
Adversarial Machine Learning
∗

Ling Huang
Intel Labs Berkeley

ling.huang@intel.com

Anthony D. Joseph
UC Berkeley

adj@cs.berkeley.edu

Blaine Nelson
University of Tübingen

blaine.nelson@wsii.uni-
tuebingen.de

Benjamin I. P. Rubinstein
Microsoft Research

ben.rubinstein@microsoft.com

J. D. Tygar
UC Berkeley

tygar@cs.berkeley.edu

ABSTRACT

In this paper (expanded from an invited talk at AISEC
2010), we discuss an emerging field of study: adversarial ma-
chine learning—the study of effective machine learning tech-
niques against an adversarial opponent. In this paper, we:
give a taxonomy for classifying attacks against online ma-
chine learning algorithms; discuss application-specific fac-
tors that limit an adversary’s capabilities; introduce two
models for modeling an adversary’s capabilities; explore the
limits of an adversary’s knowledge about the algorithm, fea-
ture space, training, and input data; explore vulnerabili-
ties in machine learning algorithms; discuss countermeasures
against attacks; introduce the evasion challenge; and discuss
privacy-preserving learning techniques.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); I.5.1 [Models]: Statistical;
I.5.2 [Design Methodology]

General Terms

Algorithms, Design, Security, Theory

Keywords

Adversarial Learning, Computer Security, Game Theory,
Intrusion Detection, Machine Learning, Security Metrics,
Spam Filters, Statistical Learning

1. INTRODUCTION
In this paper, we discuss an emerging field of study: ad-

versarial machine learning—the study of effective machine

∗This paper expands upon J. D. Tygar’s invited talk at
AISec 2010 on Adversarial Machine Learning describing the
SecML project at UC Berkeley, and includes material from
many of our collaborators. We kindly thank this year’s
AISec organizers for allowing us to present this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1003-1/11/10 ...$10.00.

learning techniques against an adversarial opponent. To see
why this field is needed, is learning—the study of effective
machine learning techniques against an adversarial oppo-
nent. To see why this field is needed, it is helpful to recall
a common metaphor: security is sometimes thought of as a
chess game between two players. For a player to win, it is
not only necessary to have an effective strategy, one must
also anticipate the opponent’s response to that strategy.

Statistical machine learning has already become an im-
portant tool in a security engineer’s repertoire. However,
machine learning in an adversarial environment requires us
to anticipate that our opponent will try to cause machine
learning to fail in many ways. In this paper, we discuss
both a theoretical framework for understanding adversar-
ial machine learning, and then discuss a number of specific
examples illustrating how these techniques succeed or fail.

Advances in computing capabilities have made online sta-
tistical machine learning a practical and useful tool for solv-
ing large-scale decision-making problems in many systems
and networking domains, including spam filtering, network
intrusion detection, and virus detection [36, 45, 60]. In these
domains, a machine learning algorithm, such as a Bayesian
learner or a Support Vector Machine (SVM) [14], is typically
periodically retrained on new input data.

Unfortunately, sophisticated adversaries are well aware
that online machine learning is being applied and we have
substantial evidence that they frequently attempt to break
many of the assumptions that practitioners make (e.g., data
has various weak stochastic properties; independence; a sta-
tionary data distribution).

The lack of stationarity provides ample opportunity for
mischief during training (including periodic re-training) and
classification stages. In many cases, the adversary is able to
poison the learner’s classifications, often in a highly targeted
manner. For instance, an adversary can craft input data
that has similar feature properties to normal data (e.g., cre-
ating a spam message that appears to be non-spam to the
learner), or they exhibit Byzantine behaviors by crafting in-
put data that, when retrained on, causes the learner to learn
an incorrect decision-making function. These sophisticated
adversaries are patient and adapt their behaviors to achieve
various goals, such as avoiding detection of attacks, caus-
ing benign input to be classified as attack input, launching
focused or targeted attacks, or searching a classifier to find
blind-spots in the algorithm.

Adversarial machine learning is the design of machine
learning algorithms that can resist these sophisticated at-
tacks, and the study of the capabilities and limitations of

43

In Proceedings of 4th ACM Workshop on Artificial Intelligence and Security, October 2011, pp. 43-58

attackers. In this paper, we: give a taxonomy for classifying
attacks against online machine learning algorithms; discuss
application-specific factors that limit an adversary’s capa-
bilities; introduce two models for modeling an adversary’s
capabilities; explore the limits of an adversary’s knowledge
about the algorithm, feature space, training, and input data;
explore vulnerabilities in machine learning algorithms; dis-
cuss countermeasures against attacks; introduce the eva-
sion challenge; and discuss privacy-preserving learning tech-
niques.

2. TAXONOMY
In prior work [2], we introduced a qualitative taxonomy of

attacks against a machine learning system, which has since
been extended to propose a framework for quantitatively
evaluating security threats [37]. Our taxonomy categorizes
an attack based on the following three properties:

Influence
Causative - Causative attacks alter the training pro-

cess through influence over the training data.
Exploratory - Exploratory attacks do not alter the

training process but use other techniques, such
as probing the detector, to discover information
about it or its training data.

Security violation
Integrity - Integrity attacks result in intrusion points

being classified as normal (false negatives).
Availability - Availability attacks cause so many clas-

sification errors, both false negatives and false
positives, that the system becomes effectively un-
usable.

Privacy - In a privacy violation, the adversary ob-
tains information from the learner, compromising
the secrecy or privacy of the system’s users.

Specificity (a continuous spectrum)
Targeted - In a targeted attack, the focus is on a sin-

gle or small set of target points.
Indiscriminate - An indiscriminate adversary has a

more flexible goal that involves a very general
class of points, such as “any false negative.”

The first axis describes the capability of the attacker:
whether (a) the attacker has the ability to influence the
training data that is used to construct the classifier (a caus-
ative attack) or (b) the attacker does not influence the learned
classifier, but can send new instances to the classifier and
possibly observe its decisions on these carefully crafted in-
stances (an exploratory attack).
The second axis indicates the type of security violation

the attacker causes: either (a) allowing harmful instances
to slip through the filter as false negatives (an integrity vi-
olation); (b) creating a denial of service event in which be-
nign instances are incorrectly filtered as false positives (an
availability violation); or (c) using the filter’s responses to
infer confidential information used in the learning process
(a privacy violation). Privacy violations were not originally
captured in [2]; and since they are qualitatively different to
integrity and availability violations we discuss them sepa-
rately in Section 5.
The third axis refers to how specific the attacker’s in-

tention is: whether (a) the attack is highly targeted to de-
grade the classifier’s performance on one particular instance
or (b) the attack aims to cause the classifier to fail in an

indiscriminate fashion on a broad class of instances. Each
axis, especially this one, can potentially be a spectrum of
choices, but for simplicity, we will categorize attacks and
defenses into these groupings.

2.1 Game Specification and Interpretation
We model secure learning systems as a game between an

attacker and a defender—the attacker manipulates data to
mis-train or evade a learning algorithm chosen by the de-
fender to thwart the attacker’s objective. This game can be
formalized in terms of a learning algorithm H ; and the at-
tacker’s data corruption strategies A(train) and A(eval). The
resulting game can be described as follows:1

1. Defender Choose learning algorithm H for selecting
hypotheses based on observed data

2. Attacker Choose attack proceduresA(train) andA(eval)

(potentially with knowledge of H)
3. Learning:

• Obtain dataset D
(train) with contamination from

A(train)

• Learn hypothesis: f ← H
(

D
(train)

)

4. Evaluation:
• Obtain dataset D

(eval) with contamination from
A(eval)

• Compare predictions f (x) to y for each data point

(x, y) ∈ D
(eval)

This game structure describes the fundamental interac-
tions between the defender and attacker in choosingH , A(train)

and A(eval); these steps are depicted in Figure 1. The de-
fender chooses H to select hypotheses that predict well re-
gardless of A(train) and A(eval), while the attacker chooses
A(train) and A(eval) to produce poor predictions. The char-
acteristics specified by the taxonomy’s axes further spec-
ify some aspects of this game. The influence axis deter-
mines the structure of the game and the legal moves that
each player can make. In exploratory attacks, the procedure
A(train) is not used in the game, and thereby the attacker
only influences D

(eval). Meanwhile, in the causative game
the attacker also has indirect influence on f through his
choice of A(train). The specificity and security viola-
tion axes of the taxonomy determine which instances the
adversary would like to have misclassified during the evalua-
tion phase. In an integrity attack, the attacker desires false
negatives and therefore will use A(train) and/or A(eval) to
create or discover false negatives, whereas in an availability,
the attacker will also try to create or exploit false positives.
Finally, in a targeted attack the attacker only cares about
the predictions for a small number of instances, while an
indiscriminate attacker cares about prediction for a broad
range of instances.

3. CAUSATIVE ATTACKS
We first discuss causative attacks, in which the adver-

sary influences the training data. Most importantly, the
adversary in a causative attack alters the training data with
a transformation A(train). The attacker may have various

1Note that, since the game described here is batch train-
ing, an adaptive procedure A(train) is unnecessary unless the

distribution P
(train)
Z is non-stationary in which case periodic

retraining may be desirable. We return to this issue in Sec-
tion 3.4.2.

