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ABSTRACT

Many classification tasks, such as spam filtering, intrusion
detection, and terrorism detection, are complicated by an
adversary who wishes to avoid detection. Previous work on
adversarial classification has made the unrealistic assump-
tion that the attacker has perfect knowledge of the classifier
[2]. In this paper, we introduce the adversarial classifier
reverse engineering (ACRE) learning problem, the task of
learning sufficient information about a classifier to construct
adversarial attacks. We present efficient algorithms for re-
verse engineering linear classifiers with either continuous or
Boolean features and demonstrate their effectiveness using
real data from the domain of spam filtering.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing ; F.2 [Analysis of Algorithms and Problem Com-

plexity]: Miscellaneous

General Terms

Algorithms, Theory

Keywords

Adversarial classification, linear classifiers, spam

1. INTRODUCTION
Systems using machine learning have been successfully de-

ployed for fighting spam, fraud, and other malicious activ-
ities. These systems typically consist of a classifier that
flags certain instances as malicious based on a fixed set of
features. For example, spam filters classify each incoming
email message as spam or legitimate email by using a set of
features such as which words are present.

Unfortunately, as classifiers become more widely deployed,
the incentive for defeating them increases. In some domains,
there is ample evidence that adversaries are actively modify-
ing their behavior to avoid detection. For instance, senders
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of junk email often disguise their messages by adding unre-
lated words, sentences, or even paragraphs more indicative
of legitimate email than spam.

Dalvi et al. explore the possibility of anticipating such at-
tacks by computing the adversary’s optimal strategy [2]. To
do so, they make the unrealistic assumption that the adver-
sary has perfect knowledge of the classifier. This is rarely
true in practice: adversaries must learn about the classi-
fier using some combination of prior knowledge, observation,
and experimentation.

In this paper, we explore the role of active experimenta-
tion in adversarial attacks. In particular, we consider cases
in which an adversary can send membership queries to the
classifier to determine whether a specific instance is mali-
cious or not. The adversary’s goal is not to perfectly model
the classifier, but rather to identify high-quality instances
that are not labeled malicious with a reasonable (polyno-
mial) number of queries. We define the adversarial classifier
reverse engineering (ACRE) learning problem to formalize
this problem. The ACRE learning problem differs signifi-
cantly from both the probably approximately correct (PAC)
model of learning [6] and active learning [1] in that (1) the
goal is not to learn the entire decision surface, (2) there is no
assumed distribution governing the instances and (3) success
is measured relative to a cost model for the adversary.

While solving the problems of adversaries such as spam-
mers may seem counterproductive, we believe that learning
the vulnerabilities of current classifiers is the only way to fix
them in the future.

The remainder of our paper is organized as follows. We
first define when an ACRE problem is learnable in Section 2
and describe adversarial cost functions in Section 3. In Sec-
tion 4, we present basic results regarding classifiers that are
Boolean formulae. In Section 5, we prove efficient reverse
engineering algorithms against linear classifiers. In particu-
lar, we show that, for some adversary cost functions, these
classifiers are ACRE learnable. We present empirical results
for the real-world domain of spam filtering in Section 5, and
conclude in Section 6.

2. PROBLEM DEFINITION
We define a reverse engineering problem for classifiers over

a fixed instance space, X, consisting of n-dimensional feature
vectors. Each feature Xi may be real, integer, Boolean, etc.
We refer to elements x ∈ X as instances. We use xi to
denote the value of the ith feature in instance x.

A classifier, c, is a function from instances x ∈ X to
values in the set {0, 1} (i.e., a Boolean classifier). We refer



to instances x for which c(x) = 1 as positive instances (i.e.,
those labeled as malicious), and those for which c(x) = 0 as
negative instances.

We assume that the adversary can issue membership queries
to the classifier for arbitrary instances and has access to an
adversarial cost function a(x) that maps instances to non-
negative real numbers. The adversary is also provided with
one positive instance, x+, and one negative instance, x−.
For most domains, this is not an onerous assumption.

The adversarial cost function represents the increased cost
(or decreased utility) of using some instances as compared to
others. In the spam domain, for example, some spam mes-
sages are more effective at selling products. In credit card
fraud, forgoing certain purchases may decrease the likeli-
hood of detection, but it may also decreases the fraudster’s
reward.

