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Abstract—Machine Learning methods are playing a vital role
in combating ever-evolving threats in the cybersecurity domain.
Explanation methods that shed light on the decision process of
black-box classifiers are one of the biggest drivers in the success-
ful adoption of these models. Explaining predictions that address
‘Why?/Why Not?’ questions help users/stakeholders/analysts un-
derstand and accept the predicted outputs with confidence and
build trust. Counterfactual explanations are gaining popularity
as an alternative method to help users to not only understand
the decisions of black-box models (why?) but also to provide a
mechanism to highlight mutually exclusive data instances that
would change the outcomes (why not?).

Recent Explainable Artificial Intelligence literature has fo-
cused on three main areas : (a) creating and improving ex-
plainability methods that help users better understand how
the internal of ML models work as well as their outputs; (b)
attacks on interpreters with a white-box setting; (c) defining
the relevant properties, metrics of explanations generated by
models. Nevertheless, there is no thorough study of how the model
explanations can introduce new attack surfaces to the underlying
systems. A motivated adversary can leverage the information
provided by explanations to launch membership inference, and
model extraction attacks to compromise the overall privacy of
the system. Similarly, explanations can also facilitate powerful
evasion attacks such as poisoning and back door attacks.

In this paper, we cover this gap by tackling various cyber-
security properties and threat models related to counterfactual
explanations. We propose a new black-box attack that leverages
Explainable Artificial Intelligence (XAI) methods to compromise
the confidentiality and privacy properties of underlying classi-
fiers. We validate our approach with datasets and models used
in the cyber security domain to demonstrate that our method
achieves the attacker’s goal under threat models which reflect
the real-world settings.

Index Terms—XAI, Cybersecurity, Counterfactual Explana-
tions, Adversarial Attacks, Poisoning Attacks, Model Stealing,
Membership Inference Attacks.

I. INTRODUCTION

Explainable Artificial Intelligence (XAI) is a multifacet

discipline with influences from social sciences, philosophy,

cognitive science, and psychology [1]–[3]. The field of expla-

nations of intelligent systems was active in the 1970s mainly

focused around expert systems; to, a decade after, neural

networks; and then to recommendation systems in the 2000s

[6].

The technical aspects of XAI methods can be grouped by

when these methods are applied: before (pre-hoc), during (in-

model), or after (post-hoc) building the machine learning (ML)

model [4], [5]. Model explanations can be both global or

local. A global explanation checks the inner workings of the

whole ML model, by modeling the relationship between input

and output spaces [10]. Local explanations try to interpret

behind a decision/prediction of a single input data point

(test sample), thus targeting a sub-region of the input space.

Three main strategies for extracting explanations from ML

models can be found in the literature: domain-dependent, data-

dependent and model-dependent. Lately, methods leveraging

optimization methods, causal and counterfactual inference [7]–

[9] are gaining popularity in the literature.

With the successful deployment of XAI in real-world safety-

critical systems [11], [12], [12]–[14], assessing the security,

robustness, and reliability of underlying explanation methods

is paramount for gaining adoption. Several metrics have been

proposed in literature [15], [21] to measure the reliability,

understandability, accuracy, and fidelity of the underlying XAI

methods. Subjective metrics such as usefulness, completeness,

and end-user satisfaction of a given explanation can be mea-

sured by surveying end users with a set of questions [42]

or conducting controlled experiments. Similarly, biases in the

explanation method are understood by measuring how distinc-

tive/selective the method outputs are for different group/sub-

group of inputs.

Very recently real-world XAI tests [18] are conducted on

the fraud detection system in a Human-AI collaborative setting

to evaluate the value of explanations generated by post-hoc

methods. Authors observed that the decision accuracy worsens

when an analyst is provided with Machine Learning (ML)

model scores and explanations compared with data-only infor-

mation. One can attribute this result to Fuzzy Trace Theory

(FTT) [16] – an empirically validated theory of how humans

interpret numerical stimuli. According to FTT, interpretability

should be associated with less precise, yet productive and gist

processing, whereas explainability may be more associated

with the ability to understand the failure modes of the system

via debugging than to use their output in real-world systems

[17].

Real-world threat models to XAI systems can be categorized

into:

• In a setting where explanations are legally required [23]

manipulating the explanations may undermine the trust-

worthy evidence produced by these methods. In expla-

nation manipulation attacks, a malicious model owner

can leverage post-hoc explanation techniques to hide the

weakness (fairness property) of the model and justify

that the black-box model behaves fairly [19], [20]. Also,

recent work has shown that explanations are sensitive to

small perturbations of the input that do not change the

classification result [14], [22].
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Fig. 1: Illustration of threats of real-world security systems which expose predictions and explanations to end-users; An anti-

malware engine, which provides threat score with different properties of the file that were used to make the decision in the form

of a report, an attacker can leverage explanations to tune the functionality of the file to bypass detection; A login authentication

system which exposes masked phone numbers to third-party aggregators, a malicious attacker can run a membership inference

attack to connect users with their phone numbers; A Network anomaly detection system reports the threshold and details about

the attack in the report which can help an attacker to launch model stealing attacks on models shipped on edge devices.

• An Adversary compromising the security of the under-

lying system by leveraging explanations exposed to the

system. These methods include Privacy compromises and

Evasion attacks [44], [46]. Privacy degradation attacks are

further categorized into model extraction and member-

ship/attribute inference attacks. Evasion attacks include

the generation of adversarial examples and, data/model

poisoning, and backdoor injection techniques.

In the context of the cybersecurity domain, little work is

done to understand the security robustness of explainable

methods with a realistic threat model. Figure 1 illustrates

different threats when a remote model provides explanation

reports to end-users. Motivated by this, in this study we

aim to conduct a security analysis of XAI methods, demon-

strating how an adversary can use explanations to conduct

evasion and privacy degradation attacks. More specifically,

we seek to answer- (i) How can an attacker, given only

outputs of explanation method and model predictions, can

conduct powerful black-box model extraction, membership

inference attacks? and, (ii) How explanation outputs facilitate

the generation of adversarial samples and poison/backdoor

samples to evade the underlying classifier? We first define

the properties of the threat model for XAI methods into a

unified attack framework and then conduct both analytical and

qualitative studies of the security properties of these methods

under realistic assumptions of the real-world adversary. The

contribution of this paper can be listed as:

• We provide the first holistic security analysis of methods

that exploit explanations, under real-world threat models.

• We propose a novel black-box attack, which leverages

XAI methods to compromise confidentiality and privacy

properties of underlying classifiers and show that our

attack outperforms the relevant state of art methods in

each attack category.

• Three cyber-security-relevant datasets and models are

used to validate our approach to show that it achieves

attacker goal under threat models which reflect the real-

world settings.

II. MOTIVATION

Fig. 2: Illustration of real-world Membership Inference attack

(MIA); Attacker starts with sourcing two disjoint lists of

leaked data, one with username, password and the other with

email and phone numbers pairs. An attacker can run an MIA

to establish a user account belongs to a service provider and

can link email and phone numbers from the meta-data exposed

by the service provider.

In this section, we cover our main motivation towards

understanding the risk of counterfactual explanations in the

context of cybersecurity use-cases.
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Membership Inference attacks (MIA) The goal of a Mem-

bership Inference attack is to create a function that accurately

predicts whether a data point belongs to the training set of the

classifier or not [24], [25]. Recent work by [29] investigates

the privacy risks of feature-based model explanations using

MIA. They quantify information leakage of training data of

the model based on its predictions and explanations.

