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Abstract—Large collections of electronic patient records
provide abundant but under-explored information on the
real-world use of medicines. Although they are maintained
for patient administration, they provide a broad range
of clinical information for data analysis. One growing
interest is drug safety signal detection from these lon-
gitudinal observational data. In this paper, we proposed
two novel algorithms—a likelihood ratio model and a
Bayesian network model—for adverse drug effect discov-
ery. Although the performance of these two algorithms
is comparable to the state-of-the-art algorithm, Bayesian
confidence propagation neural network, the combination of
three works better due to their diversity in solutions. Since
the actual adverse drug effects on a given dataset cannot
be absolutely determined, we make use of the simulated
OMOP dataset constructed with the predefined adverse
drug effects to evaluate our methods. Experimental results
show the usefulness of the proposed pattern discovery
method on the simulated OMOP dataset by improving the
standard baseline algorithm—chi-square—by 23.83%.

Index Terms—adverse drug effect, correlation, BCPNN,
likelihood ratio, Bayesian network.

I. INTRODUCTION

Drug safety is a major public health concern in the

world. Though America’s drug-approval process has

the most world-renowned rigorous standards on safety

and effectiveness, it cannot possibly uncover everything

about a drug’s performance that may occur even with

pre-market clinical trials involving thousands of people.

One important issue related to drug safety is how to

detect adverse drug reactions. Adverse drug reactions are

defined as those unintended and undesired responses to

drugs beyond their anticipated therapeutic effects during

clinical use at normal doses [13]. In the US, people

spend billions of dollars on prescription drugs each year.

Most of them are safely used. However, the few adverse

drug reactions can cause serious healthcare and financial

burdens. It is estimated that 6-7% of hospitalized patients

experience severe adverse drug reactions each year with

a potential of 100,000 deaths, which makes it the fourth

largest cause of death in the US [8]. In addition, adverse

drug reactions require extra treatment and prolong hospi-

talization, which causes a big financial problem. There-

fore, effective methods for determining the relationship

between pharmaceutical drugs and conditions (potential

adverse events) are highly in need.

Currently, spontaneous adverse event reporting sys-

tems record every specific self-report of a suspected

causal association between a drug and an adverse event

for post-marketing safety detection. For observational

analysis, methods need to provide useful information

about associations between drugs and outcomes across

a population of interest. It is unnecessary to ascertain

whether a specific person had a particular outcome due to

a particular drug, but instead we need to infer whether a

population of individuals exposed to a drug experiences

more of the outcome than expected. This population-

based approach differs from the spontaneous adverse

event reporting systems currently used. Many methods

have been developed for post-marketing signal detection

such as Bayesian confidence propagation neural network

(BCPNN) [1], χ2-statistics, and proportional reporting

ratios (PRR) [5]. These methods assign each drug and

adverse event pair a score. If one pair has a high

score and is not confirmed before, it is the promising

hypothesis to check.

However, due to poorly characterized data, insuffi-

ciently recorded clinical observations, and confounding

effects, the true causal relationships between drugs and

adverse events cannot be absolutely detected. In order

to test the performance of different methods, the true

causal relationships are required. Because of these above

issues, the Observational Medical Outcomes Partnership

(OMOP) [11] designed and developed a procedure to

construct simulated dataset for method evaluations. The

procedure generates fictional persons with fictional drug

exposure and fictional adverse event occurrences with

predefined association between fictional drugs and fic-

tional outcomes. Though the dataset is contrived, to the

best of our knowledge, it is the best simulated dataset

and close to real observational data.

The goal of this paper is to develop methods to iden-

tify the associations that OMOP predefined to simulate

data from the observational simulated dataset. Section 2

introduces the simulation procedure of OMOP data. D-

ifferent signal detection models are discussed in Section

3. Experiments are conducted and the characteristics of

different models are analyzed in Section 4. Finally, we

draw a conclusion in Section 5.



II. DATA SIMULATION

The OMOP simulation is a project funded by Foun-

dation for the National Institutes of Health. It in-

volves pharmaceutical industry, academic institutions,

non-profit organizations, the Food and Drug Adminis-

tration (FDA), and other federal agencies. The whole

simulation procedure is complicated and details can be

found at [11]. There has been some existing research

[6], [14] conducted on this dataset. In the following, we

provide a brief introduction of the simulation procedure.