The assumptions that the adversary can issue queries in
instance space and that the adversary has a cost function
over instances is an idealization. In many domains, an ad-
versary can make educated guesses about the features that
define an instance. In others, the mapping from object to
instance may be difficult to determine, preventing the adver-
sary from constructing arbitrary instances or defining a cost
function over the instance space. Our goal is not to analyze
this often domain specific problem of learning about feature
representations but to focus on the ability for an adversary
to reverse engineer a classifier assuming this knowledge.

The minimal adversarial cost (MAC) of a classifier c and
cost function a is the minimum cost a(x) over all instances
x classified negatively by c:

MAC(c, a) = min
x:c(x)=0

a(x)

We also define instances of minimal adversarial cost (IMAC)
as the set of all instances x classified negatively by c and with
minimal cost:

IMAC(c, a) = {x ∈ X|a(x) = MAC(c, a) and c(x) = 0}

The adversarial classifier reverse engineering (ACRE) learn-
ing problem for classifier c and adversarial cost function a
is to find an instance x ∈ IMAC(c, a); that is, an instance
that is classified as non-malicious and has a minimum cost
of all instances classified as non-malicious.

We say that a set of classifiers C is ACRE learnable under
a set of cost functions A if an algorithm exists that, for any
c ∈ C and any a ∈ A, finds some x ∈ IMAC(c, a) using
only polynomially many membership in: n, the number of
features; size(c), the encoded size of c; and size(x+,x−), the
encoded size of the positive and negative instances.

We assume that numerical parameters in c, x+, and x−

are encoded as strings of digits in a known, fixed base, so
that excessively large or small values require longer encod-
ings. With minimal changes, we can also handle encodings
in scientific notation, e.g. 1.234 × 105678, in which the en-
coding size may be doubly logarithmic in the magnitude of
the value.

For situations where finding an IMAC is intractable, we
define k-IMAC, the set of all negative instances whose costs
are within a constant factor k of the MAC:

k−IMAC(c, a) = {x ∈ X|a(x) ≤ k·MAC(c, a) and c(x) = 0}

Finally, we say that a set of classifiers C is is ACRE k-
learnable under a set of cost functions A if, for any c ∈ C

and any a ∈ A, an algorithm exists that always finds x ∈
k − IMAC(c, a) using a polynomial number of queries as in
ACRE learning.

3. ADVERSARIAL COST FUNCTIONS
The hardness of an ACRE learning problem depends not

only on the classifier, but also on the adversarial cost func-
tion. In the extreme case, in which the cost function is con-
stant for all instances, the adversary need not issue a single
membership query because the adversary is given a negative
instance and every negative instance is optimal. While the
hardness of an ACRE learning problem does depend on the
adversarial cost function, the precise relationship between
the hardness of ACRE learnability and the complexity of
the adversarial cost function is subtle. For instance, if the
adversary can efficiently learn the exact parameters of the
classifier, then the problem would be ACRE learnable for
any well-behaved adversarial cost functions because the ad-
versary need not issue any membership queries to optimize
the cost function. In this paper, we investigate a specific
class of cost functions that is easy to analyze but still cap-
tures interesting adversarial problems.

A linear cost function is the weighted absolute difference
between feature values in the base instance, xa, and those
in the target instance, x:

a(x) =
X

i

ai|xi − xa
i |

By representing the cost a(x) in terms of the base instance
xa, we capture the reasonable assumption that the instances
most similar to xa are best. The scalars ai represent the
relative cost of changing each feature, allowing that some
features may be more important or more expensive than
others. We assume that all ai are greater than zero.

In spam, for example, xa would be the email that makes
the best sales pitch for the adversary’s product. Each change
to this email reduces its effectiveness, but some changes cost
more than others. For instance, one might expect that the
cost of removing the product’s name would be larger than
the cost of removing most other words and thus the scalar
associated with the product name would be larger than most
other words.

We also consider the restricted subset of uniform linear
cost functions, where every ai is one. In the spam domain,
this could represent a spammer who simply wishes to add
or obfuscate as few words as possible. While uniform linear
cost functions are less expressive than linear cost functions,
they make ACRE learning tractable for some problems.

4. BOOLEAN FORMULAE
In this section, we assume that instances have only Boolean

features and that each classifier c expresses the set of posi-
tive instances as a Boolean formula in terms of the literals
Xi (1 ≤ i ≤ n).

