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In this paper, we put forward a computational framework for the comparison between
motor, auditory, and perceptuo-motor theories of speech communication. We first recall
the basic arguments of these three sets of theories, either applied to speech perception or
to speech production. Then we expose a unifying Bayesian model able to express each
theory in a probabilistic way. Focusing on speech perception, we demonstrate that under
two hypotheses, regarding communication noise and inter-speaker variability, providing
perfect conditions for speech communication, motor, and auditory theories are
indistinguishable. We then degrade successively each hypothesis to study the distinguish-
ability of the different theories in ‘‘adverse’’ conditions. We first present simulations on a
simplified implementation of the model with mono-dimensional sensory and motor
variables, and secondly we consider a simulation of the human vocal tract providing more
realistic auditory and articulatory variables. Simulation results allow us to emphasise the
respective roles of motor and auditory knowledge in various conditions of speech
perception in adverse conditions, and to suggest some guidelines for future studies aiming
at assessing the role of motor knowledge in speech perception.

Keywords: Auditory, motor, and perceptuo-motor theories of speech communication;

Bayesian modelling; Speech perception in adverse conditions; Model distinguishability.

INTRODUCTION

A central issue in speech science concerns the nature of representations and processes

involved in communication. Three major sets of theories have been widely argued for

and against in this long-standing debate: motor, auditory, and perceptuo-motor

theories. Arguments have so far mostly been based on experimental data about

variability and invariance (co-articulation phenomena supposedly in favour of motor

theories: Galantucci, Fowler, & Turvey, 2006; or motor equivalence principles

supposedly in favour of auditory theories: e.g., Guenther, Hampson, & Johnson,
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1998, Diehl et al., 2004; or co-structuration of the perceptual and motor repertories in

the Perception-for-Action-Control Theory, PACT, Schwartz, Basirat, Ménard, & Sato,

2010).

However, none of these observed isolated properties and their associated arguments

are decisive, and the theoretical debate appears to be stagnating. It is our belief that

mathematical modelling of these theories could provide breakthroughs in this regard.

More precisely, we propose that casting these theories into a single, unified

mathematical framework would be the most efficient way of comparing the theories

and their properties in a systematic manner.

Bayesian modelling is a mathematical framework that precisely allows such

comparisons. The trick is that the same tool, namely probabilities, can be used both

for defining the models and for comparing them. Such comparisons are more and

more widespread in cognitive science; see for instance the recent works on causal

inference and probability matching strategies in multimodal perception (Körding

et al., 2007), or on theoretical comparison of memory models (Myung & Pitt, 2009).

Moreover, the use of a unified framework implies that common hypotheses would

have common mathematical translations. This also helps toward more principled

studies of the competing theories.

In this paper, we thus cast the motor, auditory, and perceptuo-motor theories into

three instances of the same Bayesian model, and compare them in varied speech

perception situations. Using simulations, we study their behaviour both in nominal

and adverse conditions. Adverse conditions in this respect could involve various

dimensions such as communication in noisy or multi-speaker environments, multi-

sensory binding in complex or incoherent scenes, communication in foreign languages

or between various accents, sensory, or cognitive deficits. Here, we focus on the effect

of noise and speaker variability on performance in speech perception. This allows us

to study both the level of performance predicted by each theory but also, and surely

more importantly, how the level of noise influences the distinguishability of models. It

suggests some predictions for future behavioural studies aiming at assessing the role of

motor processes in speech perception.

The rest of this paper is structured as follows. We first recall various illustrations of

auditory, motor, and perceptuo-motor theories of speech perception and speech

production, and organise them into a single unifying Bayesian framework in which

they all appear as instances of various questions asked to a single probabilistic

communicating agent model. Then, we present the detailed implementation of

auditory, motor, and perceptuo-motor speech perception models. We present

theoretical evidence that the auditory and motor models are indistinguishable in

perfect conditions. Finally, we provide a series of simplified simulations of the

recognition of speech in adverse conditions, enabling to better assess what could be the

respective roles of auditory processing and motor knowledge.

A UNIFIED THEORETICAL BAYESIAN FRAMEWORK FOR SPEECH
COMMUNICATION THEORIES

Theories of speech perception and production

A major question in speech communication studies concerns the nature of the

reference frame. Surprisingly, the question is generally asked independently in the

speech production and speech perception domains, while the perceptuo-motor link is

central in the theoretical debate. Indeed, we can find in the literature various
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occurrences of motor, auditory, and perceptuo-motor theories of both speech

production and speech perception (see Table 1; and Moulin-Frier, Schwartz, Diard,

& Bessière, 2010).

Motor theories

Motor theories consider the reference frame of speech communication as gestures.

In the context of speech production, Articulatory Phonology (Browman & Goldstein,

1989) models speech motor control as scores of overlapping gestures, able to express

the context-dependent variability of speech, without taking explicitly into account the

auditory consequence of a motor event. Concerning speech perception, the Motor

Theory (Liberman & Mattingly, 1985) proposes that perceiving speech amounts to

perceiving gestures. A main argument is co-articulation-driven signal variability,

which makes the auditory content of a given phoneme dependent on the phonetic

context (see a review in Galantucci, Fowler, & Turvey, 2006).

The interest for the Motor Theory of Speech Perception was recently renewed by

the discovery of mirror neurons in monkeys (see e.g., Rizzolatti, Fadiga, Gallese, &

Fogassi, 1996) and of a ‘‘mirror system’’ in humans (Fadiga, Craighero, Buccino, &

Rizzolatti, 2002).

