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Abstract

Adversarial attacks are the main security issue
of deep neural networks. Detecting adversarial
samples is an effective mechanism for defending
against adversarial attacks. Previous works on de-
tecting adversarial samples show superior in accu-
racy but consume too much memory and comput-
ing resources. In this paper, we propose an adver-
sarial sample detection method based on pruned
models. We find that pruned neural network mod-
els are sensitive to adversarial samples, i.e., the
pruned models tend to output labels different from
the original model when given adversarial sam-
ples. Moreover, the channel pruned model has an
extremely small model size and actual computa-
tional cost. Experiments on CIFAR10 and SVHN
show that the FLOPs and size of our generated
model are only 24.46% and 4.86% of the origi-
nal model. It outperforms the SOTA multi-model
based detection method (87.47% and 63.00%) by
5.29% and 30.92% on CIFAR10 and SVHN, re-
spectively, with significantly fewer models used.

1. Introduction
Though Deep Neural Networks (DNN) have achieved great
success in various applications, e.g., computer vision (Pham
et al., 2020), natural language processing (Brown et al.,
2020), and speech recognition (Pan et al., 2020), the exis-
tence of adversarial samples undermines their use in safety
critical areas and raises public concern. The Machine Learn-
ing (ML) community has proposed many approaches to
improve DNN robustness against adversarial samples, in-
cluding data augmentation (Tian et al., 2018; Kurakin et al.,
2016), adversarial training (Yu et al., 2018; Li et al., 2020b),
and robust optimization (Deng et al., 2020). These ap-
proaches can improve the robustness of the model to a cer-
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tain extent, but ask for additional data and training, which
cost intensive resources, especially for those large models.

The other optional defense strategy is detecting adversarial
samples. The ML community has observed that adversar-
ial samples are different from benign samples in multiple
aspects, including data distribution (Li et al., 2020a; Chen
et al., 2020), decision boundary (Yin et al., 2019), and neu-
ron activating path (Ma & Liu, 2019). The model developer
can distinguish adversarial samples by these characteristics
and stop them from attacking the model. The software en-
gineering community proposes the concept of DNN testing
that aims to detect bugs in the DNN model (Tian et al., 2018;
Ma et al., 2018; Wang et al., 2020). Adversarial samples are
a kind of bug hidden in the DNN model. One of these test-
ing methods for detecting adversarial samples is mutation
testing (Wang et al., 2019). It generates multiple models by
randomly shuffling neuron weights or change the activation
state of neurons. They find that the generated models are
sensitive to adversarial samples, which means the outputs of
generated models are different from the original model. For
an unknown sample, through the label changes of generated
models, we can distinguish whether it is adversarial.

We argue that distinguishing adversarial samples using mul-
tiple models is a more reliable strategy for adversarial sam-
ple detection. (Huang et al., 2020) shows that many defense
methods, including improving model robustness or detect-
ing adversarial samples, are vulnerable to certain attacks. In
extreme cases, such as the attacker grabs both model details
and defense strategy, these methods can be even circum-
vented (Carlini & Wagner, 2017). Most of the detection
methods evaluated in (Carlini & Wagner, 2017) use indica-
tors from a single model. Since the indicator comes from
the victim model and the perturbation updated in the attack
also uses the output of the model or its gradient information,
it is possible to design an adaptive attack strategy to circum-
vent these indicators (Carlini & Wagner, 2017) by adding
constraints in the attack objective. For the multiple-model
method, the indicator comes from various models, it is hard
to guarantee that the perturbation works on all the models.

However, mutation testing is barely practical because the
detection requires running dozens of models with almost
the same size as the original model. In this paper, we find
that models with channels being randomly pruned are more
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Figure 1. The outputs of benign sample and adversarial sample.

sensitive to adversarial samples. Moreover, pruning also
reduces the model size, making the detection feasible in
practice. Through experiments on CIFAR10 and SVHN, we
proved the effectiveness of our method. It can detect 92.76%
and 93.92% adversarial samples on CIFAR10 and SVHN,
with 29.24 and 30.68 pruned models that are only 24.46%
and 4.86% the size of the original models, respectively.

2. Related Works
As far as we know, Model Mutation Testing (MMT) (Wang
et al., 2019) is the only approach to detect adversarial sam-
ples using multiple completely different models (not part of
the original model). The other multi-model detection meth-
ods use models intercepted from the original model (Wang
et al., 2020). The authors propose to build sub-models with
the parameters and structure inherited from the original
model and use them to detect adversarial samples. The
number of sub-models can be as many as the number of
intermediate layers of the original model. They argue that
a normal sample should be predicted with increasing con-
fidence, which reflects on the output of sub-models. Their
method needs to retrain an output layer based on the inher-
ited layers, but the inherited layers are frozen during training.
In MMT (Wang et al., 2019), the authors propose to gener-
ate mutated models through four operators, namely weights
fuzzing, weights shuffling, neuron switch, and neuron ac-
tivation inverse. The operators will not cause a significant
decrease in accuracy, but the generated models are sensitive
to adversarial samples. Their method usually takes dozens
of models to complete one detection.