In general, this set of classifiers is not ACRE learnable
under most interesting adversarial cost functions. Consider
the classifier that only classifies two instances as negative,
x′ and x′′. This can easily be expressed as a Boolean for-
mula with size O(n). If x′ is the unique IMAC according to
the adversarial cost function a, but the provided negative



instance x− = x′′, then the adversary can only find x′ by a
lucky guess or an exponential brute-force search.

Certain classes of Boolean formulae, however, are ACRE
learnable. In particular, any class of Boolean formulae that
can be learned using only a polynomial number of member-
ship queries is ACRE learnable due to the finiteness of the
instance space. For example, consider disjunctions of con-
junctions of k unnegated literals (monotone k-DNF). We
can learn this concept class in O(nk) queries by exhaus-
tively testing possible k-DNF clauses and find an IMAC by
brute-force searching through the negative instances.

In addition, because the adversary is given a positive in-
stance, they can efficiently learn arbitrary conjunctions, e.g.
X2 ∧¬X4 ∧X5. This can be accomplished by starting from
the positive instance x+ and successively negating each fea-
ture to find the features in the conjunction—a feature is
listed in the conjunction if, after negating the feature, the
modified instance is classified as negative. We can therefore
determine the exact conjunction in only n queries. Since
the negation of a conjunction is a disjunction, we can anal-
ogously learn disjunctions of Boolean literals starting from
the negative instance, x−.

Proving the learnability of less restricted Boolean formu-
las under different adversarial cost functions is a topic for
future work.

5. LINEAR CLASSIFIERS
In this section, we demonstrate the ACRE k-learnability

of linear classifiers under the adversarial cost functions de-
scribed in Section 3. We consider the case in which all of
the features are either real-valued or Boolean.

Linear classifiers are one of the most popular types of clas-
sifier, due to their efficacy, simplicity and scalability. For
example, many spam filters are naive Bayes models, a spe-
cial class of linear classifiers. Support vector machines with
linear kernels and maximum entropy models are other ex-
amples of linear classifiers widely used for text classification.

A linear classifier consists of a set of n weights (one for
each feature Xi), which we represent as a vector w ∈ Rn,
and a threshold, T . Thus, x is a positive instance if w ·x >
T , and is otherwise a negative instance. We refer to |w·x−T |
as gap(x). The gap of a negative (positive) instance is the
weight that would have to be added (subtracted) to make it
a positive (negative) instance.

A pair of instances can indicate the sign of a feature
weight. Given a linear classifier c, a sign witness to a fea-
ture f is a pair of instances, s+ and s− such that c(s+) = 1,
c(s−) = 0, and ∀i 6= f, s+

i = s−i .
From the classifier definition, w · s+ > T and w · s− ≤ T ,

so it follows that w · s+ −w · s− > 0. Since s+ and s− only
differ in feature f , this reduces to wf · (s

+
f − s−f ) > 0. wf

is positive if and only if s+
f > s−f , so the sign witness proves

the sign of feature f .

5.1 Continuous Features
We begin with the case in which all features are contin-

uous. Our approach to demonstrate ACRE learnability is
to first efficiently approximate feature weights and second to
use these approximate weights to identify low cost instances.

We begin by describing FindWitness, a subroutine for
finding a sign witness for some feature f , given one positive
and one negative instance (e.g., x+ and x−). This procedure
starts with x+ and changes feature values one at a time to

match those of x−. At some point, the instance classifica-
tion must change, and the most recently changed feature, f ,
must have non-zero weight. The previous value and the cur-
rent value of the intermediate instance constitute the sign
witness. This requires at most n membership queries.

Our algorithm FindContinuousWeights for learning the
weights is provided in Algorithm 1. The algorithm proceeds
by finding a single feature with non-zero weight, construct-
ing an instance of known gap, and computing the relative
weights of all other features using line searches along each
feature dimension. We next describe the algorithm in detail.