Auditory theories

Auditory Theories consider that the reference frame for speech is auditory. In the

case of speech production, the target would be a region in the auditory space

(Guenther, Hampson, & Johnson, 1998). The main argument is motor equivalence,

showing that various articulatory configurations are used for achieving the same

auditory goal, as shown for instance in perturbation experiments. In the case of speech

perception, proponents of auditory theories consider that speech perception involves

auditory or multi-sensory representations and processing, with no reference to speech

production (Diehl et al., 2004).

In terms of neuroanatomical correlates, it remains a question to know if the

sensorimotor connection between temporal auditory and audiovisual regions, parietal

somesthesic/proprioceptive areas and frontal motor and pre-motor zones inside a

dorsal cortical network plays or not a significant role in speech comprehension

(Hickok & Poeppel, 2007; Scott, Mcgettigan, & Eisner, 2009).

TABLE 1

Taxonomy of speech production and perception theories and models

Task

Theory Production Perception

Motor Articulatory Phonology (Browman &

Goldstein, 1989)

Motor Theory (Liberman & Mattingly, 1985)

Auditory Auditory reference frames for speech

planning (Guenther et al., 1998)

Auditory theories (Diehl et al., 2004)

Perceptuo-

motor

DIVA model (Guenther, 2006) Perception for Action Control Theory

(Schwartz, Basirat, Ménard, & Sato, 2010)
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Perceptuo-motor theories

Perceptuo-motor theories have recently emerged for both speech perception (e.g.,

Schwartz, Basirat, Ménard, & Sato, 2010; Skipper, Van Wassenhove, Nusbaum, &

Small, 2007) and production (e.g., Guenther, 2006). They generally consider auditory

frames as the core for communication, but they include the perceptuo-motor link

inside the global architecture. They claim that in normal conditions, production

involves cortical motor (frontal) areas and perception involves cortical auditory

(temporal) ones, but that the perceptuo-motor (dorsal) link, necessary for speech

acquisition, could also play a role in adverse conditions.

Regarding speech production, the DIVA model (Guenther, 2006) combines a

feedforward control subsystem for on-line production, and a feedback control

subsystem when the auditory consequence of a gesture is not congruent. In a similar

way, perceptuo-motor theories of speech perception argue for a core auditory (or

audio-visual) system for speech perception, enhanced by motor processes in complex

conditions such as noise, through ‘‘binding’’ (Schwartz, Basirat, Ménard, & Sato,

2010) or ‘‘prediction’’ (Skipper, Van Wassenhove, Nusbaum, & Small, 2007).

Communicating agents based on internalisation of the communication
loop

We propose here to model a general interaction process, in which a speaker and a

listener communicate about an object of the environment. For this aim, the speaker,

willing to communicate about the object OS, performs a gesture M producing a sound

S enabling the listener to understand and recover an object OL (Figure 1a). Efficient

communication can be assessed by an external validation system (success vs. failure

indicator CEnv), whether it is an outside oracle (as in a supervised learning stage, for

instance), or a shared attention mechanism.

A central hypothesis of the generalmodel is that the communication loop (Figure 1a),

in which a speaker interacts with a listener through the environment, can be internalised

and emulated into the brain of a single agent (Figure 1b). Firstly, the agent can take both

roles, listener and speaker, and thus contains both subsystems, motor and sensory.

Secondly, the agent has some knowledge about the articulatory-to-acoustic transforma-

tion performed by the environment. When it is internalised, it takes the form of an

internal forward model, allowing the agent to predict sensory consequences of motor

gestures. Finally, the external validation system is also internalised; in other words, the

agent has two internal representations ofobjects, linked by a system that verifieswhether

they refer to the same object.

This internalisation hypothesis could be discussed in the framework of general

cognitive theories of social communication and human evolution (e.g., Baron-Cohen,

1995; Tomasello, Carpenter, Call, Behne, & Moll, 2005; see also Moore, 2007, for

similar views about internalisation, expressed in a control theory framework).

Bayesian model of communicating agents

We now propose a computational model of the communicating agent defined

according to the internalised communication loop in Figure 1b. The model is built

using Bayesian Programming (Bessière et al., 2008; Lebeltel, Bessière, Diard, & Mazer,

2004). Bayesian Programming aims at defining models of reasoning agents using

probability distributions to represent knowledge and Bayesian inference to manipulate

knowledge in a mathematically principled manner. This view of probabilities as states
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of knowledge allows one to formally represent different preliminary knowledge

(Colas, Diard, & Bessière, 2010). In the remainder, we use symbols to identify different

models (e.g., in pEnv, the model of the simulated environment, some noise is represented,

which may or may not be properly captured in some agent’s internal model pAg).

In this context, the model of a perceptuo-motor agent is defined as a joint

probability distribution over variables of interest (typically motor, sensory, and

internal variables). This joint distribution is broken down as a product of simpler

distributions, using Bayes rule and conditional independence hypotheses. Using this

knowledge, a behaviour is then defined as a conditional probability distribution

computed from the joint distribution (for example: ‘‘given values of some sensory

variables, what is the probability distribution over the speech objects?’’), called a

question to the model, and is solved using Bayesian inference.

Variables

Our model of a general communicating agent is based on five probabilistic

variables, which are a direct translation of our conceptual model of the communica-

tion situation:

� MAg: the agent motor gesture,

� SAg: the agent sensory representation,

� OS
Ag, O

L
Ag: the object of communication, when the agent respectively takes the

speaker’s and the listener’s point of view,

� CAg: the internalisation of the communication validation system. C is a Boolean

variable, and is true (value 1) when OS
Ag�OL

Ag.

Figure 1. Conceptual model of a communication interaction. (a) A speaker and a listener are in presence

of an object and, using acoustic signals, designate it. (b) The whole communication loop is internalized in

the ‘‘brain’’ of each agent.
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Here it must be acknowledged that an ‘‘object’’ may take a very wide spectrum of

definitions. Ideally, it refers to the level at which the link between phonology and

semantics takes place in linguistic communication: typically the word. In the

remainder of this paper, it however refers to any phonological category shared by

the speaker and the listener in the speech communication process (e.g., a syllable or a

phoneme). We do not consider in this paper all the (many) problems associated with

defining the adequate level. We just assume that at some stage, a given phonological

unit can be successfully exchanged between a speaker and a listener.