The simulated dataset contains 10 million persons, 90

million drug exposures from 5000 different drugs and

300 million condition occurrences from 4500 different

conditions over a span of 10 years. For only 1.8% of the

20 million possible drug-condition combinations, there

exists a true causal association between the drug and

the condition. For the remaining combinations, no causal

association exists.

The nature of the temporal relation between drugs and

outcomes can vary. For example, many site reactions

from vaccinations or biological injections can be ob-

served within one day of exposure. Other outcomes can

only be observed after many years due to slow changes

in biology or the need for cumulative dose. Some drugs

have increased fracture risks from years of exposure due

to gradual bone loss from calcium malabsorption. For

most outcomes, the temporal relationship between the

drug and outcome is not clear. The occurrence of the

outcome can appear anytime after exposure. Insidious

outcomes are also common for rare and serious events

because of the small number of observed cases, which

makes it difficult to infer the temporal relationship.

Due to the above complicated temporal relationship

of a true causal association between the drug and the

condition, OMOP categories associations into constant

risk onset or constant rate onset types. Constant risk

onset types have a 50% chance to be acute, 40% chance

to be insidious, and 10% chance to be delayed. Constant

rate onset types have a 90% chance to be insidious,

and 10% chance to be delayed. For the acute type,

the outcome appears within the first week after drug

exposure. For the insidious type, outcome appears at

any time after the drug exposure. For the delayed type,

outcome appears between one year and ten years after

drug exposure.

III. SIGNAL DETECTION MODELS

We adopted an ensemble of three different methods, t-

wo disproportionality analysis techniques and a Bayesian

network model, to discover the association between

drugs and potential adverse events (conditions). The

disproportionality analysis methods calculate the pair

correlations by comparing the expected and observed

co-occurrences of a drug and a condition. We explored

multiple counting methods and correlation measures and

chose two that were both accurate and complementary.

The Bayesian network model estimates the pair risk

factors by using a Bayesian network. Finally a weighted

combination of the raw scores from the three models was

computed for each drug-condition pair to give the final

ranking of possible associations.

A. Disproportionality Analysis

In order to apply disproportionality analysis, we need

to generate a good two-by-two contingency table from

the raw data first, and then use correlation measures to

infer the ranking of possible associations.

1) Two-by-two Contingency Table: We generated the

two-by-two contingency table based on the Modified

SRSs (Spontaneous Report Systems) method [12]. The

foundation of correlation measures was a collection of

2-dimensional tables of the form in Table I.

Condition C1

Yes No

Drug D1 Yes a b a+b

No c d c+d

a+c b+d a+b+c+d=n

TABLE I
TWO-BY-TWO CONTINGENCY TABLE

The counts for drugs and conditions were given d-

ifferent weights, based on empirical observation. For

example, conditions and drugs that start on the same

day have an unclear causal relationship due to the

characteristics of the simulated dataset. We don’t know

whether the condition is caused by the drug or the drug

is dispensed for the condition. Therefore, the weight of

conditions and drugs on the same day was set to be

small. However, if time is more precisely recorded and

we know whether a given drug is used before a given

condition or not, we might set a large weight for the

condition after drug exposure, and 0 or negative weight

for the condition before drug exposure. In this paper, we

designed a weighting scheme according to the OMOP

data generation mechanism in Section 2. Such weighting

scheme needs to be changed according to the empirical

observation of given datasets. A condition occurring on

the first day of drug usage was assigned weight w1. A

condition occurring during a drug period of less than

7 days was given weight w2. A condition occurring
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within 7 days of the beginning of the drug use but

outside the drug period was given weight w3. If the

condition happened within 7 days of the beginning of

the drug use and the drug period is greater than 7, we

still use weight w3. If the condition occurred later than

7 days from the beginning of the drug use and during

the drug period, we use weight w4. w1, w3, and w4

are constants. w1 was set to be small. The drug could

be used w2 might be a fixed value C, or dynamically

calculated as (C − w3) ∗ (7 − DrugPeriod)/7 + w3,

giving interactions within a shorter drug period a higher

weight. Since conditions caused by drugs were assumed

to be caused by a single drug, we modified the counts

for conditions occurring during a period with multiple

drugs. Specifically, if the condition is strongly correlated

with one of the co-occurring drugs, we reduce the count

value for the co-occurrence with all the other drugs being

taken during that period.