The inputs to the algorithm are positive and negative in-
stances x+ and x−, an approximation threshold ǫ, and a
lower bound on the magnitude of the ratio of any two non-
zero weights δ. (Although the adversary may not know
a good δ a priori, the ACRE learning algorithm we later
present provides a value that still guarantees a good approx-
imation.) The first step (i.e., FindWitness) is to find some
feature f with non-zero weight and a sign witness (s+, s−)
for that feature. The instances in the sign witness have dif-
ferent values for the feature f and the same values for all
other features. Since scaling the weights and threshold by a
positive number has no effect on the decision boundary, we
may assume that the weight of wf is 1.0 or -1.0, depending
on if its value is larger in the s+ or s−. Since wf has unit
magnitude and s+ and s− differ only in feature f :

gap(s+) + gap(s−) = |w · s+ − T |+ |w · s− − T |
= w · s+ −w · s−

= w · (s+ − s−)
= |s+

f − s−f |

We refine the gap between our original sign witnesses
using a binary search on the value of feature f to find a
negative instance x with gap less than ǫ/4. This requires
O(log(1/ǫ) + size(s+, s−)) queries. We increase or decrease
xf by 1.0 to obtain instance with gap between 1 and 1+ǫ/4.

Finally, we compute the relative weight of each other fea-
ture using a line search. This consists of increasing or de-
creasing each xi exponentially until the class of x changes,
then bounding its exact value using a binary search. By
finding feature values within (1 + ǫ/4), our total error is at
most (1+ǫ/4)2 < 1+ǫ, for ǫ < 8. We ensure termination by
testing the addition or subtraction of 1/δ first; if the class re-
mains unchanged, we assume wi = 0. The number of queries
per feature is logarithmic in 1/ǫ and the ratio wf/wi. Under
our assumed encoding, log(wf/wi) is O(size(c)), so the total
number of queries is polynomial.

Note that very large and very small weights require length-
ier encodings. In fact, if we know the encoding length of the
original classifier, size(c), then no parameter can have mag-

nitude greater than 2size(c) and none can be less than 2−size(c).
Thus, we can find exact weights when ǫ = δ = 2−2size(c).

Theorem 5.1. Let c be a continuous linear classifier with
vector of weights w, such that the magnitude of the ratio
between two non-zero weights is never less than δ. Given
positive and negative instances x+ and x−, we can find each
weight within a factor of 1+ ǫ using a polynomial number of
queries.

Proof. Follows from the correctness of the algorithm and
the fact that each step uses at most polynomially many
membership queries.



Algorithm 1 FindContinuousWeights(x+, x−, ǫ, δ)

(s+, s−, f)← FindWitness(x+,x−)
wf ← 1.0 · (s+

f − s−f )/|s+
f − s−f |

Use (s+, s−) to find negative instance x with gap(x) < ǫ/4
xf ← xf − wf

for each feature i 6= f do

Let î be the unit vector along the ith dimension
if c(x + î/δ) = c(x− î/δ) then

wi ← 0
else

wi ← LineSearch(x, i, ǫ/4)
end if

end for

We now describe how to use approximately learned feature
weights to identify low-cost instances.

Recall that linear cost functions define the cost of an in-
stance as a weighted sum of feature differences, relative to
some base instance xa. In a continuous linear classifier, we
can arrive at an approximate IMAC instance by changing
only one feature in xa: the feature f with highest weight-
to-cost ratio, |wf |/af . Were we to use any other feature,
we could always achieve the same benefit for cheaper by
changing f instead.

This property of linear cost functions and linear classifiers
enables us to efficiently approximate instances of minimal
cost with arbitrary precision. Our algorithm FindContin-

uousIMAC for doing this is listed in Algorithm 2.
The inputs to our algorithm are a positive and a negative

instance, x+ and x−, and an approximation threshold, ǫ.
The first step is to approximately learn all feature weights,

within 1 + ǫ/4. Algorithm 1 depends on knowing the mini-
mum absolute weight ratio, δ. Although the adversary may
not know this value, we can use the minimum feature cost
ratio, ai/aj , in its place. Since no feature with a smaller
weight can have the largest cost ratio, we may safely ap-
proximate those feature weights as zero.

We then select the feature f with highest weight-to-cost
ratio. Since our weights are learned approximately, this may
not be the optimal feature, but it’s close enough that our
cost is within a fixed ratio of optimal. We find a (1 + ǫ)-
IMAC by doing a line search from xa along dimension f , to
bound the change in xa

f within a factor of 1+ ǫ/4. Our total

error is therefore (1 + ǫ/4)2 < 1 + ǫ. The number of queries
required for this line search is O(log(1/ǫ) + log(gap(xa))),
but gap(xa) and 1/ǫ are constants.

Algorithm 2 FindContinuousIMAC(x+, x−, ǫ)

δ ← mini ai

Run FindContinuousWeights(x+, x−, ǫ/4, δ)
f ← argmaxi|wi|/ai

t← LineSearch(xa, f, ǫ/4)

Let f̂ be the unit vector along dimension f
return xa + t̂f

Theorem 5.2. Linear classifiers with continuous features
are ACRE (1 + ǫ)-learnable under linear cost functions.