Joint probability distribution

There are five subsystems to define. The first three depend on the precise definition

of the sensory and motor variables: they are introduced here and made precise later.

� The motor subsystem is defined as a conditional probability distribution P(MAg j
OS

Ag): given an object to communicate, what is the probability distribution over

motor gestures?

� The sensory (or auditory) subsystem is defined as a conditional probability

distribution P(OL
Ag j SAg): given a sensory input, what is the probability distribution

over the perceived objects?

� The perceptuo-motor subsystem is defined as a conditional probability distribution

P(SAg j MAg): given a motor gesture, what is the probability distribution over the

sensory inputs?

The last two systems are independent of sensory and motor variables, and defined as

follows.

� The internalised communication validation subsystem is defined as a conditional

probability distribution P(CAg j O
S
Ag O

L
Ag): given objects in the motor and sensory

subsystems, CAg is true (�1) when both refer to the same object. It is defined as a

Dirac probability distribution such that:

P CAg ¼ 1

h i

OS
Ag ¼ X

h i�

�

� OL
Ag ¼ Y

h i� �

¼
1 if X ¼ Y

0 otherwise

�

:

Technically, CAg is a coherence variable (Gilet, Diard, & Bessière, 2011), which

allows connecting or disconnecting the sensory and motor routes in the agent’s

cognitive architecture.

� Finally, the object prior P(OS
Ag) is defined as a Uniform probability distribution:

the objects are assumed to be present with the same frequency in the

environment.

Therefore, the general model of a communicating agent pAg is the following joint

probability distribution, illustrated in Figure 2:

P OS
AgMAgSAgO

L
AgCAg

� �

¼ P OS
Ag

� �

P MAg O
S
Ag

�

�

�

� �

P SAg MAg

�

�

� �

P OL
Ag SAg

�

�

� �

P CAg O
S
AgO

L
Ag

�

�

�

� �

:
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Bayesian inference for simulating speech perception and production tasks

From the joint probability distribution P OS
AgMAgSAgO

L
AgCAg

� �

we can apply

Bayesian inference to simulate speech perception and production tasks, which appear

as probabilistic questions addressed to the general distribution. Perception tasks can

be simulated by computing probability distributions over objects, given an input

sensory signal. Production tasks can be simulated by computing probability

distributions over motor gestures, given an object to communicate about.

The driving reasoning in our Bayesian modelling is that motor vs. auditory theories

can be defined in reference to the pivot role provided to OS
Ag vs. OL

Ag in the

probabilistic reasoning.

In motor theories, the speaker is the pivot, and the direct connection between SAg

and OL
Ag is disabled.

In terms of speech production, this provides a simple probabilistic question to solve

for speech motor control, that is P(MAg j O
S
Ag): what is the adequate action for a given

speaker?

But in terms of speech perception, this leads to a ‘‘motor theory of speech

perception’’ in which the question to solve is P(OS
Ag j SAg): knowing the sensory input,

what is the object which was in the speaker’s mind? Bayesian inference yields:

P OS
Ag SAg

�

�

� �

¼
X

MAg

P MAg O
S
Ag

�

�

�

� �

P SAg MAg

�

�

� �

:

This question can be interpreted as a motor inference: indeed, motor terms are

involved in the equation, whereas the sensory system P(OL
AgjSAg) is marginalised away.

In this equation, the P(SAg j MAg) term expresses the search for motor values able to

lead to the perceived sensory input (this is classically referred to as ‘‘inversion’’ or

‘‘analysis by synthesis’’). The P(MAg j O
S
Ag) factor can be conceived as an ‘‘articulatory

decoder’’, assuming that invariance rather lies in motor than in auditory cues.

Figure 2. Structure of the communicating agent model, represented with a Bayesian network. Nodes

correspond to variables, and arrows represent probability distributions, which illustrate the dependency

structure.
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In auditory theories, the listener is the pivot, and the direct connection between OS
Ag

and MAg is disabled.

This leads to auditory theories of speech perception through the question P(OL
Ag j

SAg) (direct inference without any motor knowledge, typical of these theories).

It leads to auditory theories of speech production through P(MAg j O
L
Ag) attempting

to estimate through auditory inference what gestures should the speaker produce to

make the listener perceive the adequate object. Bayesian inference yields:

P MAg O
L
Ag

�

�

�

� �

/ P MAg

� �

X

SAg

P SAg MAg

�

�

� �

P OL
Ag SAg

�

�

� �

:

This corresponds to associating auditory targets, defined by the term P(OL
Ag j SAg),

with forward models, defined by the term P(SAg j MAg), for estimating the adequate

motor command.

Finally, perceptuo-motor theories take into account the information provided by

both motor and sensory subsystems. Furthermore, inference is performed under the

assumption that both subsystems are coherent, that is, CAg�1. For example, for

speech perception this yields:

P OL
Ag SAg

�

� ½CAg ¼ 1�
� �

/ P OL
Ag SAg

�

�

� �

X

MAg

P MAg O
S
Ag

�

�

�

� �

P SAg MAg

�

�

� �

:

Note that P OL
Ag SAg

�

� ½CAg ¼ 1�
� �

¼ P OS
Ag SAg

�

� ½CAg ¼ 1�
� �

: both OL
Ag and OS

Ag can

interchangeably be considered pivot during this perceptuo-motor inference.

