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Adversarial Reconstruction Based on Tighter

Oriented Localization for Catenary Insulator

Defect Detection in High-Speed Railways

Junping Zhong , Member, IEEE, Zhigang Liu , Senior Member, IEEE, Cheng Yang, Student Member, IEEE,

Hongrui Wang , Member, IEEE, Shibin Gao , and Alfredo Núñez , Senior Member, IEEE

Abstract— The catenary insulator maintains electrical insula-
tion between catenary and ground. Its defects may happen due to
the long-term impact from vehicle and environment. At present,
the research of defect detection for catenary insulator faces
several challenges. 1) Localization accuracy is low, which causes
the localized object to be incomplete or/and merge with unnec-
essary background. 2) Horizontal localization brings inevitable
unnecessary information because horizontal box cannot fit well
with the shape of insulator. 3) Supervised learning models for
defects recognition are unreliable as the available defect samples
are insufficient to train models well. To address these issues,
this article proposes a novel two-stage defect detection method.
In the localization stage, a novel localization network called
TOL-Framework is constructed to reduce the background and
realize tighter oriented localization. Compared with general
basic framework Faster R-CNN, the TOL-Framework cascades a
regression module inside basic framework and adds an external
postprocess network, which is adversarially trained by standard
insulators to refine the localization. These two novel steps greatly
improve the oriented localization accuracy. In the defect detection
stage, an adversarial reconstruction model that is trained only
using normal samples is proposed to evaluate the defect states.
A comparison with other methods is conducted using a dataset
collected from a 60km section of the Changsha-Zhuzhou railway
line in China. The results show the proposed method has the
highest localization accuracy, and is effective for insulator defect
detection.

Index Terms— Catenary insulator, tighter oriented localization,
generative adversarial network, defect detection, deep learning,
high-speed railways.

I. INTRODUCTION

CATENARY plays an important role in transmitting

electric power from the contact line to the train, and the

reliability can directly affect railway transportation. As a key

part of the catenary, the insulator is not only a supporting and
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Fig. 1. Catenary inspection vehicle and defects of insulators. (a) Sketch map
of the catenary of the inspection vehicle and the position of the insulator.
(b) Defective insulators.

connecting component but also maintains electrical insulation

between the catenary and the ground. Due to the long-term

mechanical impact triggered by vehicles and the complex envi-

ronment along the rail line, insulators can become damaged,

which poses a risk to railway operation safety. Therefore, it is

essential to inspect the defective states of insulators.

Over the past few years, railway infra-managers have tried

to replace inefficient on-site manual inspection with computer

vision-based methods for inspecting catenary components [1].

As shown in Fig. 1(a), multiple high-resolution cameras and

illumination compensation devices are mounted on the roof

of an inspection vehicle. Images are captured at night to

avoid complex illumination and background. The cameras are

mounted symmetrically to ensure that both sides of insulators

can be inspected. The red bounding boxes in Fig. 1(a) show the

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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insulator positions in the catenary, and some defective samples

are shown in Fig. 1(b). To accomplish defect detection, two

cascade stages are always needed. The object localization

stage is first applied to the global image, and the position

of the insulator is predicted with a bounding box. Then, in

the defect detection stage, the defective states are recognized

on the localized insulator. However, inaccurate localization

makes the localized insulator incomplete or enclosed with

background, which directly interferes with the defect detection

stage. In addition, defective samples cannot generally be

collected in practice, and the quantity of available defective

samples makes it difficult to construct defect detection models.

Therefore, effective image processing algorithms for compo-

nent localization and defect detection in catenary inspection

systems are urgently needed.

For object localization, traditional methods based on

handcrafted features, such as SIFT (scale-invariant feature

transform) [2], HOG (histogram of oriented gradient) [3] and

LBP (local binary patterns) [4], have been widely used in

railways [5]–[7] and other fields [8], [9]. Zhong et al. [5]

applied template matching on a standard catenary sleeve image

and an original image to search the object position based on

SIFT. Cho and Ko [6] applied a variant of SIFT that is robust

to changes in camera viewpoint to locate pantograph positions.

Han et al. [7] used cascade support vector machines to classify

a series of sliding window images, which are represented

by a HOG to realize the localization of the catenary clevis.

Fan et al. [8] proposed a line LBP encoding method to

represent a target object, which could be used to localize

fasteners on the rail track when the illumination is complex.

In [9], [10], HOG-based deformable part models (DPMs) were

adopted to localize pedestrian and human faces. However,

most traditional methods are not robust to changes in size,

shape, illumination, position, background of the object, etc.

In the case of catenary, when traditional methods craft certain

features to detect the insulators, they can perform well on

one type of images in which attributes are relatively fixed.

When those attributes change, the performance of traditional

methods declines [5], [23], [24]. With deep learning, we have

more parameters to be tuned than with traditional methods,

giving more flexibility to capture various real-life catenary and

measurement conditions.