44

PZ

D
(train)

D
(eval)

D
(eval)
X

D
(eval)
Y

H

f Evaluator

A(train)

A(eval)

Figure 1: Diagram of an attack against a learning system where PZ is the data’s true distribution, A(train)

and A(eval) are adversary’s attack procedures, D
(train) and D

(eval) are the training and test datasets, H is the
learning algorithm, and f is the hypothesis it learns from the training data. The hypothesis is evaluated on
the test data by comparing its prediction f (x) to the true label y for each (x, y) ∈ D

(eval).

types of influence over this data, ranging from arbitrary
control over some fraction of training instances to a bias-
ing influence over some aspect of data production; these
details depend largely on the application as we discuss be-
low. Regardless, the attacker uses his influence to mislead
the learner causing it to produce a bad classifier, which the
adversary subsequently exploits during evaluation. As in
exploratory attacks (see Section 4), a causative adversary

also can use A(eval) to alter the evaluation data. Naturally,
a causative adversary can coordinate A(train) and A(eval) to
best achieve his objective, although in some causative at-
tacks, the adversary may only be able to exert control over
the training data (e.g., the attacker in the case study below
can not control the evaluation non-spam messages).
Several researchers have studied causative attacks. New-

some et al. [52] constructed causative attacks against the
Polygraph virus detector, a polymorphic-virus detector that
learns virus signatures using both a conjunction learner and
a naive-Bayes-like learner. The correlated outlier attack,
a causative availability attack, targets the naive-Bayes-like
component of this detector by adding spurious features to
positive training instances, causing the filter to block benign
traffic with those features. Newsome et al. also developed
a causative integrity attack against the conjunction learner
component of Polygraph. This red herring attacks intro-
duces spurious features along with their payload; once the
learner has constructed its signature from this flawed data,
the spurious features are discarded to avoid subsequent de-
tection. Venkataraman et al. also present lower bounds for
learning worm signatures based on red herring attacks [63].
Chung and Mok also developed allergy attacks against the
Autograph worm signature generation system [12, 13]. Au-
tograph operates in two phases. First, it identifies infected
nodes based on behavioral patterns, in particular scanning
behavior. Second, it observes traffic from the suspect nodes
and infers blocking rules based on observed patterns. Chung
and Mok describe an attack that targets traffic to a partic-
ular resource. In the first phase, an attack node convinces
Autograph that it is infected by scanning the network. In the
second phase, the attack node sends crafted packets mimick-
ing targeted traffic, causing Autograph to learn rules that
block legitimate access; thus, this is a causative availabil-
ity attack. We now describe two attacks that we studied

in prior work [47, 48, 57], and subsequently we discuss gen-
eral perspectives and guidelines we developed for analyzing
learning systems that augment our taxonomy.

Case Study: SpamBayes

SpamBayes is a content-based statistical spam filter that
classifies email using token counts [55]. SpamBayes com-
putes a spam score for each token in the training corpus
based on its occurrence in spam and non-spam emails; this
score is motivated as a smoothed estimate of the posterior
probability that an email containing that token is spam.
The filter computes a message’s overall spam score based
on the assumption that the token scores are independent
and then it applies Fisher’s method [26] for combining sig-
nificance tests to determine whether the email’s tokens are
sufficiently indicative of one class or the other. The message
score is compared against two thresholds to select the label
spam, ham (i.e., non-spam), or unsure.

In analyzing the vulnerabilities of SpamBayes, we were
motivated by the taxonomy of attacks. Known real-world
attacks that spammers use against deployed spam filters
tend to be exploratory integrity attacks: either the spam-
mer obfuscates the especially spam-like content of a spam
email or he includes content not indicative of spam. Both
tactics aim to get the modified message into the victim’s
inbox. This category of attack has been studied in detail
in the literature [16, 39, 40, 65]. However, we found the
study of causative attacks more compelling. In particular,
we demonstrated a causative availability attack that created
a powerful denial of service [47]; i.e., if many legitimate mes-
sages are filtered by the user’s spam filter, the user is likely
to disable the filter and therefore see the spammer’s adver-
tisements. Alternatively, an unscrupulous business owner
may wish to use spam filter denial of service to prevent a
competitor from receiving email orders from potential cus-
tomers.

We designed two types of causative availability attacks,
one indiscriminate and the other targeted, against Spam-
Bayes. The first is an indiscriminate dictionary attack, in
which the attacker sends attack messages that contain a very
large set of tokens—the attack’s dictionary. After training
on these attack messages, the victim’s spam filter will have
a higher spam score for every token in the dictionary. As a

45

Percent control of training set

P
er
ce
n
t
te
st

h
a
m

m
is
cl
a
ss
ifi
ed

Optimal Usenet (90k) Usenet (25k) Aspell

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Percent control of training set

P
er
ce
n
t
ta
rg
et

h
a
m

m
is
cl
a
ss
ifi
ed

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 2: Effect of the dictionary and focused attacks. We plot percent of ham classified as spam (dashed
lines) and as unsure or spam (solid lines) against percent of the training set contaminated. Left: Three
dictionary attacks on an initial training set of 10,000 messages (50% spam). We show the optimal attack
(black △), the Usenet dictionary attack with 90,000 words (magenta ⋄), the Usenet dictionary attack with
25,000 words (blue �), and the Aspell dictionary attack (green ©). Right: The average effect of 200 focused
attacks on their targets when the attacker guesses each target token with 50% probability. The initial inbox
contains 5000 emails (50% spam).

result, future legitimate email is more likely to be marked
as spam since it will contain many tokens from that lexicon
(see Section 3.1). For instance, if only the victim’s language
is known by the attacker, the attack dictionary can be that
language’s entire lexicon. A refinement of this attack instead
uses a token source with a distribution closer to the victim’s
true email distribution (see Section 3.3 for more on attacker
knowledge). Using the most common tokens may allow the
attacker to send smaller emails without losing much effec-
tiveness. However, there is an inherent trade-off in choosing
tokens: rare tokens are the most vulnerable since their scores
have less support and will change quickly with few attack
emails but they are also less likely to appear in future mes-
sages, diluting their usefulness. We discuss this trade-off in
Section 3.1.3.
Our second attack is a targeted attack—the attacker has

some knowledge of a specific legitimate email he targets to
be incorrectly filtered. If the attacker has exact knowledge of
the target email, placing all of its tokens in attack emails pro-
duces an optimal targeted attack. Realistically, though, the
attacker only has partial knowledge about the target email
and can guess only some of its tokens to include in attack
emails (see Section 3.3). We modeled this knowledge by let-
ting the attacker know a certain fraction of tokens from the
target email, which are included in the attack message. The
attacker constructs attack email that contain words likely to
occur in the target email; i.e., the tokens known by the at-
tacker. The attack email may also include additional tokens
added by the attacker to obfuscate the attack message’s in-
tent. When SpamBayes trains on the resulting attack email,
the spam scores of the targeted tokens generally increase and
the target message is more likely to be filtered as spam. This
is the focused attack.
In our prior work [47], we presented results demonstrating

the effectiveness of both dictionary and focused attacks, re-
produced in Figure 2. These graphs depict the effectiveness

of dictionary attacks (leftmost figure) and focused attacks
(rightmost figure) in causing misclassifications in terms of
the percent of attack messages in the training set (see Sec-
tion 3.2 for discussion of the attacker’s capabilities). Notice
that since SpamBayes has three predictions (ham, unsure,
and spam), we plot the percentage of messages misclassified
as spam (dashed lines) and either as unsure or spam. As the
figure demonstrates, these attacks are highly effective with
a small percentage of contamination.

Case Study: Anomalous Traffic Detection

Adversaries can use causative attacks to not only disrupt
normal user activity but also to achieve evasion by causing
the detector to have many false negatives through an in-
tegrity attack. In doing so, such adversaries can reduce the
risk that their malicious activities are detected.

Here we reflect on our study of the subspace anomaly de-
tection methods for detecting network-wide anomalies such
as denial-of-service (DoS) attacks. In this study, we showed
that by injecting crafty chaff into the network during train-
ing, the detector can be poisoned so that it is unable to
effectively detect a subsequent DoS attack. The detector
we analyze was first proposed as a method for identifying
volume anomalies in a backbone network based on the Prin-
cipal Component Analysis (PCA) dimensionality reduction
technique [36]. While their subspace-based method is able
to successfully detect DoS attacks in network traffic, it as-
sumes the detector is trained on non-malicious data (in an
unsupervised fashion under the setting of anomaly detec-
tion). Instead, we considered an adversary who knows that
an ISP is using the subspace-based anomaly detector and
attempts to evade it by proactively poisoning its training
data.

The goal of the adversary we considered was to circumvent
detection by poisoning the training data; i.e., an integrity
goal to increase the detector’s false negative rate, which cor-

46

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Single Poisoning Period: Evading PCA

Mean chaff volume

E
v
a

s
io

n
 s

u
c
c
e

s
s
 (

F
N

R
)

0% 10% 20% 30% 40% 50%

Uninformed
Locally−informed
Globally−informed

10

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Boiling Frog Poisoning: Evading PCA

Attack duration (weeks)

E
v
a

s
io

n
 s

u
c
c
e

s
s
 (

a
v
e

ra
g

e
 t

e
s
t

F
N

R
)

Growth rates

1.01
1.02
1.05
1.15

Figure 3: Effect of poisoning attacks on the PCA-based detector [36]. Left: Evasion success of PCA versus
relative chaff volume under Single-Training Period poisoning attacks using three chaff methods: uninformed
(dotted black line) locally-informed (dashed blue line) and globally-informed (solid red line). Right: Evasion
success of PCA under Boiling Frog poisoning attacks in terms of the average FNR after each successive week
of locally-informed poisoning for four different poisoning schedules (i.e., a weekly geometric increase in the
size of the poisoning by factors 1.01, 1.02, 1.05, and 1.15 respectively). More aggressive schedules (e.g., growth
rates of 1.05 and 1.15) significantly increase the FNR within a few weeks while less aggressive schedules take
many weeks to achieve the same result but are more stealthy in doing so.