This can be seen as a combination of the two previous inferences. The probability of

the object OL directly inferred from the sensory input S through an auditory theory is

modified by the knowledge that S was also produced from the object OS (� OL) using

motor variables M. In other words, the coherence variable effect can be seen here as

forcing a fusion between purely perceptual and purely motor inferences. In our case,

this perceptuo-motor fusion takes the form of a product between both processes.

A similar result is obtained for speech production.

This results in the taxonomy of Table 2 in which each of the speech perception and

production theories displayed in Table 1 actually corresponds to different inferences in

the same probabilistic model, or, alternatively, processes involving different portions of

TABLE 2

Model taxonomy

Task

Theory Production Inference of the form P(M j O) Perception Inference of the form P(O j S)

Motor

Object of

interest is OS

P MAg OS
Ag

�

�

�

� �

P OS
Ag SAg

�

�

� �

¼
P

MAg

P MAg OS
Ag

�

�

�

� �

P SAg MAg

�

�

� �

:

Auditory

Object of

interest is OL

P MAg OL
Ag

�

�

�

� �

/ P MAg

� �

X

SAg

P SAg MAg

�

�

� �

P OL
Ag SAg

�

�

� �

:

P OL
Ag SAg

�

�

� �

Perceptuo-

motor

Both OS and

OL must be

equal (C�1)

P MAg OL
Ag CAg ¼ 1

h i
�

�

�

� �

/

P MAg OS
Ag

�

�

�

� �

X

SAg

P SAg MAg

�

�

� �

P OL
Ag SAg

�

�

� �

P OL
Ag SAg CAg ¼ 1

h i
�

�

�

� �

/

P OL
Ag SAg

�

�

� �

X

MAg

P MAg OS
Ag

�

�

�

� �

P SAg MAg

�

�

� �
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a unique knowledge set. The unifying process in this framework is that both

perception and production models derive from a single internalised communication

model, in which the coherence variable CAg, expressing the hypothesis of internal

coherence, yields a fusion between the motor and perceptual branches for both

perception and production. Pure auditory and motor theories just consist in cutting

this connection and keeping only either the sensory or the motor branch for both

speech production and perception.

STUDYING PERCEPTION TASKS USING THE BAYESIAN MODEL OF
COMMUNICATING AGENT

We now narrow down our focus to the study of perception tasks. We consider an

environment, populated with several agents (see Figure 3). We take the point of view

of one of the agents, Ag, which performs perception tasks. It interacts with another

agent, Master, which provides it with both learning and test signals. Both agents are

instances of the communicating agent model we defined previously.

Our goal is to compare the three auditory, motor, and perceptuo-motor variants of

speech perception, considered as probabilistic questions and displayed in the right

column of Table 2, asked to the agent Ag.

We consider in simulations two agent models of increasing complexity and realism

(in terms of the forms of all variable distributions). The first one, however, already

contains all properties that are needed to justify our first two theoretical results, and is

also the basis of the first simulation experiment. The other model can thus be seen as a

variant of this first, core model. Therefore, we now provide its full detailed definition,

and only present the variant as needed in the second model.

Variable domains

The domains of MAg, MMaster, SAg, and SMaster vary in our different experiments. In

the first, simple model, they are mono-dimensional, discrete variables (with values

regularly distributed between �10 and 10). The object variables OS
Ag, O

S
Master, O

L
Ag, and

OS
Master each denote two possible speech objects: o� and o�.

Probability distribution forms

The model structure being set according to the previous section, we define each of the

probabilistic terms of interest that are implied by Figure 3.

Figure 3. Experimental situation. Several agents populate the environment. On the left, the agent Ag is the

focus of interest in our experiments. The other, Master, interacts with it and provides acoustic signals in

order to designate an object. Both are instances of the Bayesian communicating agent model. A simulated

environment mediates their interaction.
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Object prior P(OS
Ag)

The first term of the decomposition is a prior probability distribution over objects.

In our first experiment, the set of possible objects contains two values, and we define

both P(OS
Ag) and P(OS

Master) as uniform probability distributions over this set. In other

words, o� and o� each have a prior probability of 0.5 to be the communication object.

Motor models P(MAg j OS
Ag) and P(MMaster j O

S
Master)

The terms P(MAg j O
S
Ag) and P(MMaster j O

S
Master) are probability distributions over

motor gestures, one for each possible communication object. Their definitions depend

on the dimensionality and nature of the motor variable. In our first experiment, motor

variables are discrete and mono-dimensional; therefore they are defined as 1-D

Gaussian probability distributions, approximated over the discrete domain of M

(Figure 4).

Motor to acoustic mappings P(SAg j MAg) and P(SAg j MMaster)

The relation between motor gestures and the resulting speech sounds, characterised

by the formants of the acoustic signal, is known to feature nonlinear events.

Proponents of sensory theories of speech perception argue that processing the

acoustic signal is easier in the acoustic domain than back in motor space, because

nonlinearities would naturally structure the acoustic domain into plateaus and

boundaries (Quantal Theory, Stevens, 1972, 1989: see Figure 5a).

In our model, terms of the form P(S j M) encode the articulatory-to-acoustic

transformation. They are defined as sets of mono-dimensional Gaussian probability

distributions, one for each discrete motor value, defined by parameters m and s. m is

given by a sigmoid function of M, defined by

lðMÞ ¼ b
arctanðaMÞ

arctanðabÞ
;

Figure 4. Motor prototype models. The left curve is P(M | [OS�o-]), the right curve is P(M | [OS�o�]).

10 MOULIN-FRIER ET AL.
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and s models a dispersion around the central value predicted by the sigmoid. The

parameter a controls the linear vs. nonlinear nature of the m(M) function (Figure 5b),

whereas b controls the range of the function.

