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Abstract: Based on the results of a Horizon Scanning exercise sponsored by the Society of Environmental Toxicology and

Chemistry that focused on advancing the adverse outcome pathway (AOP) framework, the development of guidance related to

AOPnetwork developmentwas identified as a critical need. This not only includedquestions focusingdirectly onAOPnetworks,

but also on related topics such as mixture toxicity assessment and the implementation of feedback loops within the AOP

framework. A set of two articles has been developed to begin exploring these concepts. In the present article (part I), we

consider the derivation of AOP networks in the context of how it differs from the development of individual AOPs. We then

propose the use of filters and layers to tailor AOP networks to suit the needs of a given research question or application. We

briefly introduce a number of analytical approaches that may be used to characterize the structure of AOP networks. These

analytical concepts are further described in a dedicated, complementary article (part II). Finally, we present a number of case

studies that illustrate concepts underlying the development, analysis, and application of AOP networks. The concepts

described in the present article and in its companion article (which focuses on AOP network analytics) are intended to serve as a

starting point for further development of the AOP network concept, and also to catalyze AOP network development and

application by the different stakeholder communities. Environ Toxicol Chem 2018;37:1723–1733. �C 2018 The Authors.

Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
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INTRODUCTION

Adverse outcome pathways (AOPs) constitute an important

framework that can help support greater and more effective use

of mechanistic, or pathway-based, data in risk assessment and

regulatory decision-making. While the conceptual underpin-

nings of AOP frameworks date back to at least the late 1980s

(LaLone et al. 2017a); AOPs have rapidly evolved from a

conceptual paradigm (Ankley et al. 2010) into a formalized

framework for organizing biological and toxicological knowl-

edge according to a set of principles and guidelines that are

generally accepted by the scientific and regulatory communities

(Organisation for Economic Co-operation and Development

2013a, 2015; Villeneuve et al. 2014b), and for disseminating that

knowledge through an internationally harmonized knowledge-

base (Society for the Advancement of Adverse Outcome

Pathways 2017; Organisation for Economic Co-operation and
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Development 2017). Nonetheless, further development of the

framework and the tools, approaches, and concepts surround-

ing its application is required to fully realize its potential and

acceptance by society.

In response to the recognized need to continue advancing

the framework, the Society of Environmental Toxicology and

Chemistry (SETAC) sponsored a global Horizon Scanning

exercise to identify major outstanding topics and challenges

related to the AOP framework and its application (LaLone et al.

2017a). Based on a survey of the international stakeholder

community, 4 major topics/themes that needed further devel-

opment were identified: 1) enhancement of communication,

outreach, and stakeholder engagement in the development and

application of AOP knowledge; 2) enhancement of regulatory

use and acceptance of the AOP framework and facilitation of its

incorporation into regulatory practices; 3) enhanced use of the

framework for quantitative assessments and applications; and

4) development of approaches for deriving, interrogating, and

applying networks of AOPs, which is the topic of the present

article.

As outlined by Villeneuve et al. (2014b), individual AOPs are

viewed as a pragmatic unit of development and evaluation. It is

tractable for an individual or a research team to describe and

establish, through both biological plausibility and supporting

evidence, how a defined perturbation of a biological system can

lead, in a causal manner, to a particular adverse outcome. It is far

less tractable for that individual or team to describe all the

possible adverse effects a given perturbation may cause, or,

conversely, all the different perturbations through which

stressors may evoke a particular adverse outcome (e.g.,

reductions in survival, growth, and reproduction; increased

risk of disease). It is even more daunting to consider describing

those possibilities for all the different taxa, life stages, and sexes

(where relevant) that are of interest to a stakeholder. However, at

the same time it was recognized that the “one perturbation–one

adverse outcome” model that an individual AOP represents is a

gross oversimplification of both the complexity of biological

systems and the consequences of exposures to the stressors that

they face. Inmost real-world scenarios, exposures are tomultiple

stressors (i.e., mixtures), not just one stressor at a time. Likewise,

even single stressors may induce toxicity by more than one

mechanism, via interaction of the chemical with multiple targets

in an organism or via interaction with a single target found in

multiple compartments (e.g., cell types, tissues, organs, etc.)

within a complex organism. Thus, most often, AOPs cannot be

considered in isolation. One needs to think about potential

interactions among pathways and consider how those inter-

actions may alter the trajectory or intensity of the effects

resulting from a chemical exposure.