responded to the evasion success rate of the attacker’s sub-
sequent DoS attack. When trained on this poisoned data,
the detector learned a distorted set of principal components
that are unable to effectively discern these DoS attacks—a
targeted attack. Because PCA estimates the data’s princi-
pal subspace solely on the covariance of the link traffic, we
explored poisoning schemes that add chaff (additional traf-
fic) into the network along the flow targeted by the attacker
to systematically increase the targeted flow’s variance. In
so doing, the attacker caused the estimated subspace to un-
duly shift toward the target flow making large-volume events
along that flow less detectable. We considered three gen-
eral categories of attacks based on the attacker’s capabilities:
uninformed attacks, locally-informed attacks, and globally-
informed attacks. Each of these reflect different levels of
knowledge and resources available to the attacker; see Sec-
tion 3.3 and 3.1 for more detailed discussion of these models.
In the above attacks, chaff was designed to impact a sin-

gle period (one week) in the training cycle of the detector,
but we also considered the possibility of episodic poisoning
which are carried out over multiple weeks of retraining the
subspace detector; see Section 3.4.2 for further discussion
of iterative retraining. Multi-week poisoning strategies vary
the attack according to the time horizon over which they are
carried out. As with single-week attacks, during each week
the adversary inserts chaff along the target flow through-
out the training period according to his poisoning strategy.
However, in the multi-week attack the adversary increases
the total amount of chaff used during each subsequent week
according to a poisoning schedule. This poisons the model
over several weeks by initially adding small amounts of chaff
and increasing the chaff quantities each week so that the
detector is gradually acclimated to chaff and fails to ade-

quately identify the eventually large amount of poisoning.
We call this type of episodic poisoning the Boiling Frog poi-
soning method after the folk tale that one can boil a frog by
slowly increasing the water temperature over time. The goal
of Boiling Frog poisoning is to gradually rotate the normal
subspace, injecting low levels of chaff relative to the previ-
ous week’s traffic levels so that PCA’s rejection rates stay
low and a large portion of the present week’s poisoned traffic
matrix is trained on. Although PCA is retrained each week,
the training data will include some events not caught by
the previous week’s detector. Thus, more malicious training
data will accumulate each successive week as the PCA sub-
space is gradually shifted. This process continues until the
week of the DoS attack, when the adversary stops injecting
chaff and executes their desired DoS.

In our prior work [57], we empirically demonstrated our
attacks against PCA and in Figure 3 we reproduce the re-
sults of our experiments. These graphs depict the effec-
tiveness of the Single-Training Period (leftmost figure) and
Boiling Frog attacks (rightmost figure) in causing false nega-
tives in terms of the percent of average increase in the mean
link rates due to chaff (see Section 3.2 for discussion of the
attacker’s capabilities) and the length of the attack dura-
tion, respectively. For the Boiling Frog attacks, we assumed
that the PCA-subspace method is retrained on a weekly ba-
sis using the traffic observed in the previous week to retrain
the detector at the beginning of the new week. Further, we
sanitize the data from the prior week before retraining so
that all detected anomalies are removed from the data. As
the Figure 3 demonstrates, these attacks cause high rates of
misdetection with relatively small increases in the volume
of traffic: e.g., a locally-informed attacker can increase his

47

evasion success to 28% from the baseline of 3.67% via a 10%
average increase in the mean link rates due to chaff.

3.1 Incorporating Application-Specific Factors
One type of adversarial limitation we consider are limits

on how an adversary can alter data points in terms of each
feature. Features represent different aspects of the state of
the world and have various degrees of vulnerability to attack.
Some features can be arbitrarily changed by the adversary,
but others may have stochastic aspects that the adversary
cannot completely control, and some features may not be
alterable at all. For instance, in sending an email, the ad-
versary can completely control the content of the message
but cannot completely determine the routing of the message
or its arrival time. Further, this adversary has no control
over meta-information that is added to the message by mail
relays while the message is en route. Providing an accurate
description of the adversary’s control over the features is
essential and we discuss it further in the following section.

3.1.1 Domain Limitations

The first consideration are limitations on the adversary
that arise from the application domain itself. These include
limits on how the adversary can interact with the applica-
tion and what kinds of data are realistic for the adversary
to manipulate. For SpamBayes, the usual usage scenario is
that this detector is intended to be used for individuals or
small organizations to filter their email. In such a scenario,
it is difficult to believe that filter’s users would intentionally
mislabel messages to corrupt the filter.2 Thus, to obtain
faulty labels, the adversary would have to rely on being able
to fool users to mislabel their messages. However, it is not
easy to trick users to mislabel spam messages as non-spam.
It is more realistic that a user could be tricked into misla-
beling non-spam messages as spam (e.g., by scrambling the
legitimate message and adding spam-like elements). From
this observation, we concluded that integrity attacks requir-
ing mislabeled non-spam were unrealistic and instead de-
veloped our availability attack using tricky messages that a
user would probably mislabel as spam even if they were not
a traditional advertising pitch.
The intended use-case for the PCA-based anomaly detec-

tor was completely different. It was intended to operate
along the routing infrastructure of a backbone network. For
this scope, the detector is not given any label information
at all; all training data is unlabeled and anomalous data is
identified by the detector only after it is trained. Thus, for
this application, the attacker has a broad ability to manipu-
late data so that both integrity and availability attacks were
potentially feasible.

3.1.2 Contrasting Feature Spaces

A second consideration are limitations imposed on the ad-
versary by the space of features used by the learning algo-
rithm. In many learning algorithms, data is represented in
a feature space, in which each feature captures a relevant
aspect of data points for the learning task at hand. For
spam detection, it is common for each feature to represent

2For web-based mailers, the situation changes dramatically
since many users of these services may be malicious and may,
in fact, intentionally mislabel messages. This potential for
attacks by the users can be viewed as a type of insider threat
which is a topic for future work.

whether or not a particular word or token appears in the
message; this is the feature space used by SpamBayes. In the
network volume anomaly detection application, the feature
space used represented the volume of traffic along each link
within the network during a specific period of time. These
differences in feature space representations profoundly im-
pact the set of actions available to the adversary and thus
significantly shape how attacks can be carried out.

SpamBayes has a large (one could say infinite) feature
space of possible tokens that can occur in an email message.
However, while there are many features, the influence the
adversary has on each is severely limited. In fact, all the ad-
versary can decide is whether or not to include that token in
his attack messages; this bounded form of influence ensures
that the adversary cannot simply manipulate a single fea-
ture to have a large impact on the detector’s performance.
That is, it was not possible for a small number of emails
controlled by the adversary to only use a small number of
features in order to damage the filter. However, the fact that
a single email could influence many features simultaneously
(and independently) meant that attacks messages could be
constructed with undue influence on the detector as a whole.
This motivated the dictionary attacks discussed above.

The domain of the PCA-based anomaly detector had very
different characteristics. It only used a small number of fea-
tures to represent each time-based data point; a single fea-
ture for each link in the Abilene backbone network for a
total of 54 features. However, unlike the binary features in
the spam application, each of these features was real-valued.
This meant that the adversary did not need to influence a
large number of features, but instead he could dramatically
alter a small number of features. By doing so, the adver-
sary could have nearly unlimited control of a single data
point but a few restrictions were necessary. First, in this
domain, there were physical capacities in the network links
that could not be exceeded. We also assumed the adversary
does not have control over existing traffic (i.e., he cannot
delay or discard traffic). Similarly, the adversary cannot fal-
sify SNMP reports to PCA because stealth is a major goal
for this attacker—he does not want his DoS attack or his
poisoning to be detected until the DoS attack has success-
fully been executed. As such, we limited the attacks to only
add spurious traffic to the network thereby further limiting
the adversary’s capabilities.

3.1.3 Contrasting Data Distributions

Another application-specific aspect of a threat to a learn-
ing algorithm is the underlying properties of the data. The
data’s distribution can profoundly impact not only the per-
formance of the learning algorithm but also its vulnerability.
The data’s distribution may have properties that conflict
with the learner’s assumptions.

We found that SpamBayes was vulnerable in part due to
the inherent sparsity of emails; that is, the fact that most
messages only contain a small subset of the possible set of
words and tokens that can appear in a message. This is
a well-known property of most documents and, moreover,
it is well known that the words in emails tend to follow a
Zipf distribution; that is, the frequency that a word occurs
in a document is approximately inversely proportional to
the word’s popularity rank. These properties couple with
SpamBayes’ independence assumption (see next section) to
have the following consequences: (a) popular tokens occur

48

often in the corpus and thus have stable probability esti-
mates that cannot easily be changed (b) most tokens, how-
ever, occur rarely and thus have very low support in the
non-attack data so they were easily influenced by the poison
messages. SpamBayes benefits from the first property be-
cause the more often a word appears in good training data,
the less vulnerable that word is to poisoning. Further, rare
words are vulnerable but will not be likely to appear in fu-
ture messages. However, while it is unlikely that a particular
rare word would appear in a new message, it is still quite
likely that several rare words will appear in the message—
the Zipf distribution is long-tailed meaning that the tail of it
has significant mass. Thus, by poisoning many (or all) rare
words, the attack against SpamBayes was spectacularly suc-
cessful.
The data in the network volume anomaly detection algo-

rithm also had particular properties that an adversary would
be able to exploit. Unlike spam, the data was not sparse in
link space—the Abilene backbone network carried large vol-
umes of traffic across almost all of it’s link in even unit of
time. However, it is well-established that there are signifi-
cant size discrepancies in the flow space of the network; i.e.,
there are a small number of end-to-end flows in the net-
work that account for most of its traffic. These flows (nick-
named ‘elephant’ flows) dwarfed the numerous small flows
(nicknamed ‘mouse’ flows). Moreover, while elephant flows
always carried traffic, mouse flows tended to be spiky with
almost no traffic most of the time and occasional spikes of
large amounts of data. As with SpamBayes, attacks against
the PCA-based detector exploit this distributional property.