Two articulatory-to-acoustic mappings are to be defined. The first, P(SAg j

MMaster), is the one performed by the simulated environment model pEnv, of

parameters mEnv, sEnv: sEnv models the noise in the simulated environment. The

second, P(SAg j MAg), is the one internalised in the agent model pAg, of parameters

mAg, sAg: sAg models the uncertainty the agent has about the articulatory-to-acoustic

transformation (e.g., when mEnv�mAg, and sEnv�sAg, the agent has perfect knowl-

edge about the environment characteristics).

(b)

(a)

Figure 5. Nonlinearities in articulatory-to-acoustic transforms. (a) The articulatory-to-acoustic transform

according to the Quantal theory. This transform would include stability regions where variations of

articulatory parameters have little or no influence (zones I and III) vs. instability regions around

the nonlinearities, where small variations of articulatory parameters have a large influence (zone II).

(b) Sigmoid functions used for computing the mean acoustic S signal (y-axis) resulting from a motor gesture

M (x-axis). For each curve, the inflexion point is at M�0, and the slope at this point varies. Note that the

chosen functional form allows studying both quasi-linear (for small a value) and strongly nonlinear (for

large a value) articulatory-to-acoustic relationships.
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Auditory model P(OL
Ag j SAg)

In our framework, the auditory model P(OL
Ag j SAg) of the agent Ag is assumed to

be learned in a supervised manner.

The master agent provides object-to-acoustic signal couples to the learner using the

following algorithm:

� we first choose a random object o in the domain of OS
Master to communicate,

� we compute, in model pMaster, a motor gesture m by drawing at random according

to the master agent’s production model P(MMaster j [O
S
Master�o]),

� we compute, in model pEnv, from m, a resulting auditory signal s, by drawing at

random according to the environment articulatory-to-acoustic model P(SAg j
[MMaster�m]),

� the object o is then transferred without error to the learner, that is, CEnv�1,

assuming a perfect shared-attention mechanism, outside of spoken communica-

tion, that allows to agree on the object of interest. The learning agent takes the

object o as an OL
Ag value.

Thus the learner can, using a history of such couples Bs, o�, identify the parameters

of the probability distributions of P(OL
Ag j SAg).

PERFECT COMMUNICATION LEADS TO THEORETICAL
EQUIVALENCE BETWEEN MOTOR AND AUDITORY MODELS

In this section, we consider the motor and auditory processes of speech perception, as

defined above. We put forward two hypotheses on the learner agent knowledge, under

which motor and auditory speech perception models cannot be distinguished.

Let us consider the purely auditory speech perception of the learner. As defined

before, it is performed by simply accessing the auditory model P(OL
Ag j SAg). But this

model, when learned in the supervised manner we defined, is based on Bs, o�

couples that have been generated by the master agent, using its motor model (and the

model of acoustic propagation through the environment). Mathematically, our

learning algorithm performs the following computation:

P OL
Ag SAg

�

�

� �

/
X

MMaster

P MMaster O
S
Master

�

�

	 


P SAg MMasterj
� �

:

We now add two hypotheses:

� H1: P SAg MAg

�

�

� �

¼ P SAg MMasterj
� �

: we assume that the learner perfectly captured

the environment articulatory-to-acoustic transformation;

� H2: P MAg O
S
Ag

�

�

�

� �

¼ P MMaster O
S
Master

�

�

	 


: the learner and master agent have the

same motor model.

Under these hypotheses, we obtain:

P OL
Ag SAg

�

�

� �

/
X

MAg

P MAg O
S
Ag

�

�

�

� �

P SAg MAg

�

�

� �

:

In the last equation, the left member is the expression of an auditory theory of

speech perception, while the right member is the expression of a motor theory of

12 MOULIN-FRIER ET AL.
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speech perception (see Table 2). This shows that auditory and motor models of speech

perception are indistinguishable in ‘‘perfect’’ communication conditions, that is, with

identical motor models in the agents, and perfect learning of the environment

properties. This is the first result of our Bayesian approach.

The models can be distinguished only if either H1 or H2 is wrong: this is what we

consider here as ‘‘adverse conditions’’. Departure from H1 (imperfect forward model)

can be produced in various ways. The learner could have a limited learning capability,

with not enough memory or inadequate expressiveness. Or it could have an inadequate

model of the articulatory-to-acoustic transformation, for example, in cases where the

noise level assumed by the learner is different from the noise level during subsequent

perception. Departure from H2 with different motor models in the master and the

learner could be due to any biomechanical or idiosyncrasy differences. Of course,

speech impediment or accented speech would provide other, more severe, discrepancies.

In summary, this theoretical result shows that, outside of adverse conditions

(incomplete or imperfect learning, noisy environment, degraded or accented speech),

auditory, and motor processes of speech perception cannot be distinguished in the

Bayesian framework presented here.1

SIMULATING SPEECH PERCEPTION IN ADVERSE CONDITIONS

To achieve distinguishability, we consider two kinds of degradation of the communica-

tion paradigm, which correspond to departures from the two hypotheses H1 and H2.

The first one involves communication noise in the environment. To do so, we vary

the value of sEnv which controls dispersion in the P(SAg j MMaster) articulatory-to-

acoustic transformation. If sEnv equals zero, P(SAg j MMaster) becomes deterministic,

which means that SAg is completely determined by MMaster in a communication

occurrence. Increasing sEnv increases the uncertainty on SAg, which simulates

communication noise. The second one is based on imposing differences in motor

prototypes between pAg and pMaster in the P(M j OS) distributions.

We have five expectations in these simulations.

(1) According to H1, incorrect representation of the noise will induce distinguish-

ability between models.

(2) According to H2, difference between learner and master agent motor

prototypes will also induce distinguishability between models.