In recent years, CNN-based deep learning techniques have

shown great power in object localization, and they follow

two kinds of basic frameworks: R-CNN (region-based con-

volutional neural network) [11] and YOLO (You Only Look

Once) [12]. Most recently proposed localizers are based on

R-CNNs. Ren et al. [13] proposed Faster R-CNN, which

can accelerate the proposal generation and realize end-to-end

training. He et al. [14] proposed a residual network (ResNet)

to train deeper backbone networks and extract more discrim-

inative features than other networks. Dai et al. [15] proposed

the R-FCN (region-based fully convolution networks), which

adopts a fully convolutional network as a feature extractor

to accelerate the deep ResNet. Lin et al. [16] constructed

an FPN (feature pyramid network) by exploiting the inherent

multiscale and pyramidal hierarchy of deep convolutional

networks. In [17], a multistage extension of R-CNN called

Fig. 2. Insulators localized by current methods. (a) Incomplete localiza-
tion. (b) Incomplete localization and unnecessary background information.
(c) Unnecessary background information.

cascade R-CNN was proposed to improve the localization

quality. Some localizers are also proposed based on YOLO.

Liu et al. [18] presented a single-shot multibox detector

(SSD) that regresses a set of default bounding boxes on

multiple layers to realize real-time localization. Redmon and

Farhadi [19] introduced the faster and stronger architecture

YOLO9000, which can achieve a trade-off between speed

and accuracy. However, all these methods generally localize

the object with a horizontal bounding box, and only a few

works [20]–[22] have investigated arbitrarily oriented localiza-

tion based on an R-CNN. Both types of deep learning methods

based on horizontal bounding boxes have been proposed for

the localization of catenary components [23]–[26]. However,

these methods face difficulties when fitting the shape and

the position of insulators, making the localized insulator

incomplete or enclosed with unnecessary background.

For defect detection, Karakose et al. [27] used a Hough

transform and edge extraction to detect the surface defects of a

pantograph effectively. Supervised classification methods were

applied in [23], [28], [30], [31] to classify different states of

railway fasteners or pantographs directly. However, supervised

learning is not suitable for the detection of defective insula-

tors because usually large number of defective samples are

unavailable. This makes it difficult, for instance, to effectively

train neural networks. Few unsupervised learning methods,

such as autoencoders [32] and GAN (generative adversarial

network) [33], have been used for surface defect detection of

catenary insulators [25], [34] and other abnormality detection

tasks [35], [36]. The existing catenary insulator detection

methods [25], [34] are based on horizontal localization, which

is not effective for defect detection.

Overall, various problems from currently available methods

need to be solved for defect detection of catenary insulators.

Some of those problems as listed below.

1) The localization accuracy is not high, which causes the

insulators to not all be localized. Those localized insulators can

be incomplete or include unnecessary background information,

as shown in Figs. 2(a) and 2(b).

2) Horizontal bounding box localization yields inevitable

unnecessary background information even if horizontal bound-

ing boxes are perfectly predicted, as shown in Fig. 2(c).

3) There is a lack of defective samples. In practice, it is

hard to collect large numbers of different defective samples to

construct a defect detection model.

To address these problems, the proposed method in this

article considers three neural networks, namely BLN, GAN-1

and GAN-2. First, we use BLN to localize insulators with

Authorized licensed use limited to: TU Delft Library. Downloaded on February 17,2021 at 08:52:13 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Overview of the proposed insulator defect detection method.

oriented boxes rather than using traditional horizontal boxes.

Then, the GAN-1 is applied to further adjust the localized

box to enclose insulator tightly. Finally, the GAN-2 is utilized

to detect defects on the localized insulators. The GAN-2 is

introduced because it is trained only using normal samples,

which solves the issue that the available defect samples are

insufficient to construct defect detection models.

We summarize the contributions of this article as follows.

1) A novel TOL-Framework (BLN with GAN-1) is proposed

to realize arbitrarily oriented localization and greatly improve

the accuracy compared with several competitive methods. The

novelties of the TOL-Framework are listed below.

• The angle information of the insulator is used for

bounding box regression, which can realize oriented

localization.

• A cascade regression module inside the generic Faster

R-CNN framework is proposed to refine the oriented

bounding box preliminarily.

• To further improve the localization accuracy, we included

a GAN (called GAN-1) behind the basic localization

network. The GAN-1 selects the bounding box image

which has the largest similarity with the insulator as the

final localized bounding box, which makes the obtained

box enclose the insulator better. It is a new application

of GAN for improving localization accuracy.

2) A new defect detection method based on a GAN (called

GAN-2) is proposed for catenary insulators, whose advantages

are as follows:

• The training of GAN-2 only needs normal samples. This

solves the issue that the available defect samples are

insufficient to construct defect detection models.