Credentials stealing attacks can be formulated as MIA, in

which an attacker aims to extract full information about a

victim user from the data sourced from leaked databases to

advance his/her attack campaign. Leaked data sources mostly

contain only partial/incomplete information. Depending on the

data available at hand, an attacker may rely on brute force,

credential stuffing, and password spraying attacks to achieve

his goal as shown in Figure 2. When an attacker sends a

password reset request with a leaked email address, online

services provide the attacker a ”feedback” as to whether the

email was valid or not with missing or contextual information.

This meta-data may include masked phone numbers, user-

names, etc. This information can be viewed as ”what-if” and

”why” explanations about login resets. Using this meta-data

and partial data from leaked sources, an attacker can run an

MIA to extract full information about the user.

Model Extraction attacks (MEA) Model Extraction [28]

is the process where an adversary tries to steal a copy of

an ML model, that may have been remotely deployed (such

as over a prediction API). A recent survey [26] categorized

different types of model stealing attacks into (i) Modifica-

tion Attack in which an attacker fine-tunes the last layer

of the stolen model by retraining with a new dataset and

then compressing/pruning some layers to run the model on

resource constraint devices. (ii) Active attacks are methods

that tamper/modify the watermark/fingerprint of the model

or modify the query to steal the functionality of the model.

Leveraging gradient-based explanations for model extraction

attacks was first demonstrated by Milli et.al [65].

In the cybersecurity domain, model stealing attacks are

highly relevant due to the following reasons: (a) ML models

are shipped to endpoints where security is limited. A large

study [27] of AI mobile security applications indicates that

most deep learning (DL) models are exposed without pro-

tection and can be easily extracted and pirated by attackers;

(b) Adversary has a real motivation to steal the models to

understand its internals, to bypass detection and test the

attacks offline avoiding remote logging or alerting the owner;

(c) In the field of cyber forensics, the remote verification

of ML models is still in infancy. When a model exposes

an explanation interface there is an increase in the attack

surface, for example very recently authors [63], [89] used

counterfactual explanations to steal the functionality of models

under different threat model assumptions.

Poisoning attacks (PA) In a data poisoning attack, the

attacker injects specially crafted data points into the train-

ing set such that the trained classifier predicted outputs can

be influenced by attacker choice. Training data poisoning

is mainly considered a threat when the system trains user-

submitted/generated data in an incremental fashion. Depending

on the attacker’s goal, poisoning attacks can be executed to

influence the prediction of a class [30] or a particular instance

[31].

Adversarial Examples (AE) Inputs that are intentionally

crafted to be in a close resemblance with benign samples but

cause a misclassification by the underlying classifier. Depend-

ing on the threat model assumptions AE generation methods

are categorised into three main classes: gradient estimation-

based [32], [33], transferability-based [35], [36], [48], and

local search-based methods [34]. Lately, researchers have

explored explanation methods to defend models against AE-

based attacks [37], but leveraging these methods to generate

AE are slowly surfacing [14].

Explanations can play an important role in helping the

adversary to improve his/her attack strategy for both poison-

ing and adversarial attacks. URL/File scanning/sandboxing1

engines provide free services to check for a given file/URL is

malicious or not for end-users. The output is often accompa-

nied by a detailed report covering parameters, code blocks, and

other metadata about the file/URL were used to score them.

This content of the report can be viewed as explanations of

the decision and can be misused by malicious attackers to tune

their attack strategy of building malicious files. For example,

if the entropy of a file is scored high, then the attacker can

replace the obfuscation technique to reduce entropy and evade

the detection.

Fig. 3: Illustration of Decision Boundaries (DB) of human

analyst and trained model. Depending on where the samples

are placed we can divide them into 5 categories - (a) Locally

robust which stay in some ǫ norm ball - Inside both human

and model DB (b) Adversarial Samples [59] - Inside human

DB but outside model DB (c) Counterfactual - Outside both

human and model DB (d) Invariant examples [60] - Outside

human DB but Inside model DB and, (e) Uncertainty samples

- Both human and model DB are not well defined for these

samples

Counterfactual Explanations Counterfactuals are human-

friendly post-hoc local explanation methods, which address

some of the bottlenecks of previous methods such as avoiding

baselines, approximations to game theory constructs, and

universality in features. Recently, Wachter et al. [52] proposed

the use of counterfactual explanations in the context of GDPR

[23] to help users to contest and understand model-based

real/alternative decisions by asking ”Why/Why Not” questions

through counterfactuals. User-studies [41], [42] also showed

1https://www.joesandbox.com/

https://www.joesandbox.com/
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that users prefer counterfactual explanations when compared

to feature importance methods.

Given an input instance to be explained, counterfactual data

instances of the input have - (a) similar feature values as input

(b) different model predictions from that of input (c) lay closer

to the decision boundary of an input class. Depending on the

counterfactual explanation generation algorithm, counterfac-

tual methods can be categorized based on their -

• Access to model internals, gradients and prediction func-

tions.

• Supports fully differentiable, linear, or piece-wise linear

input models.

• Satisfy feasibility, sparsity, data manifold and, causality

constraints.

We direct readers to recent surveys [53], [54] for a detailed

analysis of different counterfactual methods found in the

literature.

The astute reader may note that intuitively, counterfactual

explanations (CF) generation methods share some similarities

with Adversarial example (AE) generation methods in terms of

how they leverage gradient-based optimization techniques and

use of surrogate models for searching CF/AE for the target

model. But they vary in a conceptual objective and the end

goal, for example, AE aims to misclassify a sample to evade

the target classifier whereas CF work towards finding data

samples that not only have different predictions but also satisfy

feasibility, sparsity, data manifold and, causality constraints.

Similarly, AE’s are used to understand the failure modes of

underlying classifiers, whereas CF’s help end-users understand

the model decisions. Figure 3 summarizes different decision

boundaries of human and learned models and differentiates

between how CF/AE methods may be similar but satisfy

different end goals. But one persona who is common for

both AE and CF is a malicious user/attacker and he/she can

launch attacks exploiting both the methods. This motivated us

to explore the attacker’s view of CF’s i.e. how a motivated

attacker can leverage CF’s to achieve their goals.

III. BACKGROUND

In this section, we will cover preliminaries and describe the

threat model assumptions, attack definitions and, explanation

methods. First, we describe the notations used in this work. We

denote a scalar and a vector with a lowercase letter (e.g., t),
and a boldface uppercase letter (e.g., X), respectively. Table I

shows a summary of notations that are frequently referred to

and their problem context.

A. Attack Definitions

In a Membership Inference (MI) attack, the attacker’s goal

is to determine if a data sample (x) is a part of the training

datasets of a target model T . We formally define a MIA model

AMemInf as a binary classifier.

AMemInf : x, T 7→ {member, non-member} (1)

In an attribute inference attack, the adversary’s goal is to

infer a specific sensitive attribute of a data sample from its

representation generated by a target model. This sensitive

attribute is not related to the target ML model’s original

classification task.

Given a data sample x and its representation from a target

model, denoted by h = f(x), attribute inference attack the

adversary trains an attack model AAttInf formally defined as

follows:

AAttInf : h 7→ s (2)

where s represents the sensitive attribute.