3. Method
We detect adversarial samples by the outputs of pruned mod-
els. As shown in Figure 1, a benign sample with the label
burger is still burger in most outputs of additional models,
but an adversarial sample makes these models output var-
ious labels, e.g., cat, bicycle, bear. Because pruning and
training rebuild the decision boundary of the pruned model,
making it different from the original model. The diversity
of outputs can be measured with Label Change Rate (LCR)
and used to identify adversarial samples, which is defined
as

ς =

∑
s∈S E(f(x), s(x))

|S|
, (1)

where x is the input, f(x) is the original model output, s(x)
is the pruned-model output, |S| is the size of used pruned
models, C is the number of classes, and E(·) is defined as

E(x, y) =

{
0 if x = y,

1 otherwise.
(2)

Instead of using the original model structure and parame-
ters, we exploit random channel pruning to produce sub-
models. Compared with the mutated models in Wang et al.’s
work (Wang et al., 2019), the pruned model has a smaller
size and is more sensitive to adversarial samples, which
means our method requires fewer models and is also faster.
Channel pruning usually evaluates the importance of differ-
ent channels of a DNN layer and removes all the input and
output connections of the unimportant channels (Gao et al.,
2018; He et al., 2017; Zhuang et al., 2018). The advantages
of channel pruning include reduction of actual parameters
and increase of inference speed. Model pruning aims to find
the smallest model with the least accuracy loss, while our
work focuses on generating a model set for detection. Thus
we use random channel pruning to find a set of small models
with accuracy close to the original model.

In order to reduce the computational cost while ensuring the
pruned models’ accuracy and diversity, we set a fixed overall
pruning rate for each model and assign a random number of
channels that need to be pruned in each layer. Specifically,
every several layers with the same number of channels are
divided into a group. A group has an overall pruning rate
(e.g., 50%) and layers in a group will be assigned with two
random pruning rates (e.g., 30% and 20%), while the sum
of which equals the overall pruning rate.

A straightforward way to calculate LCR is using the fixed-
size sampling test, i.e., adopting a fixed number of models
and counting the outputs that are different from the original
model. To reduce the computational cost, we use the Se-
quential Probability Ratio Testing (Wald, 2004) (SPRT) to
detect adversarial samples dynamically. The mutual exclu-
sive hypothesis in the testing is

H0 : pr(x) ≥ ςh,
H1 : pr(x) ≤ ςh,

(3)

where ςh is a threshold determined by the LCR of benign
samples (calculated by Eq. (1)). SPRT runs the pruned
model successively and calculate the probability ratio pr by

pr =
pz1(1− p1)n−z

pz0(1− p0)n−z
, (4)
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Table 1. Channel Pruning Rate of Different Groups.

Number of Channels 64 128 256 512
Pruning Rate (%) 50 60 70 80

where z is the number of models that output different labels,
n is the total number of used models, p0 = ςh + σ, and
p1 = ςh − σ. We set a relax scale σ, which means when the
LCR falls in the region (ςh − σ, ςh + σ), neither hypothesis
can be denied and the test continues. The accept LCR and
deny LCR are defined as follows

ςa = ln
β

1− α
,

ςd = ln
1− β
α

,

(5)

where α and β denote the probability of false positive and
false negative, respectively. The test stops when one of the
hypothesis is accepted. The input is considered as a benign
sample if pr ≥ ςa, while it is adversarial otherwise.

4. Experiments
4.1. Dataset and Models

We evaluate our approach on CIFAR10 and SVHN. The for-
mer contains 50,000 images for training and 10,000 images
for testing, while the latter are 73,257 and 26,032, respec-
tively. The image size of both two datasets is 32×32×3. We
adopt ResNet18 and VGGNet16 for CIFAR10 and SVHN,
and their accuracy is 93.03% and 95.63%, respectively.

4.2. Random Channel Pruning

We set different pruning rates according to the number of
channels of the layer in the group. The details are shown
in Table 1, e.g., the layers in a group have 64 channels,
the group pruning rate is set to 50%. Overall, 65% of the
channels are pruned for ResNet18 and 70% for VGGNet16.
Under this setting, the pruned model accuracy is above 90%,
while the model size is relatively small. The average model
size after pruning is listed in Table 2. We compare our
approach with the MMT (Wang et al., 2019), which is a
SOTA adversary detection algorithm. There are four muta-
tion operators that can be used to generate mutated models,
we choose the best performers for comparison, i.e., Neuron
Activation Inversion (NAI). We use the best parameter set-
ting, i.e., the mutation rate is 0.007. Both MMT and our
method use SPRT to test the generated models’ outputs. For
a fair comparison, we set the maximum number of available
models in SPRT to 100.

Table 2. Average Model Size of MMT and Ours (MB).