Recognizing this, one of the core principles of AOP

development was that, in contrast to individual AOPs as

pragmatic units of development, AOP networks are viewed as

the most likely units of prediction (Villeneuve et al. 2014b). In

turn, the formalization of the AOP framework, and its

implementation via a knowledgebase structure that allowed

for sharing of an AOP’s modular units (key events and key

event relationships, as found in AOP-Wiki; Society for the

Advancement of Adverse Outcome Pathways 2017), was

conceived and designed to allow for de facto construction

of more complex and comprehensive networks from individual

AOPs. In this way, a more accurate representation of biological

and toxicological complexity that covers more and more of

the susceptible taxonomic space and biological contexts (e.g.,

life stage, sex, impacts in or on different target organs) can be

built up gradually through the independent contributions of

individuals or groups.

A vision for AOP networks has just begun to be realized.

Following publication of principles and best practices for

AOP development (Villeneuve et al. 2014b, 2014c) and public

release of the AOP-Wiki (Society for the Advancement of

Adverse Outcome Pathways 2017) in 2014, time was needed

to allow for an accumulation of a sufficient number of AOPs in

the AOP knowledgebase to actually begin exploring their

connectivity. Likewise, technical and practical challenges in

the development of sharable, modular key event and key

event relationship units in the public AOP knowledgebase

(e.g., the development of naming conventions, search tools,

guidance and training materials, etc.) initially hampered rapid

assembly of these de facto networks. Nonetheless, over the

last 3 yr, a critical mass of AOP descriptions has started to

accumulate, and some of the challenges have been over-

come. This has led to the recent realization of some of the first

examples of AOP networks (Knapen et al. 2015; Angrish et al.

2016, 2017; Margiotta-Casaluci et al. 2016; LaLone et al.

2017b), as well as opportunities to address key concepts

related to the development, analysis, and application of AOP

networks.

The present set of 2 articles begins to explore these concepts.

In the present article (part I), derivation of AOP networks is

considered in the context of how it differs from development of

individual AOP descriptions. We then discuss the application of

filters and layers to refine and enrich derived AOP networks so

that they may be tailored to address specific questions of

interest. Modifications to the AOP knowledgebase that may be

needed accordingly are also considered. We then briefly

introduce a number of analytical and computational approaches

that may be used to characterize and analyze the structure of

AOP networks to derive information that can guide research and

regulatory decision-making. These analytical concepts are

further developed and described in part II by Villeneuve et al.

(2018), including the use of techniques derived from graph

theory (Trudeau 2013) and network science (Lewis 2009), to

analyze network topology, the identification of critical paths, and

the characterization of interactions among AOPs in a network.

Finally, we present a number of application case studies that

illustrate concepts underlying the development and analysis of

AOP networks, and how those concepts tie in with ultimate

application. Although the article is not comprehensive in scope,

the intent is to provide an enhanced understanding of AOP

network development, AOP network analysis (Villeneuve et al.

2018, part II), and applications of AOPs; as well as to provide

perspectives on how some of the challenges identified through

the Horizon Scanning exercise (LaLone et al. 2017a) can be

addressed.
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DEVELOPMENT OF AOP NETWORKS