2) BCPNN: Probability Ratio, Pr = tp/ep, is s-

traightforward and means how many times the com-

bination happens more than expected. However, the

Probability Ratio is very volatile when the expected

value is small, which makes it favor the rare combi-

nations rather than significant trends in the data. In

order to solve the problem, people use shrinkage [1],

[3], [10] to regularize and reduce the volatility of a

measure by trading a bias to no correlation for decreased

variance. Specifically, we add a continuity correction

number to both nominator and denominator. Suppose the

continuity correction is cc, the formula of BCPNN is

BCPNN = ln(tp + cc)/(ep + cc). Normally, we set

cc = 0.5/n; however, it could be any positive number.

This shrinkage strength has been successfully applied to

pattern discovery in the analysis of large collections of

individual case safety reports. Noren et al. [10] used it

for drug signal detection and claimed that it precludes

highlighting any pattern based on less than three events

but is still able to find strongly correlated rare patterns.

From a frequency perspective, BCPNN is a conservative

version of Probability Ratio, tending towards 0 for rare

events and with better variance properties. As tp and ep
increase, the impact of the shrinkage diminishes.

B. Likelihood Ratio

The Likelihood Ratio (LR) is similar to a statistical

test based on the loglikelihood ratio described by Dun-

ning [4]. The concept of a likelihood measure can be

used to statistically test a given hypothesis, by applying

the likelihood ratio test. Essentially, we take the ratio

of the highest likelihood possible given our hypothesis

to the likelihood of the best “explanation” overall. The

greater the value of the ratio, the stronger our hypothesis

will be.
Given the counts, we calculate the true probability of

D1 and C1, tp = a/n, the probability of D1, pd =
(a + b)/n, the probability of C1, pc = (a + c)/n, and

the expected probability of D1 and C1, ep = pd · pc. To

apply the likelihood ratio test as a correlation measure, it

is useful to consider the binomial distribution. This is a

function of three variables: Pr(p, k, n) → [0 : 1]. Given

our assumption of independence of drug and outcome,

we predict that each trial has a probability of success

ep. Then the binomial likelihood of observing k out of

n records is Pr(ep, k, n). However, the best possible

explanation of each trial probability is tp instead of

ep. Therefore, we perform the Likelihood Ratio test,

comparing the binomial likelihood of observing k out

of n records under the assumption of independence with

the best possible binomial explanation. Formally, the

Likelihood Ratio in this case is LikelihoodRatio(S) =
Pr(tp, k, n)/Pr(ep, k, n).

1) Region Bias: In this section, we study the different

upper bounds of LR and BCPNN to discuss the different

region bias with respect to pair support. Given a pair S
with the actual probability tp, we have tp ≤ pc ≤ 1 and

tp ≤ pd ≤ 1. When pc and pd reach their lower bound tp
and the drug always occur together with the condition,

the expected probability ep reaches its lower bound tp2.

Lemma 1. Both LR and BCPNN decreases with the
increase of ep when tp remain unchanged.

Proof: (1) When tp > ep,

LikelihoodRatio(S)

= n · tp · (ln(tp)− ln(ep))

+n · (1− tp) · (ln(1− tp)− ln(1− ep))

= n · tp · ln(tp)− n · tp · ln(ep)

+n · ln(1− tp)− n · ln(1− ep)

−n · tp · ln(1− tp) + n · tp · ln(1− ep)

= n · tp · ln
tp

1− tp
+ n · ln(1− tp)

−n · ln(1− ep) + n · tp · ln
1− ep

ep
.

If we consider LikelihoodRatio(S) as a function of

ep, then

LikelihoodRatio(S)′

=
n

1− ep
−

n · tp

(1− ep) · ep

=
n · (ep− tp)

(1− ep) · ep
.
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Fig. 1. Upper and lower bounds of BCPNN and LR

Since tp > ep, then LikelihoodRatio(S)′ < 0. In

other words, Likelihood Ratio decreases with the in-

crease of ep when tp > ep. Similarly, when tp < ep, we

can prove Likelihood Ratio decreases with the increase

of ep. In all, Likelihood Ratio decreases with the increase

of ep.

(2) When tp is fixed, BCPNN decreases with the

increase of ep according to the formula.