Proof. Follows from the correctness of the algorithm and
the fact that each step uses at most polynomially many
membership queries.

5.2 Boolean Features
We now consider the case in which all features are Boolean.

In sharp contrast to the case in which all features are con-
tinuous, we show that learning even the sign of all features
is NP-hard. Despite this hardness result, we demonstrate
that, for uniform linear cost functions, the problem is ACRE
2-learnable. Unlike the previous analysis, the adversary suc-
ceeds in this reverse engineering problem by obtaining only
partial knowledge of the classifier while identifying near op-
timal instances.

Evidence regarding the sign of a feature weight is provided
by a sign witness. If a feature has no sign witness then the
feature is irrelevant to the adversary because changing the
feature in any instance never changes the class. The fol-
lowing theorem demonstrates that even determining which
features are relevant can be very hard to do.

Theorem 5.3. In a linear classifier with Boolean features,
determining if a sign witness exists for a given feature is NP-
complete.

Proof. Clearly, the problem is in NP, because we can
non-deterministically pick a witness, if one exists, and verify
it with only 2 queries to the classifier.

We prove that the problem is NP-hard via a reduction
from subset sum. In the subset sum problem, we are given
a set of integers S = {s1, s2, . . . , sn} and an integer t and
want to determine if there exists a subset S′ ⊆ S such that
P

s∈S′ s = t.
We convert an instance of subset sum into a linear classi-

fier with n+1 features where the ith feature weight wi = si

for 1 ≤ i ≤ n. The n + 1st feature weight is set to some ǫ in
the range (0, 1). We further set the classifier’s threshold to
t.

If there exists a sign-witness (x+,x−) for the n + 1st fea-
ture, then x− must have a gap less than ǫ, which is less than
1:

|w · x− − T | < 1

From our construction of w and T , this is equivalent to:

|(s1, . . . , sn, ǫ) · x− − t| < 1

Because t and the si’s are all integers, and because x−
n+1 = 0,

the left-hand side reduces to a sum of integers. It must there-
fore evaluate to a non-negative integer less than 1, namely,
0:

(s1, . . . , sn, ǫ) · x− − t = 0

By adding t to each side and letting S′ = {si|x
−
i = 1}, this

can be rewritten as:
X

s∈S′

s = t

(ǫ never appears because x−
n+1 = 0.) Thus, the existence of

a sign-witness implies a solution to the original subset sum
problem.

In spite of this hardness result, Boolean linear classifiers
are still ACRE 2-learnable under a uniform linear cost func-
tion. We demonstrate this via an algorithm and a proof of
its correctness and efficiency. Our algorithm FindBoolean-

IMAC for finding a low-cost instance is listed in Algorithm 3.
Because we are using a uniform linear cost function we

have an ideal minimum-cost instance xa. For a feature vec-
tor v we use Cv to denote the set of features that have



different values in v and xa. Again, because we are using
a uniform linear cost function, the cost of a feature vector
v is c(v) = |Cv|. The algorithm terminates due to the fact
that we modify y to reduce the cost and terminate when y

does not change.
The algorithm begins with the negative instance provided

and repeatedly modifies it to find instances of lower and
lower cost that are still classified as negative. The modifica-
tions we allow are removing individual changes (relative to
xa) from the instance or replacing any pair of changes with a
single other change. Each modification reduces the instance
cost by one. The algorithm terminates when no modification
can be made without producing a positive instance.

Algorithm 3 FindBooleanIMAC(xa,x−)

y← x−

repeat

yprev ← y

for all f ∈ Cy do

toggle f in y

if c(y) = 1 then

toggle f in y

end if

end for

for all f1 ∈ Cy; f2 ∈ Cy; f3 6∈ Cy do

toggle f1, f2, and f3 in y

if c(y) = 1 then

toggle f1, f2, and f3 in y

end if

end for

until yprev = y

return y

Intuitively, this algorithm works for the following reason:
if there exists another negative instance x′ with fewer than
half as many changes as y, then the most helpful change in x′

must be over twice as good as the two least helpful changes
in y. Since the algorithm considers all possible replacements
of two changes with one change, it cannot terminate as long
as such an instance exists. Some additional complexity is
introduced by the fact that we can only add changes that
are not already present in the current instance. However, we
can make a similar argument considering only the disjoint
changes. Our proof fully formalizes this.

