86 0.32 0.58 0.76 0.06

(Ours) MLE + HybridDis 16.48 9.91 20.60 2346 13.38 0.32 0.59 0.77 0.06

Human - - - 8352 14.27 0.04 0.71 0.85 0.01

SoTA models

VideoStory [13] 16.26 7.66 14.53 1269 16.73 0.37 0.51 0.72 0.09

Transformer [76] 16.15 10.29 21.72 1819 12.42 0.34 0.53 0.73 0.07

MoveForwardTell [67] 14.67 10.03 19.49 1926 11.46 0.53 0.55 0.66 0.18

Table 1: Comparison to video description baselines and SoTA models. Statistics over generated descriptions include N-gram

Diversity (Div-1,2, higher better) and Repetition (RE-4, lower better) per video and per activity. See Section 4.2 for details.

score over all videos. Finally, we want to capture the degree

of “discriminativeness” among the descriptions of videos

with similar content. ActivitiyNet [3] includes 200 activity

labels, and the videos with the same activity have similar

visual content. We thus also report RE-4 per activity by

combining all sentences associated with each activity, and

averaging the score over all activities.

We compare our model to baselines in Table 1 (top). The

best performing models in standard metrics do not include

our adversarial inference procedure nor the jointly trained

GAN models. This is somewhat expected, as prior work

shows that adversarial training does worse in these metrics

than the MLE baseline [9, 53]. We note that adding a CE

loss benefits GAN training, leading to more fluent descrip-

tions (GAN w/o CE vs. GAN). We also observe that the

METEOR score, popular in video description literature, is

strongly correlated with sentence length.

We see that our Adversarial Inference leads to more di-

verse descriptions with less repetition than the baselines, in-

cluding GANs. Our MLE+HybridDis model outperforms

the MLE+SingleDis in every metric, supporting our hybrid

discriminator design. Furthermore, MLE + SingleDis w/

Pair scores higher than the SingleDis but lower than our

HybridDis. This shows that a decoupled Visual discrimi-

nator is important for our task. Note that the SCST has the

lowest diversity and highest repetition among all baselines.

Our MLE+HybridDis model also improves over baselines

in terms of repetition score “per activity”, suggesting that it

obtains more video relevant and less generic descriptions.

To show the importance of all three discriminators, we

provide ablation experiments by taking out each compo-

nent, respectively (w/o Vis, w/o Lang, w/o Pair). Our Hy-

bridDis performs the worst when without its visual com-

ponent and the combination of three discriminators outper-

forms each of the ablations on the standard metrics. In Fig-

ure 4, we show a qualitative result obtained by the ablated

models vs. our full model. Removing the Visual discrim-

inator leads to incorrect mention of “pushing a puck”, as

the visual error is not penalized as needed. Model without

the Language discriminator results in somewhat implausi-

ble constructs (“stuck in the column”) and incorrectly men-

tions “holding a small child”. Removing the Pairwise dis-

criminator leads to incoherently including a “woman” while

missing the salient ending event (kids leaving).

Human Evaluation. The most reliable way to evaluate the

description quality is with human judges. We run our eval-

uation on Amazon Mechanical Turk (AMT)6 with a set of

200 random videos. To make the task easier for humans we

compare two systems at a time, rather than judging multi-

ple systems at once. We design a set of experiments, where

each system is being compared to the MLE baseline. The

6https://www.mturk.com
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Figure 4: Comparison of ablated models vs. our full model

(discussion in text). Content errors are highlighted in red.

Method Better Worse Delta

than MLE than MLE

SCST 22.0 62.0 -40.0

GAN 32.5 30.0 +2.5

MLE + BS3 27.0 31.0 -4.0

MLE + LP 32.5 34.0 -1.5

MLE + SingleDis 29.0 30.0 -1.0

(Ours) MLE + HybridDis w/o Pair 42.0 36.5 +5.5

(Ours) MLE + HybridDis 38.0 31.5 +6.5

Table 2: Human evaluation of multi-sentence video descrip-

tions, see text for details.

human judges can select that one description is better than

another or that both as similar. We ask 3 human judges to

score each pair of sentences, so that we can compute a ma-

jority vote (i.e. at least 2 out of 3 agree on a judgment), see

results in Table 2. Our proposed approach improves over all

other inference procedures, as well as over GAN and SCST.

We see that the GAN is rather competitive, but still overall

not scored as high as our approach. Notably, SCST is scored

rather low, which we attribute to its grammatical issues and

high redundancy in the descriptions.

Comparison to SoTA. We compare our approach to multi-

ple state-of-the-art methods using the same automatic met-

rics as above. As can be seen from Table 1 (bottom), our

MLE + HybridDis model performs on par with the state-

of-the-art on standard metrics and wins in diversity metrics.

We provide a qualitative comparison to the state-of-the-art

models in Figure 1 and in the supplemental material.

Person Correctness. Most video descriptions in the Ac-

tivityNet Captions dataset discuss people and their actions.

Method Exact Gender+

word plurality

VideoStory [13] 44.9 64.1

Transformer [76] 45.8 66.0

MoveForwardTell [67] 42.6 64.1

MLE 48.8 67.5

SCST 44.0 63.3

GAN 48.9 67.5

(Ours) MLE + HybridDis 49.1 67.9

Table 3: Correctness of person-specific words, F1 score.

To get additional insights into correctness of the generated

descriptions, we evaluate the “person words” correctness.

Specifically, we compare (a) the exact person words (e.g.

girl, guys) and (b) only gender with plurality (e.g. female-

single, male-plural) between the references and the pre-

dicted descriptions, and report the F1 score in Table 3 (this

is similar to [50], who evaluate character correctness in

movie descriptions). Interestingly, our MLE baseline al-

ready outperforms the state-of-the-art in terms of person

correctness, likely due to the additional object-level features

[1]. SCST leads to a significant decrease in person word

correctness, while our Adversarial Inference improves it.

5. Conclusion

The focus of prior work on video description generation

has so far been on training better generators and improving

the input representation. In contrast, in this work we advo-

cate an orthogonal direction to improve the quality of video

descriptions: We propose the concept Adversarial Inference

for video description where a trained discriminator selects

the best from a set of sampled sentences. This allows to

make the final decision on what is the best sample a pos-

teriori by relying on strong trained discriminators, which

look at the video and the generated sentences to make a de-

cision. More specifically, we introduce a hybrid discrim-

inator which consists of three individual experts: one for

language, one for relating the sentence to the video, and

one pairwise, across sentences. In our experimental study,

humans prefer sentences selected by our hybrid discrimi-

nator used in Adversarial Inference better than the default

greedy decoding. Beam search, sampling with log probabil-

ity as well as previous approaches to improve the generator

(SCST and GAN) are judged not as good as our sentences.

We include further qualitative results which demonstrate the

strength of our approach in supplemental materials.
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