In MEAs, the adversary goal is to steal the functionality

of a victim model by training a surrogate model that is

similar to the target model T . Depending on the threat model

assumptions, the success of the functionality replication is

measured in terms of the surrogate model AMoExt accuracy

on target model test set Dtest
target.

Acc(AMoExt) =
1

|Dtest
target|

∑

x∈Dtest
target

I(AMoExt(x) = T (x)). (3)

In DP, the adversary manipulates (add/update/delete) the

training data in order to evade the classifier at the test

time. More formally, the adversary adds m poisoning points

Dpoison = {xi, yi}
m
i=1

into the target model training set

Dtrain
target, so that the learner minimises the poisoned objective

ℓ(Dtrain
target ∪ Dpoison, T ) rather than ℓ(Dtarget, T ). The poisoned

set Dpoison is constructed to achieve some adversarial objective

L(T (Dtrain
target ∪ Dpoison)).

For generating adversarial samples, which evade the clas-

sifiers in the security domain, the attacker aims to ma-

nipulate a malicious sample without breaking its malicious

functionalities, such that the underlying classifier misclassify

it as benign. Unlike image domain counterparts, in security

domain perturbations added to the sample have to preserve

the functionality of the original sample. To satisfy the domain

constraints, transformation functions seq = {a1, a2, . . . am}
from a predefined set A are used to modify the sample in the

input space. More concretely, generating adversarial samples’

problem can be viewed as optimisation problem with multiple

objectives defined in Eq. 4

min f1 = P (T (Ai +Xm) = T (Xmi))
min f2 = ‖Xmi − Xm‖

0,2,∞

s.t. A = {a1, a2, . . . an}
(4)

where P (·) denotes the confidence probability of the clas-

sification result; Xmi and Xm represent the adversarial

perturbation and original malicious sample, respectively;

seq = {a1, a2, . . . am} from transformation set A when

applied to sample Xm preserves the functionalities of the

original sample.

As shown in Eq. (4), the proposed multiobjective opti-

misation involves two objective functions. The first one f1
represents the probability that the target model T classifies

the generated adversarial example Ai +Xm into the correct

class. The remaining function are distance metrics, each of

which is employed to evaluate the similarity between the

original sample and the adversarial sample in feature space.

The constraint imposed to Ai defines the range of perturbation

functions based on the intrinsic property of the sample.
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TABLE I: Notations

Symbol Description Problem Context

T Target model Victim model which exposes inference and explanation interfaces

D
train
target Target Training Data Victim model training data

D
test
target Target Test Data Victim model test data

Dtarget Full dataset of Target model D
train
target ∪ D

test
target

P (·) Confidence Probability Prediction probability of a given x used in the adversarial sample generation
method

T (·) Target Model Prediction API Inference API of T

Daux auxiliary/surrogate dataset Depending on the threat model assumptions an attacker can collect new data
different from Dtarget distributions or from D

train
target distributions

S Local Attacker model Shadow model build by an attacker using Daux

Eexplain Explanation API Depending on the counterfactual method this API outputs single/multiple data
samples

AMemInf Membership inference attack model MI Surrogate model to predict the membership of a data sample x

AAttInf Attribute inference attack Model AI Surrogate model to understand the sensitive attribute s of a h of data sample
x

AMoExt Model extraction attack model Surrogate model trained on counterfactual examples to extract the functionality
of a victim model

Dpoison Poisoning Dataset Poisoning data injected into D
train
target

A Transformation Function Domain specific functions which preserve the functionality of the sample when
applied

xcf Counterfactual Example Explanation produced by Eexplain for sample x

xcf 1, . . . , xcf k Diverse counterfactuals Multiple diverse explanations produced by Eexplain for sample x

B. Explanation Methods

For a given data point x to be explained, CF methods aim

to find the data samples xcf which have similar feature values

but differ in target model predictions. This goal can be defined

in terms of a distance function Dist and a loss term L where

Dist minimizes the difference between an input and its CF in

some input space and L function ensures that the predictions

produced by a target model are different. More concretely,

xcf = argmin
xcf 1,...,xcf k

L(T (xcf ), T (x)) +Dist(xcf − x), (5)

where k is the number of CF to be generated. In our work we

use three different counterfactual methods in our experiments.

Here we describe briefly each one. Table II summarizes each

method loss function, optimisation algorithm and distance

metrics.

Latent CF [38] uses the training set of a black-box classifier

to train an autoencoder. To generate counterfactuals for a given

data point, it perturbs the latent representation of sample z =
E(x) in the latent space until the desired class probability

f(D(z)), is close to p. The final latent vector is fed into the

decoder to generate the corresponding counterfactual.

Permute Attack [40] uses gradient-free optimisation tech-

nique based on the genetic algorithm to generate counterfac-

tual. It leverages selection, crossover, and mutation steps to

perturb the sample by permuting randomly selected features

in an iterative fashion. The permutation values are selected

randomly from possible values of the feature in the training

data to make sure the chosen values are always valid and the

probability distribution of features remains the same in the

new generations. Hyperparameters mutation-range α, mutation

probability ρ, population size d, and τ sampling temperature

are tuned to generate counterfactuals.

L = argmin
xcf1

,...,xcfk

1

k
Σk

i=1
L(T (xcf ), )T (x)

proximity = λ1

k
Σk

i=1
Dist(xcfi , x)

diversity = −λ2 dpp diversity(xcf1 , . . . , xcfk),

xcf = L+ proximity + diversity

(6)

where λ1 and λ2 are the hyper parameters to tune the prox-

imity and diversity of CF.

Diverse Counterfactual Explanations (DiCE) [39] gen-

erates multiple diverse CF’s depending on the user input

which are based on the diversity and proximity properties of

CF’s. Hinge-loss is used to make sure CF generated meets a

minimum threshold of 0.5 between CF and the input class.

Compared to standard ℓ1 loss which finds examples closer to

the input sample but maybe less feasible to the user, hinge-loss

gives a flexible penalty term which ensures a zero penalty if

the sample is above some threshold and a proportional penalty

when the CF is below 0.5 threshold.

C. Threat Models

Several attempts have been made to categorize threat models

for ML systems [43], [44], [46]. We distill the most important

aspects that are relevant to our discussion in Table III.

Domain constraints In the cybersecurity domain, adversary

has to respect the constraints i.e. given a feature vector of

benign sample any modification (addition/removal/change) of

features to achieve the attacker goal should preserve the

original functionality of the sample in its parent domain. This

is called the inverse feature-mapping problem and can result in

multiple solutions. For example, simple malware classifier that
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TABLE II: Counterfactual Explanation Methods leveraged in our work

Method L Dist CF per x Optimisation Method

Latent CF [38] Latent Vector Loss ℓ1 1 Gradient Descent
DICE [39] Hinge-loss ℓ1 and Median Absolute Deviation(MAD) k Gradient Descent

Permute Attack [40] - l2 1 Genetic Algorithm

TABLE III: Threat model assumptions for CF based attack

CHARACTERISTIC TYPE MEA [26] MIA [68] PA [67] AE [45]

Knowledge

TRAINING DISTRIBUTION ✗ ✗ D ✗

FEATURE SET D D D D

FEATURE EXTRACTOR D D D D

FEATURE TRANSFORMERS D D D D

INFERENCE API D D D D

EXPLANATIONS INTERFACE/METHOD D D D D

CONFIDENCE INTERVALS D D D D

Goal/Intent
COMPROMISING INTEGRITY (EVASION) ✗ ✗ D D

COMPROMISING PRIVACY D D ✗ ✗

Capability
MANIPULATE TRAINING DATA ✗ ✗ D ✗

MANIPULATE TEST DATA ✗ D ✗ D

Strategy
TRAIN A SURROGATE MODEL FOR PARAMETER EXTRACTION ✗ D ✗ ✗

TRAIN A SURROGATE MODEL FOR QUERY REDUCTION D ✗ ✗ D

SATISFY DOMAIN CONSTRAINTS ✗ D D D

Frequency ITERATIVE D D D D

Perturbation Scope INSTANCE SPECIFIC D D D D

Perturbation Constraints
OPTIMISATION D ✗ D ✗

DOMAIN D D D D

uses byte code of the samples to train a n-gram classifier, an

attacker can add small perturbations to the byte code fooling

the classifier, but the perturbed file may not guarantee the

functionality of the original malware sample. Also, the attack

perturbation can be added to a feature or to the raw input.