We begin with a mathematical lemma.

Lemma 5.3.1. For two sequences of non-positive real num-
bers (s1, . . . , sm) and (t1, . . . , tn), if the following conditions
hold

P

i
si ≤ u (1)

n > 2m ≥ 2 (2)

for all j,
P

i
ti − tj > u (3)

then there exists j, k, l such that l 6= k and sj − tk − tl < 0.

Proof. Suppose that all conditions hold for the two se-
quences of non-positive numbers.

Aiming for a contradiction, we assume that for all k, l we
have tk + tl ≤ u/m. From condition 2 we can write

X

i

ti =

m
X

j=1

(t2j−1 + t2j) +

n
X

k=2m+1

tk. (4)

Using our assumption and Equation 4, we obtain

X

i

ti −
n

X

k=2m+1

tk ≤ u.

Since there is at least one ti in the second sumation we have
a contradiction with Condition 3. Thus, there must exist
k, l such that tk + tl > u/m. Using (1), we can upper bound
the size of smin, the smallest number in the s sequence as
follows smin ≤ u/m. Thus, tk + tl > u/m ≥ smin which
proves the claim.

Theorem 5.4. Boolean linear classifiers are ACRE 2-learn-
able under uniform linear cost functions.

Proof. We demonstrate that Algorithm 3 finds an ap-
propriate instance.

Let x denote a minimum cost feature vector with c(x) = 0.
We use Lemma 5.3.1 to show that the second inner loop
of Algorithm 3 will find a change to reduce the cost of y

whenever c(y) > 2c(x), that is, whenever y is not a feature
vector satisfying the theorem.

We assume that we have just completed the first loop of
Algorithm 3 and assume that c(y) > 2c(x). We let y be our
current feature vector with c(y) = 0.

With each feature f we associate a real-valued quantity δf

(defined below). We apply Lemma 5.3.1 to the sequences in
which the si’s are the δ’s associated with features in Cx \Cy

and the ti’s are the δ’s assocated with features in Cy \ Cx.
We use score(v) to denote the dot product of the feature

vector v and the feature weights w of our linear classifier:
score(v) = w · v.

We define δf = wf (1 − 2xa
f ). Informally, this repre-

sents the change in instance score from adding change f .
If xa

f = 0, then changing feature f to 1 adds wf to the
score; otherwise, the change adds −wf to the score. The
(1− 2xa

f ) term captures this sign change.
We now rewrite the definition of score(v) in terms of xa

and Cv using the δf values:

score(v) = w · xa +
X

f∈Cv

δf . (5)

We say that a feature f is positive with respect to a linear
classifier and ideal instance xa if changing the value of fea-
ture f in instance xa makes the score of the instance larger;
that is, δf > 0.

There are no positive features in Cy because we have just
completed first loop in Algorithm 3 and if there were any
such features they would have been changed. There are also
no positive features in Cx because x is the minimum cost
feature vector and if there were any positive features they
could be removed to create a feature vector with a lower cost
and have the same classification. Therefore the sequences
contain non-positive real numbers.

From the fact that c(x) = 0 we know that score(x) < T .
Which, using Equation 5 yields

X

f∈Cx\Cy

δf < T −w · xa −
X

g∈Cx∩Cy

δg = u

satisfying Condition 1.
After the first loop of Algorithm 3 completes we know that

there is no single change can be removed without changing



the classification of y (i.e., c(y) = 0) which implies that

for all f and g ∈ Cy \ Cx,
X

f∈Cy\Cx

δf − δg > u

satisfying Condition 3.
Finally, if c(y) > 2c(x) then |Cy| > 2|Cx|. This implies

that |Cy \Cx|+ |Cy ∩Cx| > 2|Cx \Cy|+2|Cy ∩Cx| which, in
turn, implies that |Cy \ Cx| > 2|Cx \ Cy|. Because c(x) = 0
and c(xa) = 1 it must be the case that Cx 6= ∅. Furthermore,
Cx 6⊂ Cy otherwise the first loop in Algorithm 3 would re-
move all of the features in Cy \Cx and y would be optimal.
We have demonstrated that the sequences satisfy Condi-
tion 2.

We have shown that all of the conditions of the lemma
are satisfied which implies that the second loop will find a
change if c(y) > 2c(x).