(3) Applying a nonlinear P(S j M) articulatory-to-acoustic transformation results

in a natural organisation of the S space in two categories (see Figure 5). An

auditory model of speech perception is naturally suited to this structure. On the

contrary, a motor model first inverses the sensory to motor representations and

hence loses this structure (this is the basic argument which led Schwartz,

Basirat, Ménard, and Sato (2010) to discard a purely motor theory of speech

perception). Therefore, at small to moderate noise levels, the auditory model of

speech perception should surpass the motor model of speech perception.

(4) Noise should degrade the auditory model. However, motor knowledge

represented in P(MAg j OS
Ag) contains some information that could be likely

1Notice that the perceptuo-motor model is actually different from both the auditory and the motor

models here. Indeed, since it is based on a fusion of the perceptual and motor inputs, it questions twice the

classifier P(OL j S) (equal to P(OS j S) in this situation) and keeps only coherent answers, thus decreasing

the error rate.
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to compensate*to a certain extent*for the degradation. Therefore, it may be

hypothesised that at high noise levels, the motor model of speech perception

should surpass the auditory model of speech perception (this is the basic

argument which led Schwartz, Basirat, Ménard, and Sato (2010) towards a

perceptuo-motor theory of speech perception, PACT).

(5) The perceptuo-motor model, combining auditory and motor branches for a

global decision process, should surpass both the auditory and the motor model

at all noise levels.

We first test these expectations on the core 1D model, and then consider stimuli

generated by a realistic articulatory-to-acoustic model of the human vocal tract.

1D core model

Let us recall that in this first variant, sensory and motor variables are mono-

dimensional varying between arbitrary values �10 and 10, and perception deals with

two speech objects o� and o�.

Varying communication noise

In this first simulation, we test how auditory, motor and perceptuo-motor models

of speech perception perform at various levels of communication noise (sEnv varying

from 0 to large values) for three different values of the slope of the P(SAg j MMaster)

transform, producing transforms from quasi linear to highly nonlinear (Figure 5b).

For each model:

. Objects are drawn with equal probabilities from both categories o� and o�.

. From these objects, values for SAg are drawn according to the master production

system P(MMaster j O
S
Master) followed by the articulatory-to-acoustic transforma-

tion of the environment P(SAg j MMaster) (including noise sEnv).

. They are given as input to the probabilistic question of the model (a motor,

sensory, or sensorimotor question, corresponding to probability distributions

displayed in the right column of Table 2).

. From the comparison of the probability distribution of the answers with the

known category of the object for all the drawn values of SAg, a confusion matrix

is built, from which we define the correct recognition rate as the sum of the

diagonal terms. This score describes the probability that the model recognises the

right category for any input SAg.

The results are displayed on Figure 6.

We observe the following results.

. The superiority of the motor or sensory model over the other one depends on

both the value of the noise and the amplitude of the nonlinearity in the P(SAg j
MMaster) transform.

. As predicted, without noise (i.e., when sEnv�sAg, that is, hypothesis H1 is true)

and since motor prototypes are equal (hypothesis H2) the auditory and motor

models perform exactly the same.

. In the linear case, the sensory model is always poorer than the motor one.

Nonlinearity induces a range (for small noise) in which the sensorymodel performs

14 MOULIN-FRIER ET AL.
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Figure 6. Experimental results for the 1D simulation of communication noise. See text for details. The

plots of the left column show the motor prototypes P(M | OS) in the bottom right corner, the articulatory-

to-acoustic link P(S | M) (in terms of mean of the sensory variable for a given motor variable) in the top

right corner, and the auditory prototypes P(S | OL) in the top left corner. The plots on the right column

show the corresponding variations of the correct recognition rate for the different models, when the

environment noise sEnv varies. Top row: linear case; middle row: nonlinear case; bottom row: strongly

nonlinear case.
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better than the motor one. A high value for the slope parameter (highly nonlinear

transform)makes the sensorymodel better than themotormodel on a larger range.

. The motor model becomes better than the sensory model when noise increases.

. The sensorimotor model has always equal or better recognition scores than the

two other models.

Varying motor prototypes between master and learner agent

In this second simulation with a constant small communication noise (sEnv�1), we

considered differences in master and learner agent motor prototypes by

applying different values of means m of the Gaussian probability distributions

P(MMaster jO
S
Master) in the master (used for learning the P(OL

Ag j SAg) distribution),

and P(MAg jO
S
Ag) in the learner. We note lþ

Master; l
	
Master and lþ

Ag and l	
Ag the means for

the two categories o� and o�, respectively. We set lþ
Master ¼ 5 and l	

Master ¼ 	5, and we

suppose that the motor prototypes for the Agent differ from them by a d value: lþ
Ag ¼

lþ
Master þ d; l	

Ag ¼ l	
Master 	 d: A negative (respectively positive) value of the d

parameter means that the learner’s motor prototypes are closer (respectively further)

than the master’s. When d�0, motor prototypes of Master and Ag are identical (i.e.,

hypothesis H2 is true). Applying a delta bias between the means of the motor

prototypes in the master and the learner could be interpreted as a motor idiosyncrasy

or an accent. Once again, we considered three different values for the slope parameter

of the P(SAg j MMaster) transform, from quasi linear to highly nonlinear. The results

are displayed on Figure 7, with the same presentation as in Figure 6.

These show that:

. The superiority of the motor or sensory model over the other one depends on the

discrepancy between motor prototypes in the master and the agent.

. The sensory model does not depend on values of the agent motor prototypes

(since sensory inputs are the same in all cases) while the motor model improves

when the distance between the agent motor prototypes increases (better internal

separation between motor prototypes). Interestingly, this shows that in a motor

theory of speech perception, the best perceptual performances are obtained for

an agent dispersing its motor prototypes as much as possible, rather than

perfectly fitting with its interlocutor.