According to Lemma 1, given the actual probability

tp for a pair S, both LR and BCPNN reach their upper

bounds when ep reaches the lower bound tp2. We draw

the upper bound curve of LR and BCPNN with respect

to the change of tp in Figure 1. Though both LR and

BCPNN reach their highest upper bound when tp is

between 0 and 1, pairs on very low tp region have more

chance to get higher BCPNN while pairs on relatively

high tp region have more chance to get higher LR.

C. Bayesian Network Model

In this section we describe the proposed Bayesian

network model for discovering adverse drug effects.

Bayesain networks [7] are directed graphical models [9]

which are useful in representing complex probability

distributions. In Bayesian networks, random variables are

shown with circles while dependencies are represented

with directed edges. The joint probability over variables

is given by a product over conditional probability of each

variable given its parents:

P (x1, x2, ..., xn) =
∏

i

P (xi|Pa(xi))

where Pa denotes the parents of a random variable.

Figure 2 represents the the Bayesian network in plate

notation. Each plate denotes an enumeration over the

random variables. Here we have four distinct enumer-

ations; NI individuals, ND drugs, NC conditions, and

Ti intervals for individual i. Intervals are defined based

on the change in the status of individuals depending

on the drugs they use. That is, upon each drug use, a

new interval begins. By the end of the time window of

the used drug, another interval starts. Therefore, each

interval is associated with a specific number of drugs.

Note that it is possible that an interval is not associated

with any drugs.

In Figure 2, two different modeling paradigms are

presented with regard to time. In the time-independent

model, we assume that the length of the interval does not

influence the number of occurred conditions. In the time-

dependent model, increasing the length of an interval,

conditions are more likely to happen.

Gray circles denote observed random variables while

white circles represent hidden random variables. Gen-

erally, we observe xcit: the number of occurrences of

condition c in interval t for every individual i, and

ydit is 1 if the interval t for individual i is within

the effective drug d’s side-effect time window and 0
otherwise. Additionally, for the time-dependent case,

we know δit which is the length of the interval t for

individual i.

There is a deterministic relation between observed

variable xcit and hidden variables zcit and zdcit as

follows:

xcit = zcit +
∑

d

yditzdcit (1)

where zcit is the number of conditions happened not

because of any drug in interval t for individual i, and

zdcit is the number of conditions occurred caused by

drug d in interval t for individual i.

The probability distribution of the hidden variable zcit
given its parents follows a Poisson distribution:

P (zcit = k|αc) =
e−αc · (αc)

k

k!
(2)

and the probability of αc (for each condition c) given its

parents ρ1 and ρ2 follows a gamma distribution:

P (αc|ρ1, ρ2) =
ρρ1

2

Γ(ρ1)
αρ1−1
c e−ρ2αc (3)

For the time-dependent case, Formula 2 can be written

as follows:

P (zcit = k|αc, δcit) =
e−αcδcit · (αcδcit)

k

k!
(4)

The probability distribution of the hidden variable

zdcit given its parents follows a Poisson distribution:

P (zdcit = k|αc, γdc) =
e−γdcαc · (γdcαc)

k

k!
. (5)

More accurately, αc is the background prevalence of
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Fig. 2. The graphical model of the Bayesian network model. Gray circles denote observed variables while white circles represent hidden
variables.

condition c while γdc is the impact of drug d on back-

ground prevalence. If γdc > 1, drug may be considered

responsible. The probability of γdc given its parent τ
follows a gamma distribution with equal parameters:

P (γdc|τ) =
τ τ

Γ(τ)
γτ−1
dc e−τγdc (6)

We considered gamma distribution with equal parameters

(causes the prior mean of one), since we believe that

the mean of drug effects is one apriori. For the time-

dependent case, Formula 5 can be written as follows:

P (zdcit = k|αc, γdc) =
e−δcitγdcαc · (δcitγdcαc)

k

k!
. (7)

Given the description of the Baysian network, we

are interested to infer the value of query variables, γdc
given the observed variables. We assume prior parame-

ters τ , ρ1 and ρ2 are given as algorithmic inputs. The

remained hidden variables are zdcit, zcit, γdc and αc. To

infer the values of query variables, we use expectation-

maximization (EM)) algorithm [2]. EM algorithm is way

to learn parameters when there are some missing data.

Here, we consider hidden variables zdcit and zcit as

missing data, and γdc and αc as distribution parameters.