In our work for malware use-cases, we use transformation

functions delete/modify/add A = {a1, a2, . . . am} which

when applied preserves the functionality of the file.

• Delete - Signer, Section, API calls and debugging infor-

mation from the file

• Modify/Add - Signer, Section, API calls information ,

bytes to the end of file, NOP instructions such as,

mov eax, eax and bogus code blocks, abstract syntax

tree /control flow graph to insert dead nodes, API calls,

Section names

We use Cuckoo sandbox2 to verify the sample malicious

functionality is preserved or not. The Cuckoo sandbox runs

dynamic analysis on the sample and generates a report about

all the actions performed by the sample after the execution.

The report consists of malicious behaviours in a human-

understandable explanation of the sample with a maliciousness

score based on the behaviour. We consider a sample as

malicious if its maliciousness score is higher than a threshold.

For other datasets, we use feature-based perturbations only, so

we did not impose any domain specific restrictions.

IV. PROPOSED ATTACK METHODOLOGY

In this section, we describe our attack methodology for

compromising the privacy and confidence of the classifiers

leveraging counterfactual explanations.

2https://cuckoosandbox.org/

Problem Setup. Given a black-box access to a target model

T , prediction interface T (x) = y and its counter factual

explanation interface Eexplain(x) = xcf , and an auxiliary

dataset Daux of x1, . . . , xn the goal of the attacker is to

compromise the confidentiality and integrity of the underlying

ML system. Attacker can collect the Daux from publicly avail-

able data and can reflect the Dtrain
target distributions or different

distributions depending on the threat model assumptions. An

attacker can send an inference request for a sample x to T
prediction interface and it will return the prediction and the

corresponding xcf explanations. Depending on the explanation

method employed Eexplain(x) can serve k CF.

A. Privacy Attacks

Explanation-based model extraction To execute a success-

ful MEA, an attacker has to take two things into consideration

that can influence the success of the attack - (a) The Daux

should reflect T training set. It may happen that the collected

data may not capture the training distributions, but given an in-

put sample, the counterfactual explanation gives samples from

different classes. An attacker can iteratively query different

class samples to build the Daux which capture the training

set distributions. (b) Knowledge of target model architecture,

a full knowledge can help to build a high accuracy/fidelity S
which replicates the functionality of the victim model. In real-

world threat models, the architecture of the victim model is not

known to attackers, which makes the attack hard. To address

this once we obtain data samples that reflect the training set,

we employ the knowledge distillation technique to transfer

knowledge from the target model to the surrogate model. More

concretely, given the probability vector of target model Pt(x)

https://cuckoosandbox.org/
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and shadow model Ps(x) the distillation loss can be calculated

by:

LDistill(T ,S) = LKL(Pt(x), Ps(x)), (7)

where LKL indicates the KL divergence loss.

In our setup, the attacker first queries the victim model(T )

with Daux he has collected publicly and in turn trains a

surrogate model S from the outputs provided by the Inference

and explanation interface. Finally, we use the distillation loss

in Eq. 7 to transfer knowledge from T to S .

Explanation-based MI Attack Similar to the seminal work

of Shokri et.al [24], we assume adversary can access the

target model T in a black-box fashion. The Daux, does not

come from the same distribution as the target model’s training

dataset. The auxiliary dataset and the counterfactual are used

to train a shadow model AMemInf, the goal of which is to

establish the membership evidence of a given sample.

Given a set of counterfactual examples xcf i for input

samples xi of class y, we train a 1-nearest neighbour (1-NN)

classifier that predicts the output class of any new input. The

trained classifier predicts an instance closer to the CF examples

as its counterfactual outcome class and instances closer to the

original input will be classified as the original outcome class.

We repeat the above process to train N 1-NN AMemInf models

one for each class in the dataset. For finding training data

membership of a given data point, we compare the prediction

probability between the AMemInf and T , if the difference is

below threshold t we declare that the sample is part of the

training set. The main intuition behind this method is if the

target model and the counterfactual model both have the same

prediction for a sample, that means that the sample should

be influential for its own prediction. The advantage of this

method is it does not need any access to the training set and

uses CF examples of previous data points to build new data.

The attacker can query the model in an iterative fashion to

obtain new data.

B. Evasion Attacks

Explanation-based Poisoning Attack For a successful PA

attack, one has to inject training samples, when trained on

these samples can evade the classifier at test time for the

attacker given inputs. In order to achieve this, the attacker has

to first identify robust features which influence the classifier

predictions, next he has to perturb the values of the identified

features to sustain training loss. A trained poisoned model

produces the correct output for a normal data sample x,

T (x) = y, and produces target class t as output for a poisoned

sample xp , T (xp) = t.
The first step in our approach is to identify robust features,

which influence the class decision boundaries of the classifier.

Once we have robust features we can perturb only these

features for crafting poison samples instead of all the features.

We observe the class-wise accuracy change by perturbing the

features and filter out a subset of features based on their

influence in prediction i.e. they are consistently same across

their counterfactual class. The next step is to find the optimal

value of the perturbation to make sure they achieve high

training accuracy. To achieve this step, we solve the following

optimization equation to minimize the distance between the

poisoned sample xp and a benign sample x in the input space.

argmin
x

‖xp − x‖22

. Intuitively, this attack is similar to the poison frog attack [31],

since counterfactual for a given sample already minimizes the

sample distance in the feature space, we only have to work in

the input space to find poison samples.

Explanation-based Adversarial Sample generation For

Adversarial Samples, we leverage Permute attack as explana-

tion API where counterfactuals are adversarially generated.

Permute attack generates realistic counterfactual examples

using permutation as the adversarial perturbation that keeps

the range and the distribution of each individual feature the

same as the original training data. Permute attack only works

on the feature space, to support perturbation functions, which

are constrained by A (Eq. 4), we modify the permutation

Π = {π1, π2, · · · , πn!} with seq = {a1, a2, . . . am} keeping

the other dynamics same in the original algorithm.

V. EXPERIMENTAL SETTINGS

In this section, we describe the datasets and experiment

settings used to test the proposed attacks.

A. DataSets

Leaked Password Dataset. We use password-email pair

data to test the counterfactual explanation-based membership

inference attack. The dataset consists of 1.4 billion email

password pairs with 1.1 unique emails and 463 million unique

passwords. This dataset is aggregated password leaks from

different incidents.