Original Mutated Pruned
ResNet18 85.35 85.35 20.88

VGGNet16 112.45 112.45 5.47

Table 3. FLOPs of Generated Models.

Original Mutated Pruned
ResNet18 140.60M 140.60M 51.82M

VGGNet16 314.03M 314.03M 32.42M

4.3. Adversarial Sample Generation

We use six typical adversarial attack methods, including 4
white-box and 2 black-box, each method generates 1,000
adversarial samples for detection. The parameters for each
attack are summarized as follows:

1. FGSM: the scale of perturbation is 0.03;

2. JSMA: the maximum distortion is 12%;

3. CW: adopt L2 attack, the scale coefficient is 0.6 and
the iteration number is 1000;

4. Deepfool (DF): the maximum number of iterations is
50 and the termination criterion is 0.02;

5. One Pixel Attack (OP): the number of pixels for modi-
fication is 3 (in order to ensure that enough successful
samples are generated) and the differential algorithm
runs with a population size of 400 and a max iteration
count of 100;

6. Local Search Attack (LS): the pixel complexity is 1,
the perturbation value is 1.5, the half side length of
the neighborhood square is 5, the number of pixels
perturbed at each round is 5 and the threshold for k-
misclassification is 1.

In addition to the above seven attacks, we also regard the
normal samples which Wrongly Labeled (WL) by the origi-
nal model as adversarial samples.

4.4. Metrics

a) AUROC: Our approach takes the LCR of normal samples
as the threshold. In order to verify whether the feature
is suitable for distinguishing adversarial sample from the
normal sample, we calculate the area under the ROC curve
to determine whether LCR is an appropriate feature (the
closer the AUROC is to 1, the better the feature is).

b) Detection accuracy and the number of models used: in
addition to detection accuracy, we also evaluate the number
of models required for detection. The higher the accuracy,
the fewer models needed, the better the method.
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Table 4. AUROC of Different Methods and Attacks.

Dataset Attack MMT (NAI) Ours

CIFAR10

FGSM 0.9214 0.9849
JSMA 0.9788 0.9921
CW 0.9170 0.9761
DF 0.9728 0.9933
OP 0.9977 0.9875
LS 0.9399 0.9569
WL 0.9238 0.9341

SVHN

FGSM 0.8761 0.9760
JSMA 0.9625 0.9893
CW 0.8922 0.9923
DF 0.9659 0.9973
OP 0.9497 0.9904
LS 0.9330 0.9862
WL 0.8902 0.9394

Figure 2. The detection accuracy (Accuracy) and the number of
used models (#Models) on CIFAR10.

4.5. Results

As shown in Table 2, our random pruning strategy greatly
reduced the model size from 85.35MB and 112.45MB to
20.88MB and 5.47MB on CIFAR10 and SVHN, respec-
tively. The FLoating point OPerations (FLOPs) of generated
models are listed in Table 3. The pruning reduces the num-
ber of FLOPs from 140.60M and 314.03M to 51.82M and
32.42M on CIFAR10 and SVHN respectively. Note that the
mutation operator does not change the model size nor the
FLOPs, thus models generated by MMT are the same size
as the original model.

AUROC scores are summarized in Table 4. With the best
results marked in bold, our approach outperforms MMT
with average AUROC 0.9750 and 0.9816 on CIFAR10 and
SVHN respectively, while MMT is 0.9502 and 0.9242. It
shows that our pruned models are better in distinguishing

Figure 3. The detection accuracy (Accuracy) and the number of
used models (#Models) on SVHN.

normal samples and adversarial samples.

Figure 2 and Figure 3 show the adversarial sample detection
accuracy and the number of used models. On average, our
approach used only 29.24 and 30.68 models for all attacks,
while MMT requires 42.81 and 64.66 models for CIFAR10
and SVHN, respectively. In addition to the reduction in
model numbers, our pruned model also has advantages in
terms of memory footprint and inference speed. The average
detection accuracy on CIFAR10 and SVHN are 92.76% and
93.92%, exceeding MMT (87.47% and 63.00%) 5.29% and
30.92%, which shows the superior of our approach.

5. Conclusion
In this paper, we propose an adversarial sample detection
algorithm based on random channel pruning models. Com-
pared with mutation operators, channel pruning greatly re-
duces the actual model size and improves the model sen-
sitivity to the adversarial samples. We use SPRT to test
the pruned models outputs and detect adversarial samples
through the label changing rate. Experimental results show
that our method outperforms MMT in AUROC, the number
of used models, model size, and detection accuracy. The
average AUROC of our method outperforms MMT (0.9502
and 0.9242) 0.0248 and 0.0574 on CIFAR10 and SVHN,
respectively. Using only 29.24 and 30.68 models, the av-
erage detection accuracy of our method on CIFAR10 and
SVHN are 92.76% and 93.92%, while MMT needs 42.81
and 64.66 models with accuracy 74.74% and 44.79%.
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