A first and relevant question is: What exactly is an AOP

network? AnAOPnetwork is defined as an assembly of 2 ormore

AOPs that share one or more key events, including specialized

key events such as molecular initiating events and adverse

outcomes (Table 1). Different AOPs diverging from a single

molecular initiating event, or converging to a single adverse

outcome, therefore also form AOP networks even if they do not

have any other key event in common. Development of individual

AOPs can be thought of as the process of 1) graphically defining

a sequence of key events that link a molecular initiating event to

a defined adverse outcome, 2) describing the change in state

that each key event represents and how it is measured, and 3)

detailing the weight of evidence that supports inference or

extrapolation from one key event to the next in the sequence

based on biological plausibility, empirical support, and quanti-

tative understanding (Villeneuve et al. 2014b). The AOP

networks can be thought of as emerging from the description

of individual AOPs, as soon as key events are described that are

shared between 2 or more AOPs. Either the description of

networked key events can be an intentional process that is part

of the strategy of an AOP developer, or the fact that certain key

events are shared among AOPs can be discovered after AOPs

have been developed independently. When one is considering

different AOP network development processes, it is therefore

useful to distinguish between network-guided AOP develop-

ment and AOP network derivation. Whereas AOP network

derivation is defined as a formal AOP network development

process based on extracting and linking information that is

available in the AOP-Wiki, network-guided AOP development is

introduced as a rather broadly defined concept that includes

many different AOP network development approaches that do

not necessarily rely on database extraction procedures.

Network-guided AOP development

When AOPs are developed in the AOP-Wiki, an AOP network

is created by default whenever a key event or key event

relationship description is linked to more than one AOP. This is

important because it implies that AOP developers are not

restricted to describing only linear paths, and can thus

intentionally conceive and describe structures that are more

complex than the typical one perturbation–one outcome unit.

This process could be thought of as network-guided AOP

development. The advantage of network-guided AOP develop-

ment is that it is not conceptually andmethodologically different

from the development and description of individual AOPs: the

same principles, guidance, and practices in terms of description

within the AOP-Wiki apply, and no additional tools are required.

To develop an AOP network, there is no need to do anything

differently than one would for describing a linear AOP, other

than to intentionally share key event or key event relationship

descriptions (pages) among more than one AOP, a functionality

that is currently built into the AOP-Wiki.

Currently, many AOPs are being developed in this network-

guided fashion (see Angrish et al. 2016; Nelson et al. 2016;

Stinckens et al. 2016; Cavallin et al. 2017; LaLone et al. 2017b).

However, it is expected that as the AOP knowledgebase

matures, AOP development will increasingly focus on filling

data and knowledge gaps in the AOP-Wiki. The AOP network

TABLE 1: Coming to terms with AOP networks

Term Characteristics

AOP network An assembly of 2 or more AOPs that share 1 or more key events.
AOP network development Broad term referring to the description or development of AOP networks, irrespective of the strategy employed.
Network-guided AOP
development

AOP network development strategy involving the development of at least 2 individual AOPs containing 1 or
more intentionally shared key events.

AOP network derivation AOP network development by manually or programmatically extracting AOPs relevant for a given application
from the AOP-Wiki.

AOP network analytics Broad term referring to the analysis of AOP networks to reveal, identify, or investigate specific network
properties, such as topological features, critical paths, or interactions between AOPs.

AOP network filter AOP network development tool to refine which key events and key event relationships from a given AOP
network are included in downstream applications and analysis based on specified filter criteria.

AOP network layer Graphical AOP network visualization tool to overlay a given AOP network with additional data such as feedback
loops to facilitate interpretation without overly complicating the underlying framework.

AOP network topology The overall shape and structure of an AOP network, describing the way in which the constituent parts of the
network (i.e., key events and key event relationships) are interrelated or arranged.

Convergent topology Topology in which key events from 2 or more AOPs are directed toward a common key event or adverse
outcome, representing a range of possible upstream causes.

Divergent topology Topology in which 2 or more key event relationships branch off from a single molecular initiating event or key
event, representing a range of possible downstream outcomes.

Mixed topology Topology showing local divergent and convergent regions within the overall network, possibly featuring specific
motifs such as bow-tie motifs, which could represent important points of biological integration.

Critical path The path through an AOP network considered most significant from an investigational, biological, or regulatory
standpoint. A critical path does not necessarily correspond to a single AOP described in the AOP
knowledgebase.