• The reconstruction error is computed in local insulator

patches, which have a relatively fixed texture and size.

Thus, even small defects can be detected effectively.

The rest of this article is organized as follows. Section II

provides an overview of the insulator defect detection

method. Section III introduces the structure of the proposed

TOL-Framework and describes how to realize tighter oriented

localization. Section IV presents the details of the defect

detection process. Section V gives the experiments to evaluate

the performance of our method. Finally, conclusions are drawn

in Section VI.

II. OVERVIEW OF OUR METHOD

The overview of our method is shown in Fig. 3, which

mainly consists of two successive stages, namely, tighter

oriented localization and defect detection. The image size is 6,

600×4, 400 pixels, which ensures that defects in the insulator

can be clearly observed even though the defective regions are

very small.

A. Tighter Oriented Localization

To solve the inevitable problems caused by the

horizontal-box localization presented in Fig. 2 and to

further improve the localization accuracy, a TOL-Framework

(tighter oriented localization framework) is proposed in this

article. The workflow of the TOL-Framework is described

as follows. Original catenary images are input into a basic

localization network, which includes the CNN backbone,

ORPN and a cascaded oriented box regression, to predict

a preliminary oriented box for each target insulator. Then,

for each preliminary bounding box, a candidate set can be

produced according to the extreme IoU, which ensures that

nearly all insulators are localized. The candidate sets are input

into a GAN-1 module, which is trained by only using normal

standard insulator images to compute the reconstruction error.

Finally, the candidate that has the minimum error is regarded

as the localized bounding box for this insulator.

Compared with the structure of the current basic localization

model [13], [20], [21], the TOL-Framework cascades a bound-

ing box regression module inside the model and adds an exter-

nal postprocessing module to refine the positions of bounding

boxes predicted by the basic model. In addition, a rotational

RPN is applied, and a pyramid feature with ResNet-101 as

the CNN backbone is selected to realize oriented localization.

Details of the TOL-Framework are described in Section III.

B. Defect Detection

The accurate oriented localization stage has provided insula-

tor images that are tightly enclosed nearly without unnecessary

background information, and all insulators can be rotated to

the horizontal and have similar textures, which is helpful

for defect detection. As the available defective samples are

insufficient for deep model training, we propose a GAN-based

method that only uses normal samples for training. The

workflow of defect detection is as follows. An HT&PE (Hough

transform & path estimation) algorithm is applied on the local-

ized insulator to extract insulator patches through the body

of the insulator. Then, all the patches are input into GAN-2,

which is trained by only using normal insulator patches to

compute the reconstruction error. Finally, defects and their
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Fig. 4. Structure of the TOL-Framework.

positions are evaluated by a defect score (Defect_score), which

is defined according to the reconstruction error. Details of

defect detection are presented in Section IV.

III. TIGHTER ORIENTED LOCALIZATION

In this section, we describe the structure of the proposed

TOL-Framework and explain how it realizes tighter oriented

localization. The TOL-Framework includes two parts, namely,

a basic localization network (BLN) and a post-refinement

network (PRN), as shown in Fig. 4.

In general, the existing catenary localization method

follows the following architecture: CNN backbone->RPN-

>horizontal-box regression. In this article, a new architec-

ture is proposed, namely, CNN backbone->ORPN->cascaded

oriented bounding box regression, and it is used as a

basic localization network in the TOL-Framework to pre-

dict preliminary bounding boxes of insulators. To further

improve the oriented localization accuracy and obtain tighter

boxes, a post-refinement network behind the basic localization

network is added. The details of the TOL-Framework are

elaborated as follows.

A. Basic Localization Network

The BLN follows the widely used R-CNN architecture [13],

[20], [21], and it consists of three subnetworks, namely,

the CNN backbone, oriented region proposal network (ORPN)

and cascaded oriented bounding box regression. The CNN

backbone extracts semantic features from the input catenary

image first. Then, the ORPN generates oriented proposals

for the insulator targets based on the extracted feature maps.

Finally, two regression modules are successively applied to

produce the preliminary oriented box for the insulator.

1) CNN Backbone (ResNet-101+FPN):: The CNN

backbone processes the input image and generates conv

feature maps at multiple levels. Unlike the commonly used

methods [11]–[15], [17], [20]–[24] that only use the top-level

feature map, we build a feature pyramid network (FPN) [16]

and use pyramid features as the extracted features. The FPN

is effective as each pyramid level is fused with higher-level

semantic features of the backbone. For the backbone, a widely

used ResNet model [14] with 101 conv layers is chosen.

Specifically, as shown in Fig. 4, the captured 6, 600 × 4.400

pixels catenary image is resized to 900 × 600 pixels, which

goes through bottom-up conv-residual blocks of ResNet and

produces activation maps at five scales with a scaling step

of 2 by feedforward computing. The generated features of

the backbone are defined as {C1, C2, C3, C4, C5}, which

are the last output features of each conv-residual block.