For a given leaked password and email address pair, the aim

of the attacker is to discover other account pairs of the same

user leveraging counterfactual explanations performing a MIA.

To create the training set first we need to find a different set of

usernames, emails, and passwords, which belong to the same

user in the leaked list. We assume users sharing the same

email address and username (the substring before @ of the

email) but different/overlapping passwords belong to the same

user, as it is a typical case of users having accounts in two

different services connected via one email/usernames. Once

we have email password pairs of the same user, we divide

the email-password pairs by the email service provider i.e.

we split the email ’alice@bob.com’ into ’alice’ and ’bob’ and

use ’bob’ as the class label. The adversary goal is to discover

other usernames/passwords for the same user with one leaked

password and service provider as input.

Network Traffic. We use CICIDS17 [51] dataset for expla-

nation based model extraction attacks. The network traffic

dataset was collected in a controlled environment and contains

network traffic in the packet-based and bidirectional flow-

based format. For each flow, the authors extracted more than

80 features. The data set contains a wide range of attack types

like SSH brute force, Botnet, DoS, DDoS, web, and infiltration
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attacks. We use this dataset for the model stealing attacks. Fea-

tures are extracted from bidirectional flows. Statistical time-

related features are calculated separately for both directions.

TCP flows are terminated by FIN packet and UDP flows are

terminated by a flow timeout, which is set to 600 seconds.

There are 8 groups of features that are extracted from raw

pcaps: (a) Forward Inter Arrival Time, the time between two

packets sent in forward direction (mean, min, max, std); (b)

Backward Inter Arrival Time, the time between two packets

sent backwards (mean, min, max, std); (c) Flow Inter Arrival

Time, the time between two packets sent in either direction

(mean, min, max, std); (d) Active-Idle Time, amount of time

flow was idle before becoming active (mean, min, max, std)

and amount of time flow was active before becoming active

(mean, min, max, std); (e) Flags based features – Number of

times the URG, PSH flags are set both forward and backward

direction; (f) Flow characteristics – bytes per second , packets

per second, length of flow (mean,min,max,std) and download

and upload ratio of bytes; (g) Packet count with flags – FIN,

SYN, RST, PUSH, ACK, URG, CWE and ECE; (h) Average

number of bytes and packets sent in forward and backward

direction in the initial window, bulk rate, and sub flows.

Malware. For testing explanation based poisoned and ad-

versarial attacks, we collected a malicious sample dataset

of 30120 malware from publicly available malware dataset

virusShare3 and for benign samples we scrapped 20334 clean

files from free ware sites4, 5, 6, 7. We extract both raw and

processed features for these binaries as described in EMBER

[47].

B. Model Training

Model Extraction Target Model. An auto-encoder (AEnc)

is trained on CICIDS data set with DDOS and benign attack

classes. The auto-encoder network parameters such as (number

of filters, filter size, strides) are chosen to be (53,10,1) for first

and second layers and (53,10,1) for third and fourth layers of

both encoder and decoder layers. The middle hidden layer

size is set to be the same as rank K = 20 and the model

is trained using Adam. Once the parameters are optimized

after training, the AEnc model is used for anomaly detection,

where an IP address and its time window are recognized as

abnormal when the reconstruction error of its input features

is high. Here, the reconstruction error is the mean square

difference between the observed features and the expectation

of their reconstruction as given by the AEnc. The threshold

we used is 5% of the data as anomalies as this reflects the

actual data set distribution. Once we have results from the

anomaly detector, we train a random forest binary classifier on

the output of the anomaly detector to make it a classification

problem. We run the DICE explanation method in the black-

box mode, for generating counterfactual explanations, meaning

3https://virusshare.com/
4https://onlyfreewares.com/
5https://www.snapfiles.com/new/list-whatsnew.html
6https://downloadcrew.com/
7https://github.com/

no feature scaling is done via median absolute deviation

(MAD) features as all features are weighted equally in the

normalized form. We sample 10k samples from the original

dataset and use them as Dshadow and remove them from the

dataset to train T . We select time-based statistical features in

the IDS dataset to ensure to respect the domain constraints

in raw input space. The parameters to desired class to ”op-

posite”, proximity weight to 1.5 and diversity weight to 1.0,

features to vary=[’time based features] and feature weights

by generating the MAD values from Dshadow. We compare

our model extraction attack with KnockoffNets (KN) [49] ,

and Knowledge distillation (KD) [50] attacks. KnockoffNets

trains a stolen model via labeling surrogate dataset querying

the victim model for predictions. We use Dshadow to train

the stolen models, and query the target model with training

samples of the shadow dataset. Next, we use the dataset built

from these queries to train the stolen model a 3-layer Multi-

Layer Perceptron (MLP) for 100 epochs using a Stochastic

Gradient Descent (SGD) optimizer with a learning rate of 0.1.

For KD we train each stolen model on the original training

data, but with labels replaced by predicted probabilities from

the target model.

Membership Inference Target Model. We first train an auto-

encoder as a feature transformer to convert email password

pairs into latent vector z of size 15. We use the latent vector

to train a classifier with the service provider as labels and

the latent vector as features. The network parameters (number

of filters, filter size, strides) are chosen to be (50, 30, 15).

Latent-CF is trained on a similar network as the target model

for generating counterfactuals on Dtransfer. We sample 10000
email-password pairs to create Daux dataset. We compare the

attack with the supervised learning-based approach [24] and

the entropy-based approach [55]. Both methods employ the

shadow model training technique, the former trains a S on

Daux to check for the membership of a given data sample.

The latter approach calculates a variant of the Shannon en-

tropy of the prediction vector and determines the membership

by checking whether this entropy value exceeds a certain

threshold. For classification-based approach, we train 30 S
3-layer MLP for 100 epochs using an SGD optimiser with

a learning rate of 0.1 on Daux by varying training size to

1000, 2000, 3000, 4000, 5000, 6000, 8000, and 1,0000. For the

membership classification, we train a binary classifier on logits

and probability from S . For entropy-based technique instead

of a binary classifier, the threshold τy between member/non-

member is learned with the shadow training technique [55].

Poison and Adversarial Attacks-Target Model. For poison-

ing attacks we train two target models (a) Gradient Boosting

Model (GBM) similar to EMBER [47] (100 trees and 31 leaves

per tree) as parameters; and (b) simple Neural Network (NN)

based binary classifier 8 densely connected layers with Recti-

fied Linear Unit (ReLU) activation with batch Normalisation

and the final layer with Sigmoid activation. We sample 3%

of test data from the malware dataset as Daux for our attack.

We filter out these samples from the Dtarget to reflect real-

world threat model for the poisoning attack. The Permuteattack

explanation method is applied on the Daux with ρ0 = 0.4

https://virusshare.com/
https://onlyfreewares.com/
https://www.snapfiles.com/new/list-whatsnew.html
https://downloadcrew.com/
https://github.com/
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and ρ1 = 0.1, 100 generations, and mutation count to 20

with sampling temperature 0.3. For poisoning attacks, we aim

to evade the GBM and NN models. Adversarial examples

generated by our attack are tested on two commercial static

anti-virus engines.

Evaluation Metrics. We adopt the attack accuracy as our

evaluation metric for membership inference attacks following

previous work [24]. Here accuracy means the success of the

identification of users from two email service providers with

respect to a number of counterfactual queries. For the model

extraction attack, we use S accuracy on T test set Dtest
target.