3.2 Modeling Attacker Capabilities
Two elements are critical to define a model for the ad-

versary: his motivation/objective and his capabilities. The
taxonomy partially describes both, but here we delve further
into how one can describe the capabilities of an attacker in
a causative attack. It is critical to define how the adversary
can alter data to mislead or evade the classifier. For this
purpose, we need to model the restrictions on the adversary
and justify these restrictions for a particular domain.

3.2.1 Corruption Models

Here, we outline two common models for adversarial cor-
ruption, and we describe how the adversary is limited within
each. The first model assumes the adversary has unlimited
control of a small fraction of the data; i.e., the adversary is
restricted to only modify a limited amount of data but can
alter those data points arbitrarily. We call this an insertion
model because, in this scenario, the adversary crafts a small
number of attack instances and inserts them into the dataset
for training or evaluation (or perhaps replaces existing data
points). For example, in the example of a spam filter, the
adversary (spammer) can create any arbitrary message for
their attack but he is limited in the number of attack mes-
sages he can inject; thus, the spammer’s attack on the spam
filter can be analyzed in terms of how many messages are
required for the attack to be effective. For this reason, the
insertion model was appropriate in analyzing attacks on the
SpamBayes.
The second corruption model instead assumes that the

adversary can alter any (or all) of the data points in the
data set but is limited in the degree of alteration; i.e., an
alteration model. For example, to attack a detector that is

monitoring network traffic volumes over windows of time,
the adversary can add or remove traffic within the network
but only can make a limited degree of alteration. Such an
adversary cannot insert new data since each data point cor-
responds to a time slice and the adversary cannot arbitrarily
control any single data point since other actors are also cre-
ating traffic in the network; thus, this is the model we used
to analyze attacks on the PCA-subspace detector. Here,
the adversary is restricted by the total amount of alteration
they make, and so the effectiveness of his attack can be an-
alyzed in terms of the size of alteration required to achieve
the attacker’s objective.

3.2.2 Class Limitations

A second limitation on attackers involves which parts of
the data the adversary is allowed to alter—the positive (ma-
licious) class, the negative (benign) class, or both. Usually,
attackers external to the system are only able to create ma-
licious data and so they are limited to only manipulating
positive instances. This is the model we use throughout this
text. However, there is also an alternative threat that in-
siders could attack a learning system by altering negative
instances; a lucrative direction for future work.

3.3 Attacker Knowledge
The final aspect of the attacker that we model is the

amount of information the attacker has about the learning
system. Generally, the adversary has degrees of information
about three components of learner: its learning algorithm,
its feature space, and its data. As with the attacker’s capa-
bilities, it is critical to make a reasonable model of the at-
tacker’s information. The relevant guideline for assumptions
about the adversary is Kerckhoffs’ Principle [34]; i.e., the
security of a system should not rely on unrealistic expecta-
tions of secrecy. An over-dependence on secrets to provide
security is dangerous because if these secrets are exposed
the security of the system is immediately compromised. Ide-
ally, secure systems should make minimal assumptions about
what can realistically be kept secret from a potential at-
tacker. On the other hand, if the model gives the adver-
sary an unrealistic degree of information, our model may be
overly pessimistic; e.g., an omnipotent adversary who com-
pletely knows the algorithm, feature space, and data can
exactly construct the learned classifier and design optimal
attacks accordingly. Thus, it is necessary to carefully con-
sider what a realistic adversary can know about a learning
algorithm and to quantify the effects of that information.

With these constraints in mind, we generally assume that
the attacker has knowledge of the training algorithm, and in
many cases partial or complete information about the train-
ing set, such as its distribution. For example, the attacker
may have the ability to eavesdrop on all network traffic over
the period of time in which the learner gathers training data.
We examine different degrees of the attacker’s knowledge
and assess how much he gains from different sources of po-
tential information.

3.3.1 Knowledge about the Learning Algorithm

In our analyses of real-world learning algorithms, we have
generally assumed that the adversary will know the exact
learning algorithm that they target. For our case studies, the
algorithms were public and, for SpamBayes, the source code
was freely available. However, we generally believe that sys-

49

tem designers should assume that their learning algorithm is
known by the adversary; just as the encryption algorithms
in cryptography, are generally assumed to be known.
One potential source of secret information about the al-

gorithm is a secret random component (e.g., a randomized
initial state). Such a component could be an important se-
cret if it truly makes a random contribution (e.g., many
random initial states may yield the same decision function).
The authors are not aware of any strong guarantees pro-
vided by this sort of randomization for the security domain
although randomization is discussed below in the context of
privacy-preserving learning.

3.3.2 Knowledge about the Feature Space

The feature space is potentially a component of the learn-
ing algorithm that may be kept secret (although in both
SpamBayes and the PCA-based network anomaly detector,
the feature space was published). Specialized features con-
structed for a specific learning problem or relevant discrim-
inant features found by a feature selection algorithm may
not be known or inferable by the adversary. However, the
system designer should carefully assess the viability of this
assumptions since many features are widely used for some
learning tasks (e.g., unigram features in document classifi-
cation) and specially selected features may be approximated
with simpler features.

3.3.3 Knowledge of Data

The final component of the attacker’s knowledge is his
knowledge about the training and evaluation data used by
the algorithm. Stronger restrictions on this component are
more reasonable because, in many scenarios, strong protec-
tions on user data are a separate component of the system.
However, a system designer should consider ways in which
the adversary can learn about the systems data and how
specific that knowledge is. For instance, part of the data
may be available to the adversary because of actions the ad-
versary makes outside the system (e.g., a spammer can send
spam to a particular spam filter) or because the adversary
is an insider. Adversaries also can have a degree of global
information about the data although this tends to be less
specific (e.g., an adversary may have distributional informa-
tion about the words commonly used in emails or the length
of messages).
In our SpamBayes case study, we considered an adver-

sary with several different degrees of information about the
data. When the attacker only has vague information about
email word characteristics (e.g., the language of the victim),
we showed that a broad dictionary attack can render the
spam filter unusable, causing the victim to disable the fil-
ter. With more detailed information about the email word
distribution, the attacker can select a smaller dictionary of
high-value words that are at least as effective. Finally, when
the attacker wants to prevent a victim from seeing particu-
lar emails and has some information about those emails, the
attacker can target them with a focused attack that specif-
ically targets the words that are likely to be used in the
targeted message.
Similarly in our study of PCA-based anomaly detectors,

we considered poisoning strategies in which the attacker has
various potential levels of information at his disposal. The
weakest attacker is one that knows nothing about the traf-
fic flows, and adds chaff randomly (called an uninformed

attack). Alternatively, a partially-informed attacker knows
the current volume of traffic at a compromised ingress link
that he intends to inject chaff on. We call this type of poi-
soning a locally-informed attack because this adversary only
observes the local state of traffic at the ingress PoP of the
attack. In a third scenario, the attacker is globally-informed
because his global view over the network enables him to
know the traffic levels on all network links and this attacker
has knowledge of all future link traffic. Although global in-
formation is impossible to achieve, we studied this scenario
to better understand the limits of variance injection poison-
ing schemes.

3.4 Identifying Learning Vulnerabilities
Here we consider the mechanism by which the adversary

attacks learners—the vulnerabilities of learning algorithms.
The first part of an algorithm’s vulnerability lies in the as-
sumptions it makes about the training data. The second
part arises from retraining procedures, which can be used by
the adversary to amplify a weak attack into a much stronger
one by coordinating over many retraining iterations.

3.4.1 Learning Assumptions

Every learning algorithm must make some assumptions
about the training data and the space of possible hypotheses
to make learning tractable [46]. However, these modeling
assumptions can also lead to vulnerabilities to adversarial
corruption. There are two types of learning assumptions:
assumptions made by the learning model and assumptions
made by the training algorithm.

Modelling Assumptions

Assumptions made by the learning model are intrinsic to the
model itself; i.e., they are assumptions involving the prop-
erties of the classifier and its representation of the data.
Common modelling assumptions include data linearity (the
learning task can be represented by a linear function), sepa-
rability (there exists some function that separates the data
into distinct classes), and feature independence (each feature
of an object is an independent indicator of a latent variable
that represents the true class of the overall object).

The first modeling vulnerability of SpamBayes comes from
its assumption that the data and tokens are independent,
for which each token score is estimated based solely on the
presence of that token in spam and non-spam messages. The
second vulnerability comes from its assumption that only to-
kens that occur in a message contribute to its label. While
there is some intuition behind the latter assumption, in this
model, it causes rare tokens to have little support so that
their scores can be easily changed (as discussed above). Ul-
timately, these two vulnerabilities lead to a family of dictio-
nary attacks discussed above.

In the PCA-based detector, the modeling assumption is
a linearity assumption that normal data is well-represented
by low-dimensional subspace in the link space of the algo-
rithm (with a small residual component). This assumption
is empirically validated [36], but can be violated by a clever
adversary as discussed below. In this case, the attack arises
more from an assumption made by the training algorithm
since most of the data does obey the low-dimensionality as-
sumption but the learning algorithm over-leverages it.