These features (except for C1 due to its large memory

consumption) are further enhanced from the top-down

pathway via lateral connections. Each lateral connection

upsamples the upper pyramid feature by a factor of 2 and

merges with the corresponding bottom-up map, which adds a

1 × 1 convolutional layer to reduce the channel dimensions.

The enhanced pyramid features {P2, P3, P4, P5, P6} are the

final extracted features of the CNN backbone.

2) Oriented Region Proposal Network: An RPN [13] is a

sliding window class agnostic object detector. A traditional

RPN applies an anchor strategy, which has scale and aspect

ratio parameters, to the top-level feature map to produce initial

horizontal bounding boxes, which are called anchors. These

anchors are classified and regressed as proposals. Compared

with a traditional RPN, two adjustments are made to design the

ORPN. First, an orientation parameter is added to the anchor

strategy to produce rotated proposals for insulators. Second,

proposals are produced not only on the top-level feature map

but also on the pyramid features. Specifically, the workflow

of the ORPN can be described as follows. At each point

of the feature map, Pi (i = 2, 3, 4, 5, 6), 49 (7 × 7 × 1,

orientations × aspect rations × scale) oriented anchors are

produced with 7 orientations{0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦},

7 aspect ratios {1/5, 1/3.5, 1/2, 1, 2, 3.5, 5} and one

scale [32×(i−1)]2. Then, the oriented anchors are sent to

the object/background classification module and regression is

coordinated to generate proposals. Finally, the proposals are

mapped to the corresponding regions in the feature map Pi,

as shown by the red bounding box in Pi in Fig. 4, and passed

to the cascaded oriented bounding box regression subnetwork.

3) Cascaded Oriented Bounding Box Regression: Gener-

ally, only a single bounding box regression module trained

with IoU = 0.5 is applied. As the top box regression shows

in Fig. 4, the feature of the proposal is downsampled to 14×14

pixels by ROI pooling and is sent to several fully connected
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Fig. 5. Candidate bounding box generation. (a) Ground-truth bounding
box and the bounding box predicted by the BLN. (b) Overlap and angle
differences. (c) Seed region and candidate bounding boxes.

layers for classification and regression. Inspired by a cascade

R-CNN [17], a cascaded oriented bounding box regression

module, which is trained with IoUs of 0.5 and 0.5, is applied

to improve the localization accuracy. Three or more regression

modules are not cascaded because there is little accuracy

improvement when more regression modules are applied. The

reason for setting the second IoU to 0.5 rather than a higher

IoU is that many boxes output by the first regression will

be filtered due to their low IoUs, and training samples will

not be enough for the added regression module. As shown

in Fig. 4, the yellow bounding boxes predicted by the cascaded

regression modules are much closer to the true positions of

the insulators when compared with the red bounding boxes

predicted by single regression.

B. Post-Refinement Network

Even though the localization accuracy of the BLN is obvi-

ously improved, it still cannot satisfy the requirement of defect

detection. In this article, we propose a post-refinement network

based on a defined reconstruction error to make the localized

boxes tighter to their true positions, which is computed by

a trained GAN (generative adversarial network). We show

the overall process in Algorithm 1. The details of the two

subprocesses are also presented below.

Algorithm 1 Post-Refinement

1: Input: m Boxes localized by the BLN {B1, B2, …, Bm}

2: Output:m Post-refined boxes {B ′
1, B ′

2, …, B ′
m}

3: for each box Bi (i <= m) do

4: Apply candidate bounding box generation and obtain a

candidate bounding box set {Bi1, Bi2, …, Bin}

5: for j <= n do

6: send Bi j into the trained GAN-1 to compute

reconstruction error ei j

7: end for

8: select the candidate bounding box which has the minimum

loss min{ei1, ei2,…, ein} as the post-refined bounding box B ′
i

9:end for

1) Candidate Bounding Box Generation: In Section V.B,

we will prove that all the boxes produced by BLN have

IoUs > 0.8 & |�ϕ| < 10◦(overlaps with their true positions

are more than 0.8, and angle differences with their true angles

are less than 10◦) in the testing experiment. The definitions

of IoU [21] and |�ϕ| are shown in formula (1) and Fig. 5(b).

Fig. 6. Generative adversarial network.

Therefore, for each bounding box Bi predicted by the BLN,

a minimum region that contains the central points of potential

ground-truth bounding boxes can be formed. In this article, we

extend the minimum region and define a seed region that has

the same central point as Bi and has a size of [w/5, h/5].