Interaction between AOPs One AOP affecting another AOP in such a way that it modulates the adverse outcome compared with the
outcome that would be observed had the interaction not taken place.

AOP¼ adverse outcome pathway.
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development thus has the potential to mainly become an

exercise in assembling data that already exist in the AOP

knowledgebase. The process of developing AOP networks by

extracting existing data from the AOP-Wiki and assembling a

network based on those AOPs rather than on de novo

descriptions of linked AOPs is called AOP network derivation.

AOP network derivation

The first step in network derivation is to extract all AOPs that

are relevant for a given application from the AOP-Wiki (Figure 1).

The criteria that define which AOPs are relevant will vary and will

be defined by the application or stakeholder needs. Theoreti-

cally, the AOP knowledgebase can be queried for any property

of an AOP, key event, or key event relationship that has been

appropriately described and/or structurally annotated. Some

examples of extraction criteria include the following: AOPs

leading to a single adverse outcome of interest, AOPs known to

be induced by a particular stressor or group of stressors, AOPs

having key events that map to a particular data set (e.g., a

collection of positive high-throughput screening assay re-

sponses observed for a particular chemical or mixture of

chemicals), AOPs that have a particular species in their

applicability domain, AOPs that have key events for a particular

tissue type, and so on.

Extraction can be achieved manually, for example by

inspecting dedicated pages in the AOP knowledgebase that

list all the AOPs that a particular key event links to. However,

manual extraction of AOP networks could rapidly become

tedious as well as impractical as the AOP knowledgebase grows.

Thus, it is important to develop computational tools designed

for this purpose, such as the AOPXplorer (http://apps.

cytoscape.org/apps/aopxplorer). Using AOPXplorer, any struc-

tured annotation field in the AOP knowledgebase can be

queried computationally to derive an AOP network. Once such

an automated extraction process is complete, the resulting

collection of AOPs can be assembled based on their topologies

of shared key events and key event relationships into an AOP

network that is then called a primary AOP network (Figure 1). In

some cases, the resulting primary network will be directly

suitable for a certain application. In others, it may be desirable to

refine (simplify and/or enrich) the network using a series of filters

and data layer options, or to more deeply interrogate and

statistically analyze the network, as discussed in the next section.

Refining AOP networks using filters

The structural complexity of AOP networks will depend on

various factors. Ideally, AOP network derivation tools should

include ways to focus and refine the network to fit the needs of a

given application and enhance the information content con-

veyed from the overall network diagram. For example, risk

assessment of individual chemicals ormixturesmight be focused

on a particular effect (e.g., impaired reproduction) in a specific

class of organisms. In such a scenario, onemight want to remove

AOPs that relate to nonreproductive endpoints, as well as AOPs

that are relevant to other taxa. On the other hand, efforts

targeting mode of action identification could benefit from

examination of highly branched networks encompassing many

different MIEs and their associated pathways. Thus, it was

conceived that one should be able not only to construct a

primary network based on extraction criteria, but also to filter

that network based on additional annotation terms that would

allow one to focus on the pathway(s) of greatest interest.

It is envisioned that AOP network filters can be used to further

define which key events and key event relationships from the

primary AOP network would be included in downstream

applications and analysis (Figure 1). For example, the structured

key event and key event relationship domain of applicability

terms selected in the AOP knowledgebase could be used to

restrict a network to only those key events and key event

relationships that are relevant to a given life stage, thereby

simplifying the overall network. Alternatively, one might want to

filter an AOP network to only those key events measured at a

defined biological level of organization; to select appropriate

endpoints, one might measure in a specific cell line or tissue. A

FIGURE 1: Graphical representation of the adverse outcome pathway (AOP) network derivation–refinement–analysis workflow. A primary AOP
network is constructed by querying the AOP knowledgebase (AOP-KB). Filters are then applied to derive a filtered network containingAOPs of interest
for a given application or research question. Layers can be added in a next step to add data relevant to the application. Finally, the AOP network can be
analyzed to produce metrics related to the topology and other properties of the network.