EM algorithm is an iterative algorithm where in the

expectation step, the expectation of missing values given

the last estimation of parameters is computed. In the

maximization step, the parameters are maximized given

the estimation of missing values.

In the M-step of our algorithm, we maximize the

parameter αc by maximizing the log likelihood function

as follows:

αc =

∑
it zcit + ρ1 − 1∑

i Ti + ρ2
. (8)

Then given the updated value of αc, the value of γdc is

updated as follows:

γdc =

∑
it zdcit + τ

αc

∑
it ydit + τ

. (9)

In the E-step of the algorithm, we compute the expec-

tation of hidden variables z given the parameter α and

γ. For solving this problem we used a lemma regarding

the Poisson distribution. If Poisson distributions with

rates λ1, λ2, ..., λn created events when only the sum

of the events N is observed, then the probability of

the number of events follows a multinomial distribution

with parameter
λj∑
i
λi

for the jth Poisson distribution.

Therefore, The expectation value of zcit is as follows:

zcit =
1

1 +
∑

d′ yd′itγd′c

, (10)

and similarly the the expectation of zdcit is given by

zdcit =
yditγdc

1 +
∑

d′ yd′itγd′c

. (11)

Deriving the relevant equations for the time-dependent

case is straightforward as we add δit to the related

Poisson distribution in above equations. Finally, since

we do not know that which scenario—time-dependent

or time-independent—holds, we run the algorithm based

on both and average the result:

γdc = ψγ
(dep)
dc + (1− ψ)γ

(ind)
dc (12)

where 0 ≤ ψ ≤ 1 is the mixing weight, γ
(dep)
dc is

the drug-condition pair for the time-dependent case, and

γ
(ind)
dc is the drug-condition pair for the time-independent

case.

In comparison to LR and BCPNN which work

with contingency table of each drug-condition pair, the

Bayesian network model (BN) aims intervals. This capa-

bility helps resolve the confusion between different drugs

as well as background prevalence. LR and BCPNN only
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consider the confusion between a specific drug and a

condition. Therefore, BN introduces another level of de-

composition and more diversity as a result. This diversity

causes the ensemble of these algorithms perform well.

IV. EXPERIMENT

The average precision (AP), a commonly-used metric

in the field of information retrieval, is used to evaluate

each method. It measures how well a system ranks items,

and emphasizes ranking true positive items higher. Let

ydc is equal to 1 if the dth drug causes the cth condition,

and 0 otherwise. Let M =
∑

d,c ydc denote the number

of causal combinations and N = D × C the total

number of combinations. Let zdc denote the estimated

value for the dth drug causing the cth condition. For a

given set of estimated values −→z = (z11, ..., zDC), we

define “precision-at-K” denoted PK(−→z ) as the fraction

of causal combinations among the K largest predicted

values in −→z . Specifically, let z1 > ... > zN denote the

ordered value of −→z . Then, PK(−→z ) = 1
K

∑K
i=1 yi, where

yi is the true status of combination corresponding to zi.
The AP is calculated as 1

M

∑N
K=1(P

K(−→z ) · yK). The

AP is very similar to the area under the precision-recall

curve, which penalizes both type of misclassification:

identifying a correlation when no relationship exists

(false positive) and failing to identify true correlations

(false negative).
For only a small subset of the 20 million possi-

ble drug-condition combinations in the dataset, there

exists a true causal association between the drug and

the condition. However, OMOP does not provide all

the ground truth. Instead, they provides a testing set

with 4000 true associations and 4000 false associations.

Therefore, it is impossible to calculate the true AP score

across the whole dataset as OMOP does. We used the

following bootstrapping method to mimic the AP score

from OMOP. Given a ranking list, we randomly select

3000 true association and 3000 false association from the

testing set to calculate the mimic AP score. Since the true

associations and the false associations are unbalanced

in the whole dataset, but balanced in the test data, we

treat each false association in the ranking list of the

testing data as sixty false associations in that ranking

list, and then calculate the AP score for the transformed

list. We conduct this procedure 100 times and calculate

the mean of the AP scores as the mimic AP score. We

tried different methods during the competition period

and compared the mimic AP score with the true AP

score from OMOP. There is a roughly linear relationship

between these two scores shown in Figure 3.
For the two-by-two contingency table calculation, we

get the best result when w1 = 1, w2 = 5, w3 = 2, w4 =
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Fig. 3. Mimic AP score vs. the true AP score