50

Data Assumption used in Training

Many vulnerabilities arise from the distributional assump-
tions made in the learning procedure about the data used
during the learning and evaluation phases. Often these as-
sumptions are used to construct more efficient learning pro-
cedures that require less data but can result in vulnerabili-
ties when violated. To defend against or patch these vulner-
abilities, an alternative learning algorithm can be selected
that makes weaker assumptions although it may be less ef-
ficient; i.e., there is a fundamental trade-off between the
efficiency of a procedure and its robustness to violations in
its assumptions.
Many learning methods make a stationarity assumption;

i.e., the training data and evaluation data are drawn from
the same distribution. However, real-world sources of data
often are not stationary and, even worse, attackers can eas-
ily break the stationarity assumption with some control of
either training or evaluation instances. Violations of the sta-
tionarity assumption comprise the fundamental vulnerabil-
ity of learning algorithms, and thus, analyzing and strength-
ening learning methods to withstand or mitigate violations
of the stationarity assumption is the crux of the secure learn-
ing problem.
Another common assumption is that each data point is

independent and identically distributed (i.i.d.); clearly, this
assumption is violated if the adversary can coordinate to
create correlation between data points or if the adversar-
ial data comes from an alternative distribution. Both the
SpamBayes and PCA-based anomaly detector assume their
data is i.i.d. and both are vulnerable because of it. In Spam-
Bayes, the background data is not altered, but the attack
data that is introduced is designed to come from a different
distribution (recall the data sparsity in SpamBayes discussed
above). Similarly, our attacks on the PCA-base detector vi-
olate the i.i.d. assumption by introducing a perturbation to
a subset of the data that systematically shifts these points
onto a second subspace; thus the data is no longer identi-
cally distributed. Moreover, this perturbation can occur (in
locally-informed and globally informed attacks) in a data-
dependent fashion also violating independence.

3.4.2 Iterative Retraining

Iterative retraining is perhaps the most desirable but also
least well-understood aspect of learning in adversarial envi-
ronments. Many detectors in such environments require pe-
riodic retraining because of non-stationarity in regular data
causing its distribution to gradually shift over time. Retrain-
ing can be also be an effective defense against adversaries to
counter their ability to learn about and adapt to a detector.
Finally, iterative learning has an extensive theory for com-
bining classifiers even under strong adversarial settings [9].
Simultaneously, retraining, if applied improperly, can be ex-
ploited by the adversary potentially to amplify the impact
of weak attacks over many iterations.
There is little doubt that past experience could be tremen-

dously valuable for improving classifiers, but how can the
past be used effectively and safely? If the past is not used
at all, every iteration of retraining is seemingly independent,
but even in this case, past models may subtlety influence
future models. Most usually, some of the data used for the
training the next iteration of models is selected or labeled
by the last learned model—this small influence can be used
in attacks such as the Boiling Frog attack against the PCA-

based detector to make a small attack far more effective as
discussed above. More subtlety, the behavior of the classifier
may cause a user to pay more attention to some data points
than others and thus impact the subsequent retraining pro-
cess. For instance, in the case of SpamBayes, the mistakes
SpamBayes makes may cause the user to specifically identify
and retrain on attack messages when these messages appear
with his normal mail. However, most users are less likely to
notice messages that inadvertently mislabeled as spam.

If the past is wholly incorporated into the next genera-
tion of model, the advantage seems to lie with the learning
model as we explored in prior work with retraining hyper-
sphere anomaly detectors [49]. In that work, we showed that
when all past data is used to update the mean of the hyper-
sphere, the number of data points the adversary must con-
trol to shift the model is exponential in the desired distance.
However, this comes at a price; because past data is never
discarded, the model becomes increasingly less adaptive to
normal changes in the data. Kloft and Laskov extended this
model by considering more realistic policies for data aging
and a more realistic setting for the attack [35]. However, the
general task of retraining models in a secure fashion remains
an open issue.

3.5 Defenses and Countermeasures
The final component in our discussion of causative at-

tacks is methods for defending against them. Two general
strategies for defense are to remove malicious data from the
training set and to harden the learning algorithm against
malicious training data. Below we discuss both of these
techniques in the context of the SpamBayes and PCA-based
detectors discussed above.

3.5.1 Data Sanitization

Insidious causative attacks make learning inherently more
difficult. In many circumstances, data sanitization may be
the only realistic mechanism to achieve acceptable perfor-
mance. For example, for SpamBayes we explored such a
sanitization technique called the Reject On Negative Impact
(RONI) defense [48], a technique that measures the em-
pirical effect of adding each training instance and discards
instances that have a substantial negative impact on classifi-
cation accuracy. To determine whether a candidate training
instance is malicious or not, the defender trains a classifier
on a base training set, then adds the candidate instance to
the training set and trains a second classifier. The defender
applies both classifiers to a quiz set of instances with known
labels and measures the difference in accuracy between the
two classifiers. If adding the candidate instance to the train-
ing set causes the resulting classifier to produce substantially
more classification errors, the defender permanently removes
the instance as detrimental in its effect.

The RONI defense rejects every single dictionary attack
from any of the dictionaries (optimal, Aspell, and Usenet).
In fact, the degree of change in misclassification rates for
each dictionary message is greater than five standard devia-
tions from the median, suggesting that these attacks are eas-
ily eliminated with only minor impact on the performance of
the filter. When trained on 1, 000 uncensored messages, the
resulting filter correctly classifies 98% of ham and 80% of the
spam. After removing the messages rejected by the RONI
defense, the resulting filter still correctly classifies 95% of
ham and 87% of the spam.

51

3.5.2 Robust Learning

The field of robust statistics explores procedures that limit
the impact of a small fraction of deviant (adversarial) train-
ing data. In the setting of robust statistics [30], it is assumed
that the bulk of the data is generated from a known well-
behaved model, but a fraction of the data comes from an
unknown model (outliers)—to bound the effect of this un-
known source it is assumed to be adversarial. Because the
network data has many outlier events (both malicious and
benign) we chose to replace the PCA-based detector with a
more robust variant.
It is known that PCA can be strongly affected by out-

liers [54]. Instead of finding the principal components along
directions that maximize variance, alternative PCA-like tech-
niques find more robust components by maximizing alterna-
tive dispersion measures with desirable robustness proper-
ties. In particular, the PCA-Grid algorithm was proposed by
Croux et al. as an efficient method for estimating directions
that maximize the median absolute deviation (MAD) with-
out under-estimating variance [15]. We adapt PCA-Grid for
anomaly detection by combining the method with a robust
Laplace cutoff threshold. Together, we refer to the method
as Antidote. Because it builds on robust subspace estimates,
this method substantially reduces the effect of outliers and
is able to reject poisonous training data.

4. EXPLORATORY ATTACKS
The most frequently studied attacks are exploratory in-

tegrity attacks in which the adversary attempts to passively
circumvent the learning mechanism to exploit blind spots in
the learner that allow miscreant activities to go undetected.
In an exploratory integrity attack, the attacker crafts in-
trusions so as to evade the classifier without direct influence
over the classifier itself. Instead, attacks of this sort often at-
tempt to systematically make the miscreant activity appear
to be normal activity to the detector or obscure the miscre-
ant activity’s identifying characteristics. Some exploratory
integrity attacks mimic statistical properties of the normal
traffic to camouflage intrusions; e.g., the attacker examines
training data and the classifier, then crafts intrusion data.
In the exploratory game, the attacker’s move produces ma-
licious instances in D

(eval) that statistically resemble normal
traffic in the training data D

(train).
Exploratory integrity attacks have been extensively stud-

ied in attacks against intrusion detector systems (IDS) and
spam filters. Fogla and Lee introduced polymorphic blending
attacks that evade intrusion detectors using encryption tech-
niques to make attacks statistically indistinguishable from
normal traffic [27]. Feature deletion attacks instead specif-
ically exclude high-value identifying features used by the
detector [28]; this form of attack stresses the importance
of proper feature selection as was also demonstrated empiri-
cally by [42] in their study of the behavior of intrusion detec-
tion systems on the DARPA/Lincoln Lab dataset. Tan et al.
describe a mimicry attack against the stide sequence-based
IDS [62]. They modify exploits of the passwd and tracer-

oute programs to accomplish the same ends using different
sequences of system calls: the shortest subsequence in at-
tack traffic that does not appear in normal traffic is longer
than the IDS window size. By exploiting the finite win-
dow size of the detector, this technique makes attack traffic
indistinguishable from normal traffic for the detector. Inde-

pendently, Wagner and Soto also developed mimicry attacks
against pH, a sequence-based IDS [64]. Using the machinery
of finite automata, they constructed a framework for testing
whether an IDS is susceptible to mimicry for a particular
exploit.

Adding or changing words in a spam message can allow
it to bypass the filter. Like the attacks against an IDS
above, these attacks all use both training data and infor-
mation about the classifier to generate instances intended
to bypass the filter. Studying these techniques was first sug-
gested by John Graham-Cumming in his presentation How
to Beat an Adaptive Spam Filter at the 2004 MIT Spam
Conference, in which he presented a Bayes vs. Bayes attack
that uses a second statistical spam filter to find good words
based on feedback from the target filter. Several authors
have further explored evasion techniques used by spammers
and demonstrated attacks against spam filters using similar
principles as those against IDSs as discussed above. Lowd
and Meek and Wittel and Wu developed attacks against sta-
tistical spam filters that add good words, or words the filter
considers indicative of non-spam, to spam emails [40, 65].
This good word attack makes spam emails appear innocuous
to the filter, especially if the words are chosen to be ones
that appear often in non-spam email and rarely in spam
email. Finally, obfuscation of spam words (i.e., changing
characters in the word or the spelling of the word so it no
longer recognized by the filter) is another popular technique
for evading spam filters [38, 58].

4.1 Cost-based Evasion
Another vein of research into exploratory integrity attacks

focuses on the costs incurred due to the adversary’s evasive
actions; i.e., instances that evade detection may be less de-
sirable to the adversary. By directly modelling adversarial
cost, this work explicitly casts evasion as a problem, in which
the adversary wants to evade detection but wants to do so
using high-value instances (an assumption that was implicit
in the other work discussed in this section). Dalvi et al. ex-
ploit these costs to develop a cost-sensitive game-theoretic
classification defense that is able to successfully detect opti-
mal evasion of the original classifier [16]. Using this game-
theoretic approach, this technique preemptively patches the
naive classifier’s blind spots by constructing a modified clas-
sifier designed to detect optimally-modified instances. Sub-
sequent game theoretic approaches to learning have extended
this setting and solved for equilibria of the game [8, 32].