1726 Environmental Toxicology and Chemistry, 2018;37:1723–1733—D. Knapen et al.
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range of different filters, based on either structured ontology

terms that are part of the AOP descriptions (e.g., taxonomic

applicability) or on network metrics (e.g., how strongly

connected key events are to the network) could be envisioned.

Supplemental Data Table S1, provides a list of possible filters

that could be envisioned, including filters for taxonomic, life

stage, or sex applicability, network metrics, and critical paths.

Each could be used to help tailor an AOP network to a given

problem formulation or research question. Finally, we propose a

confidence assessment filter that can be used to filter AOP

networks based on various weight-of-evidence, biological

plausibility, essentiality, and other assessments of the constitu-

ent AOPs.

Visualizing AOP network data using layers

A simplified representation of a set of key events and key

event relationships (i.e., anAOPnetwork) can easily be visualized

graphically, where each unique key event is represented by a

single node, and the key event relationships are represented by

edges (Figure 1). Although such a simple graphical representa-

tion can depict the general structure of an AOP network, it is not

a practical means of displaying and interrogating all the complex

information captured within each of its key event and key event

relationship descriptions. In addition, one may wish to supple-

ment a network with additional data that are external to the AOP

knowledgebase (e.g., experimental data), which can further

convolute the information associated with an AOP network. To

aid in the visualization and interpretation of the complex

information in AOP networks, we propose a mechanism to

visually superimpose this information, as needed, as layers on

top of an AOP network image (Figure 1). These AOP network

layers can be viewed as analogous to the data layers employed

in geographic information systems: information relevant to

interpretation or application of an AOP network can be laid over

the filtered AOP network, much like traffic or public transporta-

tion information is laid over a city map. Ideally these layers could

capture data derived from structured annotation fields within the

AOP-Wiki, and they could also incorporate other types of data

that are not necessarily part of formal AOP descriptions.

There has been resistance to the explicit representation of

additional data such as feedback loops as additional types of

nodes and edges in an AOP network, because they may overly

complicate network interpretation for many applications. On

the other hand, for some applications, such additional levels of

detail may yield insights that may allow for more accurately

predicting biologically relevant outcomes. Layers add infor-

mation to an AOP network without modifying or influencing

the network’s overall properties, structure, and topology, and

they are viewed as a way to address competing desires for

greater information richness and detail on the one hand versus

clear-cut interpretive simplicity on the other hand. The

consideration of feedback loops and modulating factors within

AOPs and AOP networks provides a useful example of this. At

present, events associated with a feedback loop may be

included as key events in the AOP when a feedback response is

causally linked to the adverse outcome and is measurable. In

other cases, however—for example, when an understanding of

the feedback loop may aid in predicting how severely a

particular key event must be perturbed to progress further

along the pathway—knowledge of the feedback loop can be

included in the “quantitative understanding of the linkage”

section of the relevant key event relationship pages (see Q&A

13 in LaLone et al. 2017a). Therefore, feedback, feedforward,

or other types of signaling motifs or loops are not specifically

annotated as such in AOP descriptions and are thus very

difficult to identify automatically. Likewise, modulating factors

that are extrinsic to the AOP network (i.e., are not driven by

interactions among existing key events found in the network),

such as dietary factors, genetic susceptibility or resistance,

disease states, environmental factors, and so on, are currently

only captured in the free-text descriptions of quantitative

understanding of the key event relationships. Whereas

potential intrinsic modulating factors are captured de facto

in the structure of the network because they arise from a

shared key event or key event relationship and, therefore, do

not need explicit annotation, extrinsic modulating factors

require separate descriptions and anchoring to the AOP

network.

Operationally (i.e., from the perspective of further develop-

ment of theAOP knowledgebase), the implementation of certain

types of layers would involve the introduction of additional

structured annotation fields (Ives et al. 2017) in the key event and

key event relationship descriptions of the AOP knowledgebase.