6. EMPIRICAL STUDY: SPAM FILTERING
In the previous sections, we defined the ACRE learning

problem and provided efficient algorithms against continu-
ous and Boolean linear classifiers under linear and uniform
linear cost functions. In this section, we apply our theoreti-
cal results to the real-world domain of spam filtering.

In our experimental scenario, an adversary wishes to dis-
guise some spam message to get it past a target spam filter.
The adversary can explore the instance space by changing
which words are present in an email. The adversary issues
queries by sending messages to a test account protected by
the target filter and observing which ones are blocked.

We simulate this scenario experimentally by training spam
filters, reverse engineering them, and measuring the cost
of disguising messages relative to the optimal cost (MAC).
While basing our experimental methods on our theoretical
framework, we also endeavor to keep the setup as realistic as
possible. For example, we do not assume that the adversary
knows the entire feature space, only an easily guessed subset.

6.1 Classifier Configuration
The training data used to configure our spam filters con-

sisted of 500,000 Hotmail messages, voluntarily hand-labeled
by the original recipients as “spam” or “legitimate”. From
these, we extracted almost 290,000 Boolean features.

From this data, we trained two linear classifiers, a naive
Bayes model and a maximum entropy (maxent) model. Naive
Bayes was first suggested for spam filtering in [4] and has
since become a widely popular choice due to its simplicity
and scalability. Maxent is more popular in the text clas-
sification community, but has also been applied to spam
filtering [7].

In a linear spam filter, such as naive Bayes or maxent,
we can lower the filter threshold to increase the number
of spam messages that are caught, but this also increases
the number of legitimate messages incorrectly classified as
spam. We configured our spam filter thresholds so that each
classified 10% of the legitimate email in our test set as spam.
While this may seem like a lot, our error rates are somewhat
overestimated due to inconsistencies in how volunteers label
their email.

6.2 Adversary Configuration
Because not all of the 290,000 features in the classifier

are directly manipulable, and even fewer are easily guessed

by adversaries, we restricted adversaries to a simple sub-
set: 23,000 English words from the first ispell dictionary,
english.0 that appear as features in our filter. We also ex-
perimented with two smaller word lists: the 1,000 English
words most common in our training data, and 1,000 random
English words appearing as features in our filter. We refer
to these feature lists as Dict, Freq, and Rand, respectively.

The one exception to these word lists is when the adver-
sary is searching for the first feature witness. In this search,
we allow the adversary to change any token found in the
body of the positive or negative instance. Our justification
is that, given a pair of messages, it’s easy to add or remove
the few tokens present.

We used a single spam email from our test set to construct
a uniform linear cost function. This corresponds to a unit
cost per word obfuscated or added to the email.

6.3 ACRE Algorithm
The adversarial learning algorithm applied was an opti-

mized version of Algorithm 3. Our modified version main-
tains the theoretical guarantees of the simpler version, but
uses many fewer queries than a naive implementation would.

Our first optimization is to skip unnecessary tests by re-
membering which changes will never be helpful. For exam-
ple, any change that yields a positive instance need never be
considered again. Additionally, if a change f was unable to
take the place of two other changes at one stage in the algo-
rithm, then we need never consider it in the future, since the
changes in our current instance only get better on average
as the algorithm progresses.

Our second optimization is to consider only O(n) pairs of
changes to remove, rather than all O(n2) combinations. As-
sume an even number of changes and group all changes into
pairs. At least one of these O(n) pairs must be average or
worse. If there is an odd number of changes, then this might
fail because one change remains unpaired. We compensate
for this by constructing a second pairing in which a differ-
ent change is left unpaired. If no pair of changes from either
pairing is average or worse, then it’s easy to show that the
two left-out changes must together be worse than average.

6.4 Experimental Results
We ran our modified ACRE algorithm 1,000 times for each

filter and word list combination. In each run, we started
from a single legitimate email and a single spam email and
compared the cost of the negative instance we found to the
MAC, computed by greedily removing the largest-weight
features and adding the smallest-weight features.

In 16.3% of the naive Bayes runs and 27.6% of the maxent
runs, we never found a witness for a single non-zero feature.
This happened because we only permitted the adversary to
swap tokens in the body of the email; if other features deter-
mine the class too strongly, then we may never see a witness.
In practice, an adversary could probably still come up with
a witness in these cases by adjusting words in the subject
and a few other “guessable” properties. At worst, the adver-
sary need only find a different spam/legitimate email pair
to start from, and the process will likely succeed.