Cost models of the adversary also led to a theory for
query-based near-optimal evasion of classifiers first presented
by Lowd and Meek, in which they cast the difficulty of evad-
ing a classifier into a complexity problem [39]. They pre-
sented algorithms for an attacker to reverse engineer a clas-
sifier. The attacker seeks the lowest cost instance (for the
attacker) that the classifier mislabels as a negative instance.
In the next section we discuss our extension to this frame-
work [50]. We generalized the theory of near-optimal evasion
to a broader class of classifiers and demonstrated that the
problem is easier than reverse-engineering approaches.

4.1.1 Near-Optimal Evasion

The near-optimal evasion problem formalizes the natural
security setting for evasion. The problem abstracts the sce-
nario of an adversary who wishes to launch a specific attack
that is blocked by a classifier-based defense. The attacker

52

has a limited number of probing opportunities after which
he must send an attack as close as possible to his originally
intended attack—a near-optimal attack. In the case of email
spam, the spammer may originally have a message that will
be detected as spam. He probes, finds a near-optimal mes-
sage that evades the filter, and sends this message instead.
In the case of an intruder, he has a preferred sequence of
system calls that will be detected as intrusions. Again, he
probes, then finds and executes a near-optimal sequence that
evades the detector. With this framework in mind, we now
clearly see the role of a defender: to provide a classifier that
limits or resists near-optimal evasion. Practical implementa-
tion requires careful selection of costs and realistic bounds
on the number of probes an adversary can perform. Re-
sulting lower-bounds on the number of probes required for
near-optimal evasion provide significant evidence of effective
security.
The problem of near-optimal evasion (i.e., finding a low

cost negative instance with few queries) was introduced by
Lowd and Meek [39]. We continued studying this problem by
generalizing it to the family of convex-inducing classifier—
classifiers that partition their instance space into two sets
one of which is convex. The family of convex-inducing clas-
sifier is an important and natural set of classifiers to exam-
ine which includes the family of linear classifiers studied by
Lowd and Meek as well as anomaly detection classifiers using
bounded PCA [36], anomaly detection algorithms that use
hyper-sphere boundaries [5], one-class classifiers that predict
anomalies by thresholding the log-likelihood of a log-concave
(or uni-modal) density function, and some quadratic classi-
fiers. The family of convex-inducing classifier also includes
more complicated bodies such as the countable intersection
of halfspaces, cones, or balls.
In our work, we demonstrated that near-optimal evasion

does not require complete reverse engineering of the classi-
fier’s internal state or decision boundary, but instead, only
partial knowledge about its general structure [50]. The algo-
rithm presented by Lowd and Meek for evading linear clas-
sifiers in a continuous domain reverse engineers the deci-
sion boundary by estimating the parameters of their sepa-
rating hyperplane. The algorithms we presented for evad-
ing convex-inducing classifier do not require fully estimating
the classifier’s boundary (which is hard in the case of gen-
eral convex bodies [53]) or the classifier’s parameters (in-
ternal state). Instead, these algorithms directly search for
a minimal cost-evading instance. These search algorithms
require only polynomial-many queries, with one algorithm
solving the linear case with better query complexity than
the previously-published reverse-engineering technique. Fi-
nally, we also extended near-optimal evasion to general ℓp
costs; i.e., costs based on ℓp distances. We showed that the
algorithms for ℓ1 costs can also be extended to near-optimal
evasion on ℓp costs, but are generally not efficient. However,
in the cases when these algorithms are not efficient, we show
that there is no efficient query-based algorithm.
There are a variety of ways to design countermeasures

against exploratory attacks. For example, Biggio et al. pro-
mote randomized classifiers as a defense against exploratory
evasion [4]. They propose the use of multiple classifier sys-
tems (MCSs), which are mainly used to improve classifica-
tion accuracy in machine learning community, to improve
the robustness of a classifier in adversarial environments.
They construct a multiple classifier system using the bag-

ging and random subspace methods, and conduct a series of
experiments to evaluate their system in a real spam filtering
task. Their results showed that, although their method did
not improve the performance of a single classifier when they
are not under attack, it was significantly more robust un-
der attack. These results provide a sound motivation to the
application of MCSs in adversarial classification tasks. How-
ever, it is not known if randomized classifiers have provably
worse query complexities.

4.1.2 Real-World Evasion

While the cost-centric evasion framework presented by
Lowd and Meek provides a formalization the near-optimal
evasion problem, it fails to capture several important aspects
of evasion in real-world settings. From the theory of near-
optimal evasion, certain classes of learners can be evaded ef-
ficiently whereas others require a practically infeasible num-
ber of queries to achieve near-optimal evasion. However,
real-world adversaries often do not require near-optimal cost
evasive instances to be successful; it suffices for them to find
any sufficiently low-cost instance that evades the detector.
Understanding query-strategies for a real-world adversary
requires incorporating real-world constraints that were re-
laxed or ignored in the theoretical version of this problem.
Here, we summarize the challenges for real-world evasion.

Real-world near-optimal evasion is more difficult (i.e., re-
quires more queries) than is suggested by the theory because
the theory simplifies the problem faced by the adversary.
Even assuming that a real-world adversary can obtain query
responses from the classifier, he cannot directly query it in
the feature space of the classifier. Real-world adversaries
must make their queries in the form of real-world objects
like email that are subsequently mapped into the feature
space of the classifier. Even if this mapping is known by
the adversary, designing an object that maps to a specific
desired query is itself difficult—there may be many objects
that map to a single query and parts of the feature space
may not correspond to any real-world object. Thus, future
research on real-world evasion must address the question:
How can the feature mapping be inverted to design real-world
instances to map to desired queries?

Real-world evasion also differs dramatically from the near-
optimal evasion setting in defining an efficient classifier. For
a real-world adversary, even polynomially-many queries in
the dimensionality of the feature space may not reasonable.
For instance, if the dimensionality of the feature space is
large (e.g., hundreds of thousands of words in unigram mod-
els) the adversary may require the number of queries to be
sub-linear, but for near-optimal evasion, this is not possible
even for linear classifiers. However, real-world adversaries
also need not be provably near-optimal. Near-optimality is
a surrogate for adversary’s true evasion objective: to use a
small number of queries to find a negative instance with ac-
ceptably low-cost. Clearly, near-optimal evasion is sufficient
to achieve this goal, but in real-world evasion, once a low-
cost negative instance is located, the search can terminate.
Thus, instead of quantifying the query complexity required
for a family of classifiers, it is more relevant to quantify
the query performance of an evasion algorithm for a fixed
number of queries based on a target cost. This raises sev-
eral questions: What is the worst-case or expected reduction
in cost for a query algorithm after making a fixed number
of queries to a classifier, what is the expected value of each

53

query to the adversary and what is the best query strategy
for a fixed number of queries?
The final challenge for real-world evasion is to design al-

gorithms that can thwart attempts to evade the classifier.
Promising potential defensive techniques include randomiz-
ing the classifier and identifying queries and sending mislead-
ing responses to the adversary. However, no proven defense
against evasion has thus far been proposed.

5. PRIVACY VIOLATIONS
Privacy-preserving learning has been studied by research

communities in Security, Databases, Theory, Machine Learn-
ing and Statistics. The broad goal of this research is to re-
lease aggregate statistics on a dataset without disclosing lo-
cal information about individual data elements.3 In the lan-
guage of our taxonomy, privacy-preserving learning should
be robust to Exploratory or Causative attacks which aim to
violate Privacy. An attacker with access to a released statis-
tic, model or classifier may probe it in an attempt to reveal
information about the training data; moreover an attacker
with influence over some proportion of the training examples
may attempt to manipulate the mechanism into revealing
information about unknown training examples. In this way
the Privacy violation represents an important extension of
the security violations of machine learning algorithms con-
sidered by our original taxonomy.

5.1 Differential Privacy
Historically, formal measures for quantifying the level of

privacy preserved by a data analysis or data release have
been elusive. Numerous definitions have been proposed and
put aside due to the propositions being of a syntactic rather
than semantic nature, most notably k-anonymity and its
variants [61, 41]. However recently the concept of differential
privacy due to Dwork [19] has emerged as a strong guarantee
of privacy, with formal roots influenced by cryptography.
This definition has enjoyed a significant amount of interest
in the Theory community [17, 6, 22, 19, 1, 7, 24, 23, 44,
33, 25, 21, 3, 31, 59] where the general consensus is that
the formal definition is meaningful and appropriately strong,
while allowing for statistical learning methods that preserve
the notion of privacy to be of practical use [56, 43, 1, 33,
17, 25, 3, 31, 11]. We now proceed to recall the definition of
differential privacy and then to discuss its prevailing features
in the current context of adversarial machine learning.
A database D is a sequence of rows x1, . . . , xn that are

typically binary or real vectors but could belong to any do-
main X . Given access to D, a mechanism M is tasked with
releasing aggregate information about D while maintaining
privacy of individual rows. In particular we assume that
the response M(D) ∈ TM is the only information released
by the mechanism. This response could be a scalar statis-
tic on D such as a mean, median or variance; or a model
such as the parameters to a estimated joint density or the
weight vectors to a learned classifier. We say that a pair
of databases D1, D2 are neighbors if they differ on one row.

3An orthogonal body of work exists, in which secure multi-
party computation is applied to machine learning [18, 29].
There one has to share individual data points with untrusted

3rd parties in order to train a learner; e.g., when employ-
ing cloud-based computation, or pooling with others’ data
to train a more predictive model. The resulting model or
classifier, however, does not preserve training data privacy.