We measure Attack Success Rate (ASR) for the poisoning

and adversarial example generation. This is measured by

the accuracy of the model trained on poisoned data by the

percentage of times a poisoned model is effectively tricked

into misclassifying a previously correctly recognized malicious

binary as benign. Similar to ASR of adversarial samples is

measured by the evasion accuracy of the samples generated by

permutate attack. We run our experiments on a server-grade

machine with two IntelXeon E5-2640 v4 CPUs running at

2.40GHz, 64 GB memory, and Geforce GTX 1080 Ti GPU

card.

VI. RESULTS AND DISCUSSION

Counterfactual malware samples generated by our method,

which evaded the commercial anti-virus engines employed

simple changes to file. For example adding 1-4 bytes of

debugging information or section name changes were the

majority transformation functions employed by this attack

Figure 4 (b) illustrates the transformations function counts in

CF generated. Figure 4 (a) shows the evasion accuracy of

the anti-virus engines. Our attack achieved evasion accuracy

of 65% and 41% on two anti-virus engines under test. The

functionality of the samples was preserved greater than 90%,

which shows that counterfactual based adversarial sample

generation method is useful in the wild. The results may

highlight some of the weaknesses of the anti-virus engines

but generally anti-virus engines use results from both static

and dynamic analysis to make a decision. Our results are

biased towards static features only, so we need to enhance our

experiments to take into account dynamic features to test the

robustness of the anti-virus engines. However, counterfactual

explanation methods can help attackers to find quicker ways to

find adversarial samples, instead of solving a hard-to converge

black-box optimization problem in input space. Attackers can

simply use counterfactual explanations to optimize their attack

path. In Appendix Section ?? we investigate the influence of

transformation functions on counterfactual sample generation

methods.

Counterfactual based MIA on leaked passwords is a serious

threat. This attack can help attackers to link accounts from

various password leaks and improve their credential stuffing

schemes. Password leaks due to mishaps are common in

the real world and measures like cloaking and behavior-

based restricting the login attempts are still some of the

successful defensive methods. We measured the accuracy of

linking usernames with passwords from a sample set of 1000

usernames. Other baseline methods such as shadow model-

based and entropy-based attacks needed a large number of

queries for a successful attack. We think the entropy-based

method performed better than the state of art model-based

method because of the difference in the distributions between

training and testing. Searching the latent space to find the

counterfactuals for a given sample worked because with a

generative model in our case, AEnc learns similar samples to

nearest neighborhoods [64]. In future we would like to explore

how this attack can speed up the password cracking methods.

Counterfactual-based poisoned attacks were successful with

the accuracy drop of the target model with a small percent-

age of poisoned samples in the training set, Figure 4 (d)

illustrates the accuracy drop with poison sample percentage.

We clearly see the correlation between increasing poison pool

sizes to lower the accuracy of the target model. Transformation

functions such as adding API calls and section information

were employed in majority of the generated samples. We

observed that the attack is successful at inducing targeted

misclassification in the GBM and NN models. Poisoning the

training pipeline of the security vendors is a major threat and

in future we would like to explore how defenders can use

counterfactuals to combat poisoning attacks.

Figure 4 (c) compares different attack models’ accuracy

with respect to the query count. Counterfactual-based model

extraction attack was highly successful when compared to

the other state of art methods. The main reason for this is

methods like DICE optimizes to satisfy multiple properties

like sparsity, proximity, diversity, and feasibility to generate

counterfactuals. This optimization step helps the attacker to

replicate the class-level decision boundaries of the target

model by querying counterfactuals for each class. However,

DICE does not support non-differential models and we aim

to address this problem in future work. Table IV summarises

all our experiment results and Table V gives the performance

measures for each target model.

A. Efficiency and Complexity of CF attacks

We measure the computational efficiency of the proposed

attack in terms of (a) latency – time taken by the method to

generate the attack sample. (b) Sparsity – The changes made to

the features by the method to generate the attack sample. We

measure L1 distance between the attack sample and original

data for which CF was generated. Lesser the distance indicates

a better choice of CF. Ideally inference calls to the original

model for CF queries should be equal to the number of attack

samples but not all CF generated are valid or satisfy domain

constraints. Table VI summarizes the computational efficiency

of the attacks proposed. Methods that query latent space for

CF generation perform lesser inference calls. Gradient free

methods based on genetic algorithms performed poorly in

terms of latency due to underlying randomness in the search

function.

The computational complexity of the attack depends on

the number of the classes n, feature dimension d, number of

queries q. For finding minimum perturbed attack samples using

gradient-based methods, the loss function l computation for
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(a) (b)

(c) (d)

Fig. 4: (a) Adversarial attack on AV1 and AV2 anti virus engine: Evasion rate increases with counterfactual count but rate

does not change with more than 50 counterfactuals which shows GA mutations exhausted the search space for transformation

functions A. (b) Showcases the transformation functions applied in each generated CF, section change and byte additions are

most used functions. (c) Model Extraction Attack: With increase in number of queries to T the attack accuracy increases for

all the models but best accuracy comes from CF based attack. (d) Poisoning Attack: Accuracy drop of T is highly correlated

with increase in percentage of poisoned samples in Dtarget

each query influences the complexity of the attack. Similarly,

for search-based methods the transformation functions F used

in the mutations and the number of counterfactual k samples

required to train the surrogate model play a significant role in

the attack efficiency. In our CF-based attack, we apply KL-

divergence loss for MEA and L2 loss for poisoning attacks.

For evasion and membership inference attacks we apply the

genetic algorithm and nearest-neighbor-based search methods

to achieve the attacker’s goal. Table VII summarizes attack

complexity of each attack type proposed.

B. Comparison with Baseline methods

We compare the proposed CF based attack with different

state-of-the-art methods and report the performance.
1) Evasion: We compare the proposed CF-based evasion

attack with two black-box anti-virus static evasion systems. In

our experiments we utilize the soft label genetic programming-

based black-box attack (GAMMA) [83] and Gym-malware

[87] which uses OpenAI’s gym environment to manipulate

malware samples via reinforcement learning method. We mea-

sure the evasion rate by the ratio of the number of samples for

which the label was flipped from malicious to benign. From

Figure 5, we can see CF-based attacks performed better than

the other methods for both black-box static anti-virus engines.

2) Poisoning: We compare the CF-based poisoning attack

with two state-of-art poisoning methods namely, (a) Feature

Collision (FC) attack [31], which crafts the poison samples

by adding small perturbations to features so that the decision

boundary lies closer to target sample; (b) Clean Label Poison

attack [88], which adds the adversarial perturbation to each

poisoned sample constrained by ℓ∞-norm. We measure the

test accuracy drop of the victim model with an increase in the

percentage of training samples poisoned. From Figure 6, we

can see CF-based poisoning attacks performed better than the

other methods.