The seed region is divided into 12× seeds, as shown

in Fig. 5(c). In each seed, 50 candidate boxes (with 5 scales

of 0.9, 0.95, 1, 1.05, 1.1 based on [w, h], and with 10 angles

by an angle stride of 2◦ in [−10◦ ∼10◦], thus 5 × 10 = 50)

will be generated. Finally, the seed region can generate 3,600

(12 × 6 × 50) candidate boxes, which form the candidate set

{Bi1, Bi2, …, Bin} in Algorithm 1. Note that each candidate

set includes the ground-truth bounding box or a bounding box

that is very close to the ground-truth bounding box.

IoU =
S(P) ∩ S(G)

S(P) ∪ S(G)
(1)

2) Generative Adversarial Network Refinement: Horizontal

standard catenary insulators have similar appearances. In each

candidate set {Bi1, Bi2, …, Bin}, we can select the bounding

box that has the largest similarity with the standard insulator

as the final localized bounding box. Thus, we utilize a GAN-1

model to evaluate the similarity. The GAN-1 model was adver-

sarially trained by only using a large amount of standard nor-

mal insulators, and it only fits well with a standard insulator.

The overview of the GAN-1 model is shown in Fig. 6, which

includes a generator (encoder-decoder) and a discriminator

(encoder followed by a softmax classifier f (•)). The structures

of the encoder and decoder follow the DCGAN in [37].

During training, the contextual loss, adversarial loss and latent

loss are computed, which are expressed in formulas (2)-(4),

respectively. The main training objective is to minimize a

weighted sum of these losses, as shown in formula (5).

Minimizing the contextual loss indicates that the generator

makes the texture of the generated image x̂ similar to the

texture of the input x . Moreover, minimizing the adversarial

loss and latent loss makes the discriminator unable to classify

x (the real image) and x̂(the generated fake image) correctly.

Contextual loss:

Lcon = Ex∼px

∣

∣x − x̂
∣

∣

1
(2)

Adversarial loss:

Ladv = Ex∼px [log D(x)] + Ex∼px [log(1 − D(x̂))] (3)
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Fig. 7. GAN-based post-refinement. (a) The box with the minimum
reconstruction error is selected. (b) Comparison between different candidates
and their fake images.

Latent loss:

Llat = Ex∼px

∣

∣ f (x) − f (x̂)
∣

∣

2
(4)

Total loss

L train = Ladv + 30 ∗ Lcon + Llat (5)

Note that the GAN-1 model is trained by only using

standard insulators, and the trained parameters of the GAN-1

model cannot fit well with nonstandard insulators. When a

nonstandard insulator and a standard insulator are tested in the

GAN-1 model, the standard insulator has a smaller contextual

error and latent error than the nonstandard insulator. Thus,

we define the reconstruction error e, defined in formula (6),

to evaluate the difference between the test image and the stan-

dard insulator image. For a bounding box Bi predicted by the

BLN, when its candidate bounding boxes {Bi1, Bi2, …, Bin}

are input into the trained GAN-1 model and their reconstruc-

tion errors are computed, the candidate box with minimum

error is regarded as the post-refined bounding box. Fig. 7(a)

shows an example of the reconstruction errors computed on

a candidate set. The 444th candidate bounding box with the

minimum error of 0.299 was selected as the post-refined

bounding box. Fig. 7(b) shows some candidate bounding boxes

and their fake images produced by the generator. It shows

that the fake image of the candidate bounding box, which

is similar to the standard insulator, changes minimally when

compared with the candidate, and the reconstruction error is

also minimal.

e = 2 ∗ Lcon + Llat (6)

IV. DEFECT DETECTION BASED ON A GENERATIVE

ADVERSARIAL NETWORK

To address the issue of insufficient defective samples for

defect detection, we utilize a GAN-2 model, which was trained

on normal insulator patches to obtain the reconstruction errors

of the test patches; defects can be detected according to the

obtained errors. The structure of the GAN-2 model in this part

is similar to that of the model GAN-1 used in localization

in section. III.B, but we apply the GAN-2 model on insulator

patches rather than global insulators because the difference in

the reconstruction errors between normal global insulators and

defective global insulators is not obvious, which makes small

defects undetectable. In addition, the defect position cannot

be confirmed when the GAN is applied on a global insulator.

In this part, HT&PE (Hough transform and path estimation)

is first used to extract insulator patches throughout the body

of the insulator, and then the extracted patches are input into

the GAN to distinguish states.

A. Local Insulator Patch Extraction by HT&PE

Suitable insulator patches should have similar textures to

help the GAN-2 model detect defects and cover the whole

body of the insulator to ensure that each part of the insulator

is detected. To obtain this kind of insulator patch, we apply

an HT (Hough transform) to obtain the top and bottom points

of the insulator and estimate suitable sliding paths. Then,

a window with a fixed scale slides along the paths and crops

the local insulator images as extracted patches. The details of

the HT&PE are described as follows.