With these definitions in-hand we can describe the following
formal measure of privacy.

Definition 1 ([19]). For any ǫ > 0, a randomized mech-
anism M achieves ǫ-differential privacy if, for all pairs of
neighboring databases D1, D2 and all responses t ∈ TM the
mechanism satisfies4

log

(

Pr (M(D1) = t)

Pr (M(D2) = t)

)

≤ ǫ .

To understand this definition at a high level, consider
a differentially private mechanism M that preserves data
privacy by adding noise to the response of some desired
non-private deterministic statistic S(D), say the average
n−1 ∑n

i=1 xi of a sequence of n scalars x1, . . . , xn. The def-
inition’s likelihood ratio compares the distributions of M ’s
noisy mean responses, when one scalar xi (a database row)
is changed. If the likelihood ratio is small (when privacy
level ǫ≪ 1), then the likelihood of M responding with noisy
mean t on database D1 is exceedingly close to the likelihood
of responding with the same t on database D2 with per-
turbed xi: the mechanism’s response distributions on the
two neighboring databases are point-wise close.

5.1.1 Example: Private SVM Learning

As a more practical example we have previously studied
differentially private mechanisms for support vector machine
(SVM) learning [56]. There the setting is again a private
database on which we wish to perform inference. However
the database is now composed of rows of feature vectors and
binary labels making up a training set of supervised binary
classification. The desired inference is now the more sophis-
ticated task of SVM learning [14]: in the linear case find
a hyperplane normal vector that maximizes margin on the
training set, and in the non-linear case perform this margin-
maximization in a high-dimensional feature space induced
by a user-defined kernel function.

The mechanism here responds with the weight vector rep-
resenting the learned classifier itself; the response is the
parameterization of a function. Our mechanism for linear
SVM simply adds Laplace noise to the weight vector, which
we prove using the algorithmic stability of SVM learning
to achieve differential privacy. For the non-linear case we
first solve linear SVM in a random feature space with inner-
product approximating the desired kernel before adding noise
to the corresponding solution; this first step allows us to
achieve differential privacy even for kernels such as the Ra-
dial Basis Function that corresponds to learning in an infinite-
dimensional feature space.

Another approach to differentially private SVM learning
is due to Chaudhuri et al. [11] who instead of adding noise
to the solution of SVM learning, randomly perturb the op-
timization used for SVM learning itself.

Numerous other practical learning algorithms have been
made differentially private including regularized logistic re-
gression [10], several collaborative filtering algorithms [43],
point estimation [59], nearest neighbor, histograms, percep-
tron [6], and more.

4The probabilities in the definition are over the random-
ization of mechanism M not over the databases which are
fixed.

54

5.2 Exploratory & Causative Privacy Attacks
An important observation on differential privacy is that

the definition provides for very strong, semantic guarantees
of privacy. Even with knowledge ofM up to randomness and
with knowledge of (say) the first n−1 rows D, an adversary

cannot learn any additional information on the nth row from
a sublinear (in n) sample of M(D). The adversary may even
attempt a brute-force exploratory attack with such auxiliary
information and unbounded computational resources:

1. For each possible x′
n consider D′ = x1, . . . , xn−1, x

′
n

neighboring database D

(a) Offline: Calculate the response distribution pD′

of M(D′) by simulation.
2. Estimate the distribution of M(D) as p̂D by querying

the mechanism (a sublinear number of times).
3. Identify xn = x′

n by the pD′ most closely resembling
p̂D.

However for high levels of privacy (sufficiently small ǫ), the
sampling error in p̂D will be greater than the differences
between alternate pD′ , and so even this powerful brute-
force exploratory attack will fail with high probability. The
same robustness holds even in the setting of the analogous
causative attack, where the adversary can arbitrary manip-
ulate the first n− 1 rows.

5.3 On the Role of Randomization
As suggested above, the predominant avenue for design-

ing a differentially private version of a statistic, model or
learning algorithm is to produce a randomized mechanism
that corresponds to the desired non-private algorithm, with
noise added at some stage of the inference.
The most common approach to achieving differential pri-

vacy is to add noise to the target non-private mechanism’s
response S(D), typically Laplace noise [22, 19, 6, 20, 56] but
more generally an exponential mechanism is used to ran-
domly select a response based on distance to S(D) [44, 7,
33]. In the former case, the scale of Laplace noise is directly
proportional to the sensitivity of the target mechanism S’s
response to changing between neighboring databases, and
inversely proportional to ǫ. Often-times the sensitivity itself
decreases with increasing database size, and so for larger
databases less noise is added to guarantee the same level of
differential privacy.
Differential privacy has also been achieved by randomizing

the objective function of an optimization performed to exe-
cute learning. For example Chaudhuri et al. have developed
differentially private versions of empirical risk minimizers in-
cluding the SVM [11] and regularized logistic regression [10].
In their work, the original learning algorithm is formulated
as an optimization typically minimizing the weighted sum of
empirical risk and a regularization term. By adding an ad-
ditional term which is the inner-product between the weight
vector and a random direction, learning tends to slightly pre-
fer the random direction and in so doing can be proven to
yield differential privacy under certain technical conditions.
The role of randomization of the desired statistic or learn-

ing algorithm, either through adding output noise, random-
izing an objective function, or similar, is crucial in providing
a differentially private mechanism that can release aggre-
gate information on a database while preserving the privacy
of individual data. While we have suspected randomiza-

tion could prove beneficial to fighting attacks that violate
integrity or availability [51], few positive results are known.

5.4 Utility in the Face of Randomness
The more a target non-private estimator is randomized the

more privacy is preserved, but at a cost to utility. Several
researchers have considered this inherent trade-off between
privacy and utility.

In our work on differentially private SVM learning [56], we
define the utility of our private mechanism to be the point-
wise difference between released privacy-preserving classi-
fiers and non-private SVM classifiers. A private classifier
(trained on D) that with high probability yields very similar
classifications to an SVM (trained on D), for all test points,
is judged to be of high utility since it well-approximates
the desired non-private SVM classifier. Similar notions of
utility are considered by Barak et al. [1] when releasing con-
tingency tables whose marginals are close to true marginals;
Blum et al. [7] whose mechanism releases anonymized data
on which a class of analyses yield similar results as on the
original data; and Kasiviswanathan et al. [33] and Beimel et
al. [3] who consider utility as corresponding to PAC learn-
ing where response and target concepts learned on sensi-
tive data are averaged over the underlying measure. Others
such as Chaudhuri et al. [10, 11] measure the utility of a
differential private mechanism not by its approximation of
a target non-private algorithm, but rather by the absolute
error it achieves. In all of these works, the differentially pri-
vate mechanism is analyzed with the chosen utility to upper
bound the utility achieved by that particular mechanism.

Fundamental limits on the trade-off between differential
privacy and utility have also been of great interest in past
work, through negative results (lower bounds) that essen-
tially state that mechanisms cannot achieve both high levels
of privacy preservation and utility simultaneously. In our
work on differentially private SVM learning [56] we establish
lower bounds for approximating both linear and RBF SVM
learning with any differentially private mechanism, quanti-
fying levels of differential privacy and utility that cannot be
achieved together. Dinur & Nissim [17] show that if noise of
rate only o(

√
n) is added to subset sum queries on a database

D of bits then an adversary can reconstruct a 1− o(1) frac-
tion of D: if accuracy is too great then privacy cannot be
guaranteed at all. Hardt & Talwar [31] and Beimel et al. [3]
also recently established upper and lower bounds for the
trade-off between utility and privacy in respective settings
where the mechanism responds with linear transformations
of data, and the setting of private PAC learning.

While significant progress has been made in achieving dif-
ferential privacy and utility, understanding connections be-
tween differential privacy and learnability [3], algorithmic
stability [56], robust statistics [21], and even mechanism de-
sign [44], many open problems remain in finding more com-
plete understandings of these connections, making practical
learning algorithms differentially private, and understanding
the trade-off between privacy and utility.

6. CONCLUSION
The field of adversarial machine learning can be thought

of as studying the effects of bringing the “Byzantine” to
machine learning. In this paper, we showed how two ma-
chine learning methods, SpamBayes and PCA-based net-
work anomaly detection, are vulnerable to causative attacks

55

and discussed how application domain, features and data
distribution restrict an adversary’s actions.
We also outlined models for the adversary’s capabilities,

in terms of input corruption and class limitations, and their
knowledge of the learning systems algorithm, feature space,
and input data. We also considered how an adversary at-
tacks a learning system, and discussed defenses and counter-
measures. We examined exploratory attacks against learn-
ing systems and presented an important theoretical result in
the field of near optimal evasion, showing that it was easy
for adversaries to search convex classifiers to find input that
can avoid being classified as negative.
Finally, we explored approaches and challenges for privacy-

preserving learning, including differential privacy, exploratory
and causative privacy attacks, and randomization.

7. ACKNOWLEDGMENTS
We would like to thank Marco Barreno, Peter Bartlett,

Battista Biggio, Chris Cai, Fuching Jack Chi, Michael Jor-
dan, Marius Kloft, Pavel Laskov, Shing-hon Lau, Steven
Lee, Satish Rao, Udam Saini, Russell Sears, Charles Sut-
ton, Nina Taft, Anthony Tran, and Kai Xia for many fruit-
ful discussions and collaborations that have influenced our
thinking about adversarial machine learning. We gratefully
acknowledge the support of our sponsors. This work was
supported in part by TRUST (Team for Research in Ubiq-
uitous Secure Technology), which receives support from the
National Science Foundation; DETERlab (cyber-DEfense
Technology Experimental Research laboratory), which re-
ceives support from DHS HSARPA; and the Berkeley Counter-
Censorship Incubator, which receives support from the US
Department of State; and by the Alexander von Humboldt
Foundation. We also received support from: Amazon, Cisco,
Cloudera, eBay, facebook, Fujitsu, Google, HP, Intel, Mi-
crosoft, NetApp, Oracle, SAP, VMware, and Yahoo! Re-
search. The opinions expressed in this paper are solely those
of the authors and do not necessarily reflect the opinions of
any sponsor.