3) Membership Inference Attack: We compare the CF-

based membership inference attack with the modified predic-

tion entropy (MPE) attack [55] and the shadow models-based

attack proposed by Shokri et.al. [24]. We measure the MIA

model accuracy with an increase in the size of the training set

to train surrogate models. Figure 7 shows the attack accuracy

increase with more training data exposed to attackers. In the
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ATTACK TYPE Daux EXPLANATION

METHOD

T ORIGINAL

ACCURACY

EVASION

ACCURACY

ADVERSARIAL ATTACK MALWARE PERMUTE
AV1 93.5% 65.23%
AV2 94.7% 41.89%

POISONING

PERCENT

ACCURACY DROP

POISONING ATTACK MALWARE PERMUTE

GBM
0.5% 62.4%
1% 76.23%
2% 87.24%

NN
0.5% 30.9%
1% 50.89%
2% 65.31%
3% 79.48%

METHOD ACCURACY/QUERIES

MEMBERSHIP INFERENCE LEAKED PASSWORDS LATENT-CF AUTOENCODER

MODEL 49.46/1000
ENTROPY 54.17/1000
CF 73.17 /1000

MODEL ACCURACY

MODEL EXTRACTION CICIDS DICE AUTOENCODER

T 98.02
KN 78.91
KD 53.89
CF 93.54

TABLE IV: Summary of Experiment Results - Adversarial Attacks are measured by evasion rate of the counterfactuals generated

by permute method. Functional column reports number of valid samples generated by CF and their evasion accuracy on two

commercial anti-malware engines AV1, AV2. The success of the poisoning attack is measured by the accuracy drop of T
when trained on poisoned CF’s generated by permute method. MIA attack is compared with supervised and entropy-based

methods. Success is measured by the Accuracy of identifying user-password pairs and the number of queries to the model

for the identification of accounts. Model stealing attacks are compared with Knowledge distillation and KnockoffNets. The

success of the attack is measured by the accuracy of the extracted model on Dtest
target. Daux is generated by randomly sampling

3% of the whole Dtarget and discarded from it to reflect real-world setup.

Model Dataset Attack Accuracy Precision Recall

GBM Malware Poisoning 0.975 0.991 0.998

AV1 Malware Adversarial 99 - -

AV2 Malware Adversarial 98 - -

AE Password

Leaks

Model In-

terference

0.967 0.931 0.965

AE CICIDS Model

Extrac-

tions

0.9227 0.93770 0.9201

NN Malware Poisoning 0.980 0.926 0.924

TABLE V: Performance metrics of T on experiment datasets.

For Adversarial attack we measure the detection accuracy of

the av engine on the test set.

original experiments conducted by Song et.al [55], the MPE

attack outperformed the shadow model attack but we did not

see the high-performance gain in our experiments. It may be

because if the confidence value distributions of train and test

data are dissimilar then a single threshold value will not reflect

the memberships.

4) Model Extraction Attack: We compare the proposed

CF-based Model Extraction attack with Knowledge Distilla-

tion (KD) [50] and KnockoffNets [49]. KD methods help

to transfer knowledge from one model (teacher) to another

model (student) with similar accuracy as the teacher. It is

widely popular in the model compression, network architecture

search etc. Most knowledge distillation approaches require

the knowledge of training data or teacher model intermediate

weights, gradients, and activation statistics. Orekondy et al.

proposed model stealing attacks that assumes access to a large

dataset and use active learning to select the best samples to

query [49]. We compare the accuracy of the stolen model on

the test dataset of the victim model. Figure 8 summarizes the

accuracy changes with the number of queries performed to

train the stolen model. In Appendix Section ?? we evaluate

the proposed CF attack on image and text data.

C. Defense Discussion

a) Defense Goals: An ideal defense method makes the

underlying classifier robust, trustworthy, secure and aim to

satisfy the following goals [69]

• Low impact on the model architecture and accuracy:

when constructing any defense, one should aim for min-

imal changes to model architectures and classification

metrics of the model.

• Maintain model speed: Defenses that are in line with

the inference steps of the model should aim to maintain

low latency to avoid degradation in response times.

• Implementation Goals:

– Applicability across multiple model architectures, and

domains.

– Not tuned to a particular attack, threat model, or

architecture.
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TABLE VI: Computational Efficiency of counterfactual attacks. We measure the latency (in sec) of each method. L1 distance

between the original input and the CF gives the sparsity of the CF and number of calls to victim model gives the efficiency of

the scheme, lesser the calls the more efficient the scheme is. We compute the mean of each metric for 100 randomly selected

test points. We report the mean±std of this mean over 5 seeds.

METHOD TIME IN SECONDS AVERAGE DISTANCE (L1) CALLS TO ORACLE

CF ALGORITHM/ATTACK TYPE

DICE/MODEL EXTRACTION 75.48±1.98 0.029± 0.004 130± 1.9
PERMUTE/ADVERSARIAL EXAMPLES 132.23±5.82 0.124±0.009 280± 2.1
LATENT-CF/MEMBERSHIP INFERENCE ATTACKS 1.97±0.12 0.083±0.002 110± 2.4
PERMUTE/POISON 294.43±3.39 0.124±0.013 330± 1.5

ATTACK COMPLEXITY

MEA MEAa ∼ O(n ∗ d ∗ ql)
PA PAa ∼ O(2 ∗ d ∗ ql)

EVASION EVa ∼ O(n ∗ F (log(d)))
MIA MIAa ∼ O(n ∗ d ∗ k)

TABLE VII: Computational Complexity of CF-based Attack.

n represents the number of classes of victim model, d the

feature dimension, ql average gradient updates of surrogate

model per CF query, F the transformation functions applied

in the genetic algorithm-based search, and k is the number of

CF samples to train nearest neighbour surrogate models.

– Extensible, modular, and easily tunable to allow the

designers to optimize on the utility-security trade-off

based on the application.

TABLE VIII: The advantages and disadvantages of defenses

TYPE ADVANTAGES DISADVANTAGES

MODIFIED

TRAINING/INPUT

SIMPLE, GOOD DE-
FENSIVE ABILITY

DIFFICULT TO CON-
VERGE, HIGH OVER-
HEAD

MODIFYING THE

NETWORK

LOW OVERHEAD,
GOOD GENERALISA-
TION

MODEL-
DEPENDENT, HIGH

COMPLEXITY

NETWORK ADD-ONS LOW COMPLEXITY,
MODEL-
INDEPENDENT

WEAK GENER-
ALIZATION, NOT

IMPROVING THE

ROBUSTNESS

As we can see from Table VIII there is no single cate-

gory of defense that can support all the defense goals. The

closest category is network add-ons i.e adversarial detection

methods that have the least dependency on model training

data, architecture, type of inputs, and assumptions about the

attacker threat models. Also, most of the auxiliary defenses

have detection modules attached to the network, which makes

this method suitable for different domains.

D. Potential Defenses for CF based Attacks

The process of generating counterfactual explanations

shares a large set of similarities with adversarial examples

concepts. For example, they both use similar distance metrics (

L0, L2, and L∞) to solve an optimization problem conditioned

on some loss function. Given this resemblance, a potential

direction towards defending CF-based attacks can be explored

from adversarial defense literature. Adversarial training [70],

(a) Anti-Virus Engine 1

(b) Anti-Virus Engine 1

Fig. 5: Evasion Results of Anti-Virus Engines

[71] and input/network randomization [72]–[75] have proven

to be most effective techniques against adversaries which

employ first-order gradient-based optimisation techniques con-

straint by ℓp-norm bounds. CF methods that satisfy ℓp-norm

constraint can adapt robust loss functions to restrict the CF

samples lie in a small ǫ ball.