. A high value for the slope parameter (highly nonlinear transform) makes the

sensory model better than the motor model on a larger range.

. As in the previous simulation, the sensorimotor model has always equal or better

recognition scores than the two other models.

Simulations on stimuli provided by a realistic model of the human
vocal tract

We now extend the previous simulations to more realistic articulatory-acoustic

configurations generated by a realistic model of the human vocal tract. This model,

developed by Maeda (1989), delivers sagittal contours and lip shapes from seven input

parameters driving the jaw, tongue and lips, which are interpretable in terms of

16 MOULIN-FRIER ET AL.
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phonetic commands and are closely related to muscle commands (Maeda & Honda,

1994). After the control parameters are entered, the area function of the vocal tract is

estimated, from which the transfer function and the formants are calculated (Badin &

Fant, 1984).

Figure 7. Experimental results for the 1D simulation of variation in motor prototypes between the learner

agent Ag and the master agent Master. Same presentation as in Fig. 6. In the right column, the x-axis

corresponds to the departure d between the Master and Ag agent motor prototypes (0 means equal

prototypes in the Master and Ag models).
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In the following, we replicated the communication noise experiment on two vowel

corpora produced with this vocal tract model. For each corpus, a single articulatory

parameter controls the acoustic (F1, F2, F3, F4) trajectory between two vowels.

Then, F2, F3, and F4 are summarised by a ‘‘perceptual second formant’’ F2’

computed by an analytical formula derived from experimental data on vowel

perception (Schwartz, Boë, Vallée, & Abry, 1997). Therefore, each corpus associates a

single articulatory variable to a bi-dimensional (F1, F2’) perceptual space. Objects all

along this section are phonemes (i.e., vowel categories).

An [i]�[y] corpus with highly nonlinear articulatory-to-acoustic transform

The first corpus is generated by varying the lip shape (by an adequate

combination of lip height and lip protrusion) from the high front unrounded [i] to

the high front rounded [y]. This produces a well-known trajectory in which the

resonances of the back cavity do not change while only the resonance of the front

cavity decreases from a high F3 value close to F4, to a low F2 value. F2’ enhances

and summarises this perceptual variation by providing a quasi quantal variation

(Figure 8a).

We generated with the vocal tract model two sets of vocalic configurations

respectively around [i] and [y], also displayed on Figure 8a, and we applied the

auditory, motor, and perceptuo-motor speech recognition models to these data, in

the same conditions as previously*including communication noise sEnv*though

sensory variables were now bi-dimensional (F1, F2’) rather than mono-dimensional.

The results are displayed in Figure 8b. They are quite similar with those of Figure

6f, with a large range of noise values for which the sensory model performs much

better than the motor one, while the perceptuo-motor is always the best one.

An [y]�[a] corpus with quasi-linear articulatory-to-acoustic transform

The second corpus is generated by varying the jaw and tongue configuration from

high to low (by an adequate combination of so-called ‘‘mandible’’ and ‘‘tongue body’’

parameters) from the high front rounded [y] to the low [a]. This produces a trajectory

in which F1 increases and F2 decreases, while F3 does not change much, resulting in a

smooth F2’ decrease (Figure 9a).

Once again, we generated with the vocal tract model two sets of vocalic

configurations respectively around [y] and [a], also displayed on Figure 9a, and we

applied the auditory, motor and perceptuo-motor speech recognition models to these

data, in the same conditions as previously*including communication noise s. The

results are displayed in Figure 9b. They are quite similar to those of Figure 6b, the

sensory model performing always worse than the motor one, which is almost equal to

the perceptuo-motor one.

GENERAL DISCUSSION

Perceptuo-motor interactions conceived as a fusion problem

The integrative approach that we propose here, in which the basic ingredients of

contrastive theories of speech perception and speech production are embedded in the

same Bayesian framework for better comparative assessment, seems highly productive,

and already results in four important achievements in this paper.
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1. Auditory, motor, and perceptuo-motor theories of speech perception and

production are described, within a general model of speech communication

(Figure 1), and formalised through a set of probabilistic equations (Table 2)

allowing further quantitative tests in various paradigms.

2. In this probabilistic framework, focusing on speech perception theories, it

appears that in perfect communication conditions (without any kind of noise

and with perfect agreement between perceptuo-motor properties of commu-

nicating agents) auditory and motor theories of speech perception provide

exactly the same outputs and are hence experimentally indistinguishable.

3. If communication noise or inter-agent variability of any kind is introduced,

auditory and motor theories become distinguishable. For small amounts of

noise, the auditory model performs better than the motor one. The noise range

(a)

(b)

Figure 8. Experimental results for the first 2D simulation: [i]-[y] perception with a highly non-linear

articulatory-to-acoustic transform. (a) Variations of formants (F1, F2, F3, F4) and effective second

perceptual formant F’2 when lip rounding varies from [i] (on the left) to [y] (on the right). (b) Correct

recognition scores for the three models for varying communication noise.
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where this happens is increased when the articulatory-to-acoustic transform is

nonlinear. This may be linked to Stevens’ quantal theory. On the contrary, for

large noise levels, the motor model performs better than the auditory one.

4. The perceptuo-motor model of speech perception, based on a multiplicative

fusion of the auditory and motor models, performs always better than both the

auditory and motor models whatever the experimental conditions.

The conception of perceptuo-motor models of speech perception as operating a fusion

between an auditory and a motor submodel provides an interesting perspective for a

new paradigm in the study of speech perception. Multi-sensory fusion in audiovisual

speech has generated a large number of experimental data (typically on conflicting

auditory and visual inputs and on speech in noise) and computational models and

simulations (typically varying the kind of fusion models and the consequence on

(a)

(b)

Figure 9. Experimental results for the second 2D simulation: [y]-[a] perception with an almost linear

articulatory-to-acoustic transform. (a) Variations of formants (F1, F2, F3, F4) and effective second

perceptual formant F’2 when mouth opening varies from [y] (on the left) to [a] (on the right). (b) Correct

recognition scores for the three models for varying communication noise.
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predictions and performances). The present work suggests that the question of

perceptuo-motor fusion could be set at the centre of the agenda of future experimental

and computational studies on auditory vs. motor theories of speech perception. We

elaborate a little more on this in the next sections.