8. REFERENCES
[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,

F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency
table release. In PODS’07, pages 273–282, 2007.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. D. Tygar. Can machine learning be secure? In
ASIACCS’06, pages 16–25, 2006.

[3] A. Beimel, S. Kasiviswanathan, and K. Nissim.
Bounds on the sample complexity for private learning
and private data release. In Theory of Crypto., volume
5978 of LNCS, pages 437–454. 2010.

[4] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems under attack. In Proc. Int. Workshop Multiple
Classifier Systems, volume 5997, pages 74–83, 2010.

[5] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[6] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: the SuLQ framework. In PODS’05,
pages 128–138, 2005.

[7] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
STOC’08, pages 609–618, 2008.

[8] M. Brückner and T. Scheffer. Nash equilibria of static
prediction games. In NIPS, pages 171–179. 2009.

[9] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, 2006.

[10] K. Chaudhuri and C. Monteleoni. Privacy-preserving
logistic regression. In NIPS, pages 289–296, 2009.

[11] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate.
Differentially private empirical risk minimization.
JMLR, 12:1069–1109, 2011.

[12] S. P. Chung and A. K. Mok. Allergy attack against
automatic signature generation. In RAID’09, volume
4219 of LNCS, pages 61–80, 2006.

[13] S. P. Chung and A. K. Mok. Advanced allergy attacks:
Does a corpus really help? In RAID’07, volume 4637
of LNCS, pages 236–255, 2007.

[14] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines. Cambridge University
Press, 2000.

[15] C. Croux, P. Filzmoser, and M. R. Oliveira.
Algorithms for projection-pursuit robust principal
component analysis. Chemometrics and Intelligent
Laboratory Systems, 87(2):218–225, 2007.

[16] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and
D. Verma. Adversarial classification. In KDD’04,
pages 99–108, 2004.

[17] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS’03, pages 202–210, 2003.

[18] Y. Duan, J. Canny, and J. Zhan. P4P: Practical
large-scale privacy-preserving distributed computation
robust against malicious users. In USENIX Security,
pages 207–222, 2010.

[19] C. Dwork. Differential privacy. In ICALP’06, pages
1–12, 2006.

[20] C. Dwork. A firm foundation for private data analysis.
Comms. ACM, 54(1):86–95, 2011.

[21] C. Dwork and J. Lei. Differential privacy and robust
statistics. In STOC’09, pages 371–380, 2009.

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC’06, pages 265–284, 2006.

[23] C. Dwork, F. McSherry, and K. Talwar. The price of
privacy and the limits of LP decoding. In STOC’07,
pages 85–94, 2007.

[24] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum,
and S. Vadhan. On the complexity of differentially
private data release: efficient algorithms and hardness
results. In STOC’09, pages 381–390, 2009.

[25] C. Dwork and S. Yekhanin. New efficient attacks on
statistical disclosure control mechanisms. In
CRYPTO’08, pages 469–480, 2008.

[26] R. A. Fisher. Question 14: Combining independent
tests of significance. American Statistician, 2(5):30–31,
1948.

[27] P. Fogla and W. Lee. Evading network anomaly
detection systems: Formal reasoning and practical
techniques. In CCS’06, pages 59–68, 2006.

[28] A. Globerson and S. Roweis. Nightmare at test time:
Robust learning by feature deletion. In ICML’06,
pages 353–360, 2006.

56

[29] R. Hall, S. Fienberg, and Y. Nardi. Secure multiparty
linear regression based on homomorphic encryption. J.
Official Statistics, 2011. To appear.

[30] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and
W. A. Stahel. Robust Statistics: The Approach Based
on Influence Functions. Probability and Mathematical
Statistics. John Wiley and Sons, 1986.

[31] M. Hardt and K. Talwar. On the geometry of
differential privacy. In STOC’10, pages 705–714, 2010.

[32] M. Kantarcioglu, B. Xi, and C. Clifton. Classifier
evaluation and attribute selection against active
adversaries. Technical Report 09-01, Purdue
University, February 2009.

[33] S. P. Kasiviswanathan, H. K. Lee, K. Nissim,
S. Raskhodnikova, and A. Smith. What can we learn
privately? In FOCS’08, pages 531–540, 2008.

[34] A. Kerckhoffs. La cryptographie militaire. Journal des
Sciences Militaires, 9:5–83, January 1883.

[35] M. Kloft and P. Laskov. Online anomaly detection
under adversarial impact. In AISTATS’10, 2010.

[36] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In SIGCOMM’04,
pages 219–230, 2004.

[37] P. Laskov and M. Kloft. A framework for quantitative
security analysis of machine learning. In AISec’09,
pages 1–4, 2009.

[38] C. Liu and S. Stamm. Fighting unicode-obfuscated
spam. In Proceedings of the Anti-Phishing Working
Groups 2nd Annual eCrime Researchers Summit,
pages 45–59, 2007.

[39] D. Lowd and C. Meek. Adversarial learning. In
KDD’05, pages 641–647, 2005.

[40] D. Lowd and C. Meek. Good word attacks on
statistical spam filters. In CEAS’05, 2005.

[41] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. ℓ-diversity: Privacy beyond
k-anonymity. ACM Trans. KDD, 1(1), 2007.

[42] M. V. Mahoney and P. K. Chan. An analysis of the
1999 DARPA/Lincoln Laboratory evaluation data for
network anomaly detection. In RAID’03, volume 2820
of LNCS, pages 220–237, 2003.

[43] F. McSherry and I. Mironov. Differentially private
recommender systems: building privacy into the net.
In KDD’09, pages 627–636, 2009.

[44] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS’07, pages 94–103, 2007.

[45] T. A. Meyer and B. Whateley. SpamBayes: Effective
open-source, Bayesian based, email classification
system. In CEAS’04, 2004.

[46] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[47] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph,
B. I. P. Rubinstein, U. Saini, C. Sutton, J. D. Tygar,
and K. Xia. Exploiting machine learning to subvert
your spam filter. In LEET’08, pages 1–9, 2008.

[48] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph,
B. I. P. Rubinstein, U. Saini, C. Sutton, J. D. Tygar,
and K. Xia. Misleading learners: Co-opting your spam
filter. In J. J. P. Tsai and P. S. Yu, editors, Machine
Learning in Cyber Trust: Security, Privacy,
Reliability, pages 17–51. Springer, 2009.

[49] B. Nelson and A. D. Joseph. Bounding an attack’s
complexity for a simple learning model. In Proc.
Workshop on Tackling Computer Systems Problems
with Machine Learning Techniques, 2006.

[50] B. Nelson, B. I. P. Rubinstein, L. Huang, A. D.
Joseph, S. hon Lau, S. Lee, S. Rao, A. Tran, and J. D.
Tygar. Near-optimal evasion of convex-inducing
classifiers. In AISTATS, 2010.

[51] B. Nelson, B. I. P. Rubinstein, L. Huang, A. D.
Joseph, and J. D. Tygar. Classifier evasion: Models
and open problems (position paper). In Proc.
Workshop on Privacy & Security issues in Data
Mining and Machine Learning, 2010.

[52] J. Newsome, B. Karp, and D. Song. Paragraph:
Thwarting signature learning by training maliciously.
In RAID, volume 4219 of LNCS, pages 81–105, 2006.

[53] L. Rademacher and N. Goyal. Learning convex bodies
is hard. In COLT, pages 303–308, 2009.

[54] H. Ringberg, A. Soule, J. Rexford, and C. Diot.
Sensitivity of PCA for traffic anomaly detection. In
SIGMETRICS, pages 109–120, 2007.

[55] G. Robinson. A statistical approach to the spam
problem. Linux Journal, Mar. 2003.

[56] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and
N. Taft. Learning in a large function space:
Privacy-preserving mechanisms for SVM learning,
2009. In submission;
http://arxiv.org/abs/0911.5708v1.

[57] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D.
Joseph, S. hon Lau, S. Rao, N. Taft, and J. D. Tygar.
ANTIDOTE: Understanding and defending against
poisoning of anomaly detectors. In A. Feldmann and
L. Mathy, editors, IMC’09, pages 1–14, New York,
NY, USA, November 2009. ACM.

[58] D. Sculley, G. M. Wachman, and C. E. Brodley. Spam
filtering using inexact string matching in explicit
feature space with on-line linear classifiers. In
TREC’06, 2006.

[59] A. Smith. Privacy-preserving statistical estimation
with optimal convergence rates. In STOC’2011, pages
813–822, 2011.

[60] S. J. Stolfo, W. jen Li, S. Hershkop, K. Wang, C. wei
Hu, and O. Nimeskern. Detecting viral propagations
using email behavior profiles. In ACM Trans. Internet
Technology, May 2004.

[61] L. Sweeney. k-anonymity: a model for protecting
privacy. Int. J. Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[62] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion.
Undermining an anomaly-based intrusion detection
system using common exploits. In RAID’02, volume
2516 of LNCS, pages 54–73, 2002.

[63] S. Venkataraman, A. Blum, and D. Song. Limits of
learning-based signature generation with adversaries.
In NDSS’08, 2008.

[64] D. Wagner and P. Soto. Mimicry attacks on
host-based intrusion detection systems. In CCS’02,
pages 255–264, 2002.

[65] G. L. Wittel and S. F. Wu. On attacking statistical
spam filters. In CEAS’04, 2004.

57