Other popular approaches in real-world scenarios – (a)

Monitoring/Filtering of the incoming samples at inference
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Fig. 6: Poisoning attack Results

Fig. 7: MIA attack Results

time for behaviors which deviate from the clean sample via

auxiliary detectors [78], [79]; (b) using statistical properties

of clean samples to discover adversary injected samples [76],

[77] and (c) active learning-based approaches with analysts in

the loop can be explored to filter/identify attack samples.

Similarly, the choice of features used in the counterfac-

tual generation process can play a vital role in defending

the proposed attacks. Features that make the classifier out-

put monotonically increasing have shown higher resistance

towards injection attacks steered by gradient [80], content

[82] and mimicry attacks [81]. An attacker modifying these

monotonic features makes the sample more malicious to the

classifier instead of benign. CF methods that employ feature-

based distance methods to search for counterfactuals can

leverage features that make the classifier prediction monotonic.

Also, for a given sample x and its CF xcf one can restrict

the CF’s feature values to lie in a very small neighborhood

of class boundary. The distance can be measured in terms

of largest change to any feature value, normalised by the

Fig. 8: Model Extraction attack Results

standard deviation of that input feature d(F (x), F (xcf )) =
maxi{|xi − xcfi |/σi}. This constraint can help defenders to

flag attacker-guided CF search queries vs natural CF queries.

E. Noise based Defense

In our threat model, the attacker trains a surrogate model

using the dataset collected from the public domain and queries

the defender model for predictions and counterfactual samples

to achieve his/her goal of evading the privacy/security of the

system. In this scenario, the defender has no control over the

attacker’s full training data but only a portion of it (query

response - counterfactual and predictions) used in training of

the attack model. One strategy to combat CF-based attacks

is – if the defender can transform the counterfactual samples

in such a way that they reduce the accuracy of the trained

surrogate model, then he can increase the attacker’s budget

making the attack hard if not impossible.

More formally, given an attacker collected dataset Daux and

corresponding counterfactual explanations CFaux from model

θD with Dtrain, Dtest as its train and test dataset. Our aim is

to design a transformation step Ts such that DNN trained on

Ts(CFaux) will perform poorly on Dtest. The main intuition

here is, generally, any ML model aims to learn the mapping

function from the feature space to the label space from the

training samples. So the Ts has to be designed in such a

way that it induces noise into the CFaux such that the learned

model has a strong correlation between the labels and noise

of the feature space instead of only features. This makes any

learned model trained on Ts(CFaux) effectively non-usable for

attacker. Noise can be added for each counterfactual sample

xcf + δi or to all the samples of same class xcf + δyi
. Since

most of the CF methods already search for samples constrained

by ǫ norm, adding noise at class level can fool the attacker

model. We design Ts similar to adversarial training but at the

class level, adopting the first-order optimization method PGD

[71]. For each example in class k, Ts applies δk to the original

example xcf to produce x′
cf . The δk accumulates over every

example for the corresponding class k.
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Ts =



















None No transformation

φ, Random noise [−1, 1]

δxi
, Adv. noise [−ǫ, ǫ]

δyi
Adv. noise [−ǫ, ǫ]

(8)

Ts Accuracy

None 95.6

φ 87.4

δxi 37.4

δyi 28.22

δxi + φ 32.22

δyi + φ 18.22

TABLE IX: Accuracy drop of surrogate models with noise

based defense

To test our hypothesis we train four models on CFaux data

set transformed by Ts function as per Equation 8. We report

the drop in the accuracy of the model with respect to each

transformation step. CF examples were generated using the

DICE method for an MLP model trained on 10% of the

CICIDS17 dataset. Table IX summarizes the accuracy drop

of the models trained with different Ts transformations. We

learn that adversarial noise added at per class level combined

with random noise gives the highest drop in the attacker model

accuracy. We plan to perform a detailed experimental study of

the noise-based defense scheme in our future work.

F. Counterfactual Attack Games

Game theory can play a vital role in explaining and

predicting various defense/offense strategies and designing

effective threat models of security-sensitive systems [86]. In a

game model, attackers and defenders are treated like players

in a game and interactions between them are modeled as

strategies, moves, and intent of opponents with respect to

the utilities/actions of the players. Attacker and defender are

expressed as min-max 2 player games where game dynamics,

termination conditions are formulated as a Stackelberg/Nash

equilibrium [84], [85] problem. Depending on the assumptions

and constraints imposed on the system, as the game progresses

a bi-level optimization problem, which is solved in terms

of attacker/defender loss functions. One can view the CF-

based attack setting as a min-max, max-min, or min-min game

model. In Appendix Section ?? we study the proposed attack

in the game theory settings. Finally, we aim to perform a

detailed study in our future work.

VII. RELATED WORK

For detailed coverage of each attack type, we refer readers

to corresponding recent survey works [24], [26], [45], [61].

Here we cover methods that leverage explanations to achieve

attackers’ goal.

Model Stealing. Very recent works [63], [65] have started

leveraging gradient-based and counterfactual explanations to

execute model stealing attacks. Model stealing attacks in the

cybersecurity domain are sparse and our work addresses this

problem in real-world use-cases.

Model Inference Attacks. Leveraging explanation methods

to execute an MIA is rare in literature and we address this

gap in a real-world setting. Authors [29] leverage gradient-

based explanations to perform membership and data set recon-

struction attacks. In one of the experiments, they discuss an

example-based explanation setup, for a given input sample the

explanation method return samples similar to the input from

the training set. Counterfactual examples can be viewed as a

similar setup but with different outputs.

Poisoning Attacks. Recent works performed poisoning attacks

through either polluting training data [31], [58] or modifying

benign deep neural networks [56], [57]. Very recent work [62]

similar to our work uses shapely values to perform poisoning

and backdoor attacks on malware classifiers.

Adversarial Attacks. Demetrio [66] leverages integrated gra-

dients to find the influential features for black-box decisions of

an ML-based malware classifier. In [35], [36] authors demon-

strated functionality preserving black-box attacks on network-

based anomaly detectors and in [14] adversarial attacks were

performed on explainable methods used in the security do-

main. In [89], a black box query-based attack was successfully

performed on a face authentication system leveraging XAI

techniques. In this work, we demonstrate functionality pre-

serving adversarial examples that evade commercial antivirus

systems leveraging counterfactual explanations.

VIII. CONCLUSION

In this work, we performed a detailed security analysis

of models which expose counterfactual explanations. We de-

sign 4 black-box attacks that leverage explainable artificial

intelligence (XAI) methods to compromise confidentiality

and privacy properties of underlying classifiers. Leveraging

3 counterfactual explanation methods, we perform end-to-end

evasion attacks on commercially available anti-virus engines,

membership inference attacks to link users and discover their

passwords from leaked datasets, and launch successful poi-

soning and model extraction attacks on real-world datasets

and models. Through empirical and qualitative evaluation, we

show the effectiveness of the attacks on varied datasets and

highlight the security threats of exposing explanations to users

and attackers alike.

Here we note directions for future work. First, we did

not perform a detail study of CF based attack on different

datatypes and model architectures. We plan to explore this

direction in the future. Expand and improve the proposed

attacks for different data types, model architectures and prob-

lem domains. Also, we aim to explore the application of

counterfactual methods to defend against attacks similar to

the one proposed in this work in future. As a final thought,

there is always a tension between security and usability trade-

offs in the cybersecurity domain that has been manifested in

the field of explanations. On one hand, they can be excellent

tools to explore and debug the model and data internals on the

other hand, they may increase the attack surface of the system

if access is not restricted.
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