Table 1 shows the medians and maximums for the ad-
versary’s instance cost, the adversary’s cost relative the the
MAC, and the number of queries used. Tests in which we
failed to find a witness were excluded from these calcula-
tions.



Table 1: Empirical Results in Spam Domain
med. max med. max med. max

cost cost ratio ratio queries queries

Dict NB 23 723 1.136 1.5 261k 6,472k

Dict ME 10 49 1.167 1.5 119k 646k

Freq NB 34 761 1.105 1.5 25k 656k

Freq ME 12 72 1.108 1.5 10k 95k

Rand NB 31 759 1.120 1.5 23k 755k

Rand ME 12 64 1.158 1.5 9k 78k

Overall, our algorithm does quite well at finding low-cost
instances: over half the time, it found instances within 17%
of the optimal cost. Additionally, its instances only cost
50% more than optimal in the worst case, well below our
theoretical bound of costing 100% more.

In terms of queries, our algorithms were reasonably ef-
ficient in the average case. Not suprisingly, fewer queries
were required to sort through the smaller feature sets, Freq
and Rand. More interestingly, naive Bayes models were sig-
nificantly more difficult, especially in the worst case. This
can be attributed to differences in the weight distributions
of the two models. Our maxent model featured more large-
magnitude feature weights than our naive Bayes model, lead-
ing to lower-cost negative instances and fewer changes to
consider removing. This relationship is observable from the
differences in the median and maximum adversarial cost for
each scenario.

Our algorithms were designed to be generic and easy to
analyze, not to be efficient in the number of queries. In
practice, especially with domain knowledge, one can signifi-
cantly reduce the number of queries. See [3] for an in-depth
demonstration of this on the same dataset, along with more
detailed analysis.

7. CONCLUSION AND FUTURE WORK

“If you know the enemy and know yourself, you
need not fear the result of a hundred battles. If
you know yourself but not the enemy, for every
victory gained you will also suffer a defeat. If
you know neither the enemy nor yourself, you
will succumb in every battle.”

– Sun Tzu, The Art of War [5]

ACRE learning is a theoretical framework for studying
one’s enemy and oneself, attacker and the defender, ad-
versary and classifier. Much as PAC learning determines
whether concepts can be learned efficiently relative to the
natural distribution, ACRE learning determines whether an
adversary can efficiently learn enough about a classifier to
minimize the cost of defeating it.

But ACRE learning is more than just theory: in the do-
main of spam filtering, our ACRE learning algorithm per-
formed quite well, easily exceeding the worst-case bounds.
In practice, it may be possible to do much better using
domain-specific heuristics.

Of course, the algorithms presented are not designed to
be efficient in the number of queries but simple to analyze.
In practice, especially with domain knowledge, one can sig-
nificantly reduce the number of queries.

While our preliminary results only cover two types of lin-
ear classifiers, we hope that future work will cover additional

types of classifiers, cost functions, and even learning scenar-
ios. We have proven certain scenarios to be relatively easy;
what scenarios are provably hard?

A number of framework questions remain as well. Under
what conditions is ACRE learning robust to noisy classifiers?
What can be learned from passive observation alone, for do-
mains where issuing any test queries would be prohibitively
expensive? If the adversary does not know which features
make up the instance space, when can they be inferred?
Can a similar framework be applied to relational problems,
e.g. to reverse engineering collective classification? Mov-
ing beyond classification, under what circumstances can ad-
versaries reverse engineer regression functions, such as car
insurance rates?

Finally, how do such techniques fare against a changing
classifier, such as a frequently retrained spam filter? Will
the knowledge to defeat a classifier today be of any use to-
morrow?

Years of research have led to good classification algorithms.
Now that these classifiers have been deployed, adversaries
are beginning to attack and defeat them. Common classi-
fiers are fast becoming victims of their own success. One
of our goals, although one not addressed in this paper, is
to understand the susceptibility of different classifiers to ad-
versarial attacks. Our adversarial learning framework mea-
sures the vulnerabilities of different classifiers to different
adversaries, which is a first step. We hope that this line of
research leads to classifiers that are provably difficult to re-
verse engineer for any adversary. At the very least, we hope
that this framework will lead to useful descriptions of the
relative vulnerability of different classifiers against different
types of adversaries.
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