1. We also plot the occurrence of top-1000 pairs got from

different methods in Figure 4. For Likelihood Ratio, the

occurrence of pairs need to be large in order to get larger

value. For BCPNN, the occurrence of high ranking pairs

is very small. The shape of Bayesian network method

is similar to that of Likelihood Ratio; however, high

ranking pairs of Bayesian network model has relatively

lower bias to large occurrence than those of Likelihood

Ratio. Since some frequently occurred conditions are

background noise and the Bayesian network model can

remove such noise, frequently occurred pairs might not

get high Poisson score and the tailor part of Bayesian

network model is more dispersed than that of Likelihood

Ratio. Since the three models work on different aspects

of data, we simply add raw values of these three methods

for ranking, and it generates the best AP score. The

mimic AP score of different methods is shown in Table

II. Likelihood Ratio, BCPNN, and the Bayesian network

model achieve the similar AP score. They performance

much better than the traditional χ2 method. The AP

score of the ensemble method has roughly 5% increase

from three separate models. The true AP score for our

ensemble method is 0.2569 which lands us on the third

place on the OMOP competition.

V. CONCLUSION

In the practical environment, there are two advantages

of using our method. First, it helps to propose promis-

ing hypotheses to test. Most existing post-market drug

surveillance methods require statistical analysis of the

voluntarily submitted adverse event reports to filter out

the many false positives. For example, 673,259 records

were submitted to the US FDA Adverse Event Reporting

System in 20101. Although the spontaneous reports have

1Data from http://www.fda.gov/
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Fig. 4. Occurrence of top-1000 pairs

Method Mimic AP % over chi-square

PRR 0.1084 -51.76%

chi-square 0.2247 0%

BCPNN 0.2662 18.43%

LR 0.2649 17.87%

BN 0.2670 18.81%

Ensemble 0.2783 23.83%

TABLE II
MIMIC AP SCORE OF DIFFERENT METHODS. % OVER CHI-SQUARE

DENOTES THE IMPROVEMENT OVER THE STANDARD BASELINE

ALGORIHTM—CHI-SQUARE

provided valuable information for clinical decisions, the

spontaneous adverse event reporting system has a serious

limitation of under-reporting. Therefore, we want to

explore alternative data sources for adverse drug reaction

signal discovery such as electronic medical records. An

objective of the OMOP initiative is to provide simulated

data that resemble electronic medical record for method

development and evaluation. Using the simulated data,

our method was shown to be able to return a reliable

rank list of possible associations. If there are some

high ranking associations that are not confirmed by

pre-market clinical trials, we need to pursue further

randomized control studies on them. Second, our method

helps to identify some regional associations. Associa-

tions introduced in the textbook are general. However,

the association ranking list generated by our method

can be from the regional data we have. Some prevalent

associations in the textbook might not be true for a

specific region, while the other associations might be

true for a specific region but not true in the national

level because of the race or environmental difference.

In order to use our method, we need to make use

of the hospital electronic health records, set up the

algorithm to find the ranking list from the data, and

check the difference between the ranking list and our

existing knowledge. Nowadays, many hospitals have

already digitalized their health records, and have staff to

generate adverse event reports. Therefore, hiring a data

mining technical staff is the overhead cost of deploying

our system, which roughly costs $150,000 each year

according to the salary information from indeed.com. In

the national level, our method can help to identify the

promising unknown adverse drug reactions to allocate

our limited funds to set up the controlled test. The

newly identified adverse drug reactions will change the

guideline for drug prescription. In the regional (hospital)

level, our method can help to identify the suspicious

adverse drug reactions, which can guide doctors to
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use the related drugs in a conservative way. By using

our method, we can reduce the number of unnecessary

treatments and even deaths caused by the related adverse

drug reactions, which is hard to be measured financially.

Apparently, the gain of using our method can easily

surpass the overhead cost of deploying our system.
In this paper, likelihood ratio, BCPNN, and the

Bayesian network model are introduced for drug safety

signal detection. Evaluation on different methods in the

OMOP dataset indicates the ensemble model works bet-

ter than each individual model. Among all the methods

we tried for the OMOP competition, the best ensemble

is from these three models which work well and have

diversity with each other. In the future, we are going

to investigate more sophisticated way to ensemble these

three models.
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