As the localized insulator is rotated horizontally, the top

and bottom points of the insulator pieces are nearly collinear,

as shown by the red bounding boxes in Fig. 8(b). Therefore,

these two groups of points can be obtained by using an HT

(Hough transform) [38], which detects two straight lines in the

angle ranges (−90◦, 80◦] and [80◦,90◦). Fig. 8(e) shows the

Hough matrix produced by HT. The points in the red boxes

are the two maximum values that correspond to two groups

of points in Fig. 8(b). The definition of angle θ is shown

in Fig. 8(a). Moreover, the midpoints (yellow boxes (x1, y1)

and (x2, y2) in Fig. 8(b)) and the average distance r between

adjacent insulator pieces can be obtained. Therefore, we can

roughly evaluate the window-sliding paths with the following

ellipse formula.

{

x = xcent + 0.5 ∗ a ∗ cos(t)

y = ycent + r ∗ sin(t),
t ∈(

π

k
,

2π

k
), k =(1, 2, . . . , 30)

(7)

where (xcent , ycent ) is the midpoint of (x1, y1) and (x2, y2)

and a is the distance between (x1, y1) and (x2, y2), which is

regarded as the long axis of the ellipse. Therefore, a window

with a fixed width of 1.2∗r slides along the evaluated paths

through the body of the insulator to obtain insulator patches,

as shown in Figs. 8(c) and (d). Note that the patches that

exceed the region between two detected lines are removed.
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Fig. 8. Extract local insulators by the HT&PE. (a) Definition of θ in (d).
(b) Detected collinear points and ellipse-sliding path. (c) Window sliding along
a path. (d) Local insulator patches obtained through the insulator. (e) Hough
matrix.

Fig. 9. Reconstruction errors for patches in an insulator image.

B. Defect Detection by a GAN-2 Model

The structure of the GAN-2 model is similar to that of the

GAN-1 model, which is shown in Fig. 6. However, the GAN-2

model is used for distinguishing insulator states, while the

GAN-1 model is used for localization refinement. We utilize

normal insulator patches rather than global insulators to train

the GAN-2 model because small defects on the global insulator

are not obvious and cannot be detected correctly. The states of

the insulator can be distinguished according to the reconstruc-

tion error e, which is expressed in formula (6). Fig. 9 shows

the e of patches in an insulator, and the e of the defective

patch is much larger than the e of a normal patch.

Based on the reconstruction error, we define an adaptive

Defect_score, which is normalized to [0, 1], to quantitatively

assess the defect of the insulator patch.

Defect_score=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ei − median(e1, . . . , ei, . . . , eN )

emax − emin
,

if ei ≥ median(e1, . . . , ei, . . . , eN )

0, if ei < median(e1, . . . , ei, . . . , eN )

(8)

Fig. 10. Image data collection. (a) JX-300 inspection vehicle. (b) Collected
catenary images.

where N is the number of insulator patches in an insulator

image and emax and emin are the maximum and minimum

reconstruction errors in an insulator image, respectively.

Considering that the defect region in an insulator image is

always smaller than the normal region, the Defect_score of the

insulator patch is 0 when its e is less than the median error.

When the e of a patch is much larger than the median error,

the Defect_score of this patch is high. In this article, we pre-

defined a threshold Td for defect detection decisions, and an

insulator patch is considered defective when its Defect_score

exceeds the threshold Td

V. EXPERIMENTS AND ANALYSIS

A. Dataset and Platform

The image dataset adopted in this study are 6600 × 4400

pixels images that were collected by the JX-300 inspection

vehicle, as shown in Fig. 10. The used dataset was collected

from a 60km section in the railway line from Changsha to

Zhuzhou in China. It has in total 2,479 catenary images, which

include approximately 7,450 insulators. We use 1,240 catenary

images to train the TOL-Framework and 1,239 images for

testing. For GAN training, 3,000 standard insulator images

are used to train the GAN-1 model, and 100,000 insulator

patches are used to train the GAN-2 model. To build a dataset

that can be directly used for deep learning models for oriented

localization, we apply a special oriented annotation tool,

Collabeler, to annotate each insulator in both the training and

testing sets, the latter of which is just required for evaluation.

In each annotation, the insulator is manually assigned an

oriented rectangular bounding box and a category tag.

The experimental environment of all the implemented deep

learning models is as follows: TensorFlow deep learning
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framework, Linux Ubuntu 14.04, Intel Xeon CPU E3-1230 V2

clocked at 3.3 GHz, 12 GB RAM, and GTX1080Ti GPU with

11 GB memory.

B. Performance Evaluation of Localization

1) Training Parameters and Evaluation Criteria: For fair

comparisons, all the deep learning models are trained by

using similar parameter settings, which are as follows. The

momentum and weight decay are set to 0.9 and 0.0005,

respectively. The total number of iterations is set to 40,000.