Implications and predictions for further experimental tests

This general portrait sheds some light on the debate between theories of speech

perception. To begin with, it provides a formal basis for better understanding why it is

so difficult to disentangle auditory from motor theories: the motor knowledge is

stored to a certain extent in the auditory model P(OL j S), hence if the learning and

communication conditions are ‘‘perfect’’ in the sense of H1 and H2, experimental data

cannot conclude. This formalises in a rigorous way an argument explicitly stated by

auditory theorists, e.g., Diehl et al. (2004): ‘‘listeners do not recover gestures, but they

do perceive the acoustic consequences of gestures. Any regularities of speech

production (e.g., context dependencies) will be reflected in the acoustic signal, and,

through general mechanisms of perceptual learning, listeners come to make use of the

acoustic correlates of these production regularities in judging the phonemic content of

speech signals’’.

It also suggests some directions for further experimental tests comparing theories.

Let us mention some of these proposals derived from testable predictions suggested by

the simulation results. Firstly, linear vs. nonlinear configurations produce very

different predictions in auditory vs. motor models: while the degradation with noise

is similar in both cases in the motor model, it produces very different effects in the

auditory model, with a larger plateau and a steeper decrease in the nonlinear case

(compare Figure 6f with 6b, or Figure 8b with 9b). Comparing degradation of

phoneme categorisation with noise in linear vs. nonlinear cases could provide some

hints in the debate between auditory vs. motor theories of speech perception.

Secondly, the role of motor processes should be easier to display for noisy

communication rather than for clear speech: this is actually in line with some recent

data assessing how perturbations of the motor system intervene in speech perception,

and displaying effects only when speech stimuli are contaminated with noise (e.g.,

D’Ausilio et al., 2009; Meister, Wilson, Deblieck, Wu, & Iacoboni, 2007; Sato et al.,

2011). Interestingly, comparisons of perceptuo-motor vs. auditory models in Figure 6,

Figure 8, Figure 9 show that the role of motor processes in noise appears sooner in

linear than in nonlinear configurations: that is, if motor processes do intervene in e.g.,

vowel perception, lip perturbation in assessing vowel rounding in an [i]�[y] task should

produce less effect than tongue or jaw perturbation in assessing vowel height in an [i]�

[e] or [y]�[a] task.

Perspectives

A perceptuo-motor theory such as developed in the PACT seems to provide a

quantitatively efficient computational compromise between properties of the auditory

system (nonlinear shaping) and exploitation of motor procedural knowledge in

perception (see Viviani & Stucchi, 1992, for the first introduction of the concept of

‘‘motor procedural knowledge’’ in human perception). This also fits an increasing

number of such proposals, developed in the context of both behavioural and

neuroanatomical data (e.g., Skipper, Van Wassenhove, Nusbaum, & Small, 2007).

The work presented in this paper can be extended and developed in various

directions. Firstly, we are presently beginning to test more realistic and complex
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speech perception tasks, involving complete vowel, consonant or syllabic sets

associated with multi-dimensional articulatory and perceptual spaces defined on the

vocal tract model presented previously. We expect that contextual effects should

enable to better display the role of articulatory knowledge in speech perceptual

processing, typically concerning co-articulation. For example, in syllables involving

the same plosive embedded in various vowel contexts, the motor information on the

plosive, naturally captured in the motor subsystem, should result in enhancing the

plosive recognition score in a perceptuo-motor model compared with a pure auditory

model.

Secondly, more sophisticated paradigms and models should be explored in various

directions. Processing of atypical stimuli (e.g., produced by a speaker with a specific

idiosyncrasy, or a foreign accent) will involve three-agent paradigms in which there is a

perceiving agent, a master agent (providing prototypical stimuli in learning) and a

speaker agent, all possibly different. Comparison of perceptuo-motor fusion models

could be also explored in various directions. Since fusion is basically obtained in the

perceptuo-model by the coherence variable C set to 1 by a Dirac probability

distribution, other types of fusion could be obtained by relaxing this Dirac into a

softer fusion mechanism, possibly driven by additional information such as noise or

context (see Schwartz, Robert-Ribes, & Escudier, 1998, for a discussion on fusion

models in the context of audiovisual speech perception).

Thirdly, we shall design auditory, motor, and perceptuo-motor models of speech

production associated with the equations in the left column of Table 2, and study their

ability to deal with classical speech production questions such as motor equivalence,

co-articulation, perturbation, or learning.

The models should also be extended to questions about the behavioural and

neuroanatomical correlates of each component of the Bayesian implementation. This

relates to such questions as how and where are represented sensory and motor

variables, how are they linked in perception and production, how can the potential

role of auditory knowledge in speech production and motor knowledge in speech

perception be assessed, are the phonological input (related to OL) and output (related

to OS) systems equivalent and/or identical (see evidence for a distinction between these

systems in Jacquemot, Dupoux, & Bachoud-Levi, 2007). Notice that the computa-

tional Bayesian models of speech communication introduced in this paper can also be

extended towards models of the emergence of language in societies of computational

sensori-motor agents in interaction (Moulin-Frier, Schwartz, Diard, & Bessière, 2011).

This should enable to better link what we know about online speech communication

with our knowledge about the shape and evolution of sound systems in human

languages (e.g., Schwartz, Boë, Vallée, & Abry, 1997).
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