The learning rate is initialized a large number (0.001) and then

decayed at the 20,000th and 30,000th iterations by multiplying

by 0.1. For the evaluation criteria, the widely used precision,

recall and F1-score are adopted, which are expressed in

formulas (9)-(11), respectively, where TP is the number of

correctly classified insulators, FP is the number of objects

that are misclassified as insulators, and FN is the number of

insulators that are misclassified as other objects. In particular,

the AP (average precision) is adopted to evaluate the overall

localization performance, as expressed in formula (12). The

AP is equal to the area under the precision-recall (P-R) curve.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

AP =

∫

P(R)d R (12)

2) Verification of the Effectiveness of the Proposed Modules:

To verify the localization improvements produced by the

selected FPN and the proposed modules (the cascade regres-

sion and post-refinement modules), we take the oriented Faster

R-CNN ResNet-101 model as the baseline and progressively

add the proposed modules to the baseline to construct different

models for comparison. All of these models are trained and

tested on our built catenary dataset. Note that, unlike the exist-

ing methods that use a loose IoU threshold (i.e., 0.5 or 0.7)

to evaluate the localization performance, we also apply strict

IoU thresholds. In this article, we set the IoU threshold to 0.5,

0.8 and 0.9 and |�ϕ| < 10◦ (the angle difference between

the ground-truth bounding box and predicted bounding box is

less than 10◦) to give a more comprehensive evaluation. The

obtained localization performances of the compared models

are shown in Tabs. I-III, and the corresponding P-R curves

are displayed in Figs. 11(a)-(c). We compare and analyze these

results as follows.

1) The models with FPN, cascade regression or

post-refinement modules achieve higher precision, recall,

F1-score and AP than the baseline model, especially when

a high IoU threshold is applied. As shown in Tab. III and

Fig. 11(c), the AP of the baseline model drops greatly from

0.914 to 0.159 when the IoU threshold is changed from

0.5 to 0.9, but the AP of the proposed TOL-Framework is

0.804 when the IoU threshold is 0.9. The AP improvement

brought by FPN, cascade regression or post-refinement

TABLE I

LOCALIZATION PERFORMANCES WITH AN IOU THRESHOLD OF 0.5

TABLE II

LOCALIZATION PERFORMANCES WITH AN IOU THRESHOLD OF 0.8

TABLE III

LOCALIZATION PERFORMANCES WITH AN IOU THRESHOLD OF 0.9

can be observed obviously from the areas under the PR

curves in Fig. 11, and the quantitative AP values are shown

in Tabs. I-III. This finding indicates that our proposed modules

are effective in obtaining tighter oriented localization.

2) When the IoU threshold is set to a low value (0.5), all

the compared methods have high APs (over 0.9), as shown

in Tab. I and Fig. 11(a). However, all methods’ APs decrease

with the growth of the IoU threshold value, and their perfor-

mances have obvious differences, which indicates that the low

IoU threshold used in the existing methods [25], [34] is not

suitable for evaluation and the high IoU threshold is effective

for performance evaluation.

3) The recall and precision of the baseline + FPN +

Cascade regression model are near 1 when the IoU threshold

is 0.8, as shown in Fig. 11(b). When the IoU threshold exceeds

0.8, the recall and precision are less than 1. Therefore, 0.8 is

the extreme IoU threshold for the baseline + FPN + Cascade

regression model, which can also be observed in the AP vs

IoU curve of the TOL-Framework (Fig. 12). Thus, we applied

post-refinement to the baseline + FPN + Cascade regression

model when the IoU threshold is 0.8 to ensure candidate

bounding box generation is implemented in a minimum region

and all insulators are correctly classified.
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TABLE IV

COMPARISONS OF THE OVERALL PERFORMANCE

Fig. 11. PR curves of the different localization models. (a) PR curve with
an IoU threshold of 0.5. (b) PR curve with an IoU threshold 0.8. (c) PR curve
with an IoU threshold 0.9.

The above presents a quantitative analysis of the localiza-

tion performance. The following Figs. 12(a)-(c) also display

some localization results produced by different methods for

comparison, which shows that the proposed modules can help

to obtain tighter oriented boxes and achieve high localiza-

tion accuracy than the comparison methods. The size of the

trained TOL-Framework is 1,324 Mb, and the test efficiency

is 0.332 FPS (frame per second). It can be run successfully

on the GTX1080Ti GPU.

3) Comparison of the TOL-Framework With Other

Localization Methods: We compare the proposed

TOL-Framework with other oriented localization methods,

namely, R2CNN [20], RRPN [21], R-DFPN [22] and

the widely used horizontal localization method Faster

R-CNN [13]. To analyze the post-refinement model, the TOL-

Framework without post-refinement is used for comparison.

The localization performances of all compared methods are

shown in Fig. 13, which are the AP vs IoU threshold curves.

1) When the IoU threshold is less than 0.8, only our

proposed TOL-Framework and the TOL-Framework without

post-refinement have the highest APs, which are close to 1.

According to formulas (6), (7) and (9), both the recall and

precision are equal to 1, which indicates that the proposed

methods can localize all the insulators, but the localized insula-

tors may have low overlaps with their true positions. Moreover,

the APs of the other compared methods are less than those of

our methods, which indicates that some insulators cannot be

localized by these comparison methods even when the IoU

threshold is set to a low value. 2) When the IoU threshold

is larger than 0.8, the APs of our methods decline slower

than those of other methods, which indicates that the insulator

boxes produced by our methods are closer to their true

positions. 3) As the green curve in Fig. 13 shows, we apply

the post-refinement module to baseline + FPN + Cascade

regression when the IoU threshold is set to 0.8 because

some insulators cannot be localized (AP < 1) when the

IoU threshold is larger than 0.8 and inaccurate localization

(AP ≈ 1, but overlaps with true positions are small) will

lead to time cost increases and performance degradation in

the post-refinement module. 4) The TOL-Framework achieves

higher APs than the horizontal localization Faster R-CNN

model for all IoU thresholds. The comparison results show

the proposed TOL-Framework performs better than other

localization methods based on neural networks.

C. Overall Performance Evaluation for Defect Detection

In our experiment, the threshold Td of defect_score for

defect detection is set to 0.65, and the GAN-2 model is trained

for 50 epochs. The learning rate is initialized at 0.0002, and

it is decayed by multiplying it by 0.5 at the 40th epoch. Our

dataset includes 82 defect insulators, all of which can be used
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Fig. 12. Localization cases produced by different methods. (a) Localization of the baseline + FPN model. (b) Localization of the baseline + FPN + Cascade
regression model. (c) Localization of the baseline + FPN + cascade regression + post-refinement (TOL-Framework) model.

Fig. 13. Localization performances of all the compared methods.

for testing because the proposed GAN-based defect detection

method does not need defective samples for training. During

testing, 79 defect insulators are correctly detected, and 3 defect

insulators are not detected by using the TOL-Framework with

GAN-2, which are reported in TPs (true positives) and FNs

(false negatives), respectively, in Tab. IV. In Fig. 14, examples

of defect detection results for different insulators in the China

railway line are presented. The Defect_score maps of defective

patches show higher values in the locations with defects.

In particular, small defects are correctly detected, as shown

in Fig. 14(b) and Fig. 14(d). In addition, the proposed method

can find the position of the defect on the insulator. The

obtained detection results can be directly used as maintenance

decision support for asset managers.

We compare not only the performances of two different

GANs based on the global insulator and insulator patches but

also our method with the current catenary insulator detection

methods [25], [34]. The quantitative results are presented

in Table IV. It shows the proposed method “TOL-Framework

with GAN-2” has the highest accuracy (F1-score) 0.946. The

speed of the proposed method is 0.27 (Frame/s), which is

slower than other methods. As the current catenary detection

system is implemented off-line, accuracy is the most important

feature. The obtained results can be provided to asset managers

as maintenance decision support information.

In this article, the proposed method is evaluated with

an image dataset collected from a section of the rail line

Changsha-Zhuzhou. The method can be directly applied to

Fig. 14. Defect_score maps of different defective insulators produced by the
proposed GAN-2 model.

the rest of this rail line as well. Note that there are also

other railway lines in China with the same configuration and

type of catenary system. This means that the proposed method

Authorized licensed use limited to: TU Delft Library. Downloaded on February 17,2021 at 08:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHONG et al.: ADVERSARIAL RECONSTRUCTION BASED ON TIGHTER ORIENTED LOCALIZATION 11

can be applied to these railway lines as well using the same

inspection vehicle for image collection. For other railway lines

with a different type of insulator or a different configuration

of catenary, a new dataset from the new railway line should be

built and the model parameters should be tuned accordingly.

VI. CONCLUSIONS

This article proposed a novel method for catenary defect

detection. A new localization method, the TOL-Framework,

is applied to realize tighter oriented localization, which can

greatly reduce the harmful effects of incomplete localization

and unnecessary background information and provide suitable

insulator images for defect detection. For defect detection,

a GAN-based method is proposed to evaluate the errors

between normal samples and defective samples to realize

defect detection. The GAN-based method can solve the prob-

lem of insufficient available defective simples with supervised

learning. Experiments show that our method is effective for

insulator defect detection.

There are still several aspects that need to be further

considered:

1) Generalization of the method, including analysis of other

railway lines with different catenary systems.

2) The efficiency of the post-refinement network can be

further improved. Developing an adaptive algorithm for

the selection of candidate boxes may help to reduce the

time cost of our method.

3) The camera captures 2D images, which may not include

all sides of the insulator. Thus, 3D inspection techniques

could be attempted in the future.
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