In the case of knownmodulating factors, this could, for example,

involve the introduction of an optional “modulating factor” field

to key event relationship descriptions, whereby users could

define a modulating factor and provide additional text descrip-

tion and supporting references. An advanced implementation of

feedback loop layers could allow future key events also affecting

the feedback loop to reveal interactions between AOPs that are

not necessarily evident from individual key events. However,

even at the most basic level, the ability to apply a layer that

identifies those key event relationships for which feedback or

modulating factors are known to influence response–response

relationships could be very informative and could signal a user to

explore the additional details provided in theAOPdescription to

determine whether they are relevant to the application in

question. Although these capabilities have not yet been

implemented as computational features of the AOP knowl-

edgebase, the concepts and features outlined in the present

article have been communicated to the AOP knowledgebase

development team to inform ongoing software development

aimed at enhancing the utility of AOP networks.

In addition to feedback loop layers and modulating factor

layers, a number of other data layers were identified that could

reflect taxonomic, life stage, and sex applicability domains,

genetic heterogeneity, tissue specificity, and temporality, as well

as quantitative response data (Supplemental Data, Table S2).

We propose that in combination, the use of filters and layers will

help to achieve a network representation that is suited for the

intended application and will make the AOP knowledgebase

more user friendly and useful for other intended audiences (such

as risk assessors) in addition to research scientists. Importantly,
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by overlaying certain data types on the key event relationships

within an AOP network, the network representation can be

transformed into a mathematical construct allowing for different

types of analyses to be applied (Figure 1; Villeneuve et al. 2018,

part II).

Analyzing AOP networks

An AOP network organizes sets of biological perturbations

that may interact and influence one another in such a way that a

significant understanding of the biologymay be derived through

examination and analysis of the structure of the network.

Although visual examination of the network graph is compelling,

the use of techniques from graph theory (Trudeau 2013) and

network science (Lewis 2009) facilitates an encompassing review

of the network, especially when networks become larger and

more complex. Villeneuve et al. (2018, part II) address several

aspects of AOP network analytics, building on the basic AOP

network concepts described in the present article. They

specifically focus on 3 key elements: 1) AOP network topology

analysis, 2) critical path identification, and 3) characterization of

interactions among AOPs in a network. In the present article we

provide a few topical examples of analytical procedures thatmay

be applied to AOP networks to give the reader a brief

introduction to some of the concepts involved. The companion

article (Villeneuve et al. 2018, part II) gives a complete overview

and in-depth discussion of AOP analytics.

In AOP network topology analysis, a large variety of metrics

can be calculated that describe the overall shape and structure

of the network or identify specific nodes in the network that may

be of particular interest. For example, one of the first topological

properties of interest is comprised of points of convergence and

divergence within a given network (Figure 2A). In a convergent

topology, AOPs are directed toward a common key event or

adverse outcome, whereas a divergent topology involves AOPs

branching off from a common molecular intiating event or key

event. Conceptually, the degree of convergence or divergence

of a network may affect the intensity of the adverse outcomes,

and analysis of convergence/divergence of AOP networks may

inform on the existence of potential additive, synergistic, or

antagonistic effects and interactions, or may, for example, be

used to develop assays that would capture a broad range of

molecular intiating events, versus assays predictive of a group of

related adverse outcomes, versus assays predictive of only a very

specific adverse outcome. Most real-life AOP networks will likely

be mixed networks (i.e., have local divergent and convergent

regions within the overall network). This could lead to specific

motifs, such as a node that is a local site of convergence and

divergence simultaneously, a mixed structure that would create

a bow-tie motif (Figure 2A) and could represent important

integrative biological signals. Computationally, a large number

of metrics can be calculated to describe network topologies,

each providing a specific view of the network and complemen-

tary opportunities for identifying network nodes of interest. A

few examples of such metrics are given in Figure 2B.

A second and highly relevant characteristic of AOP networks

is that they provide a framework for the description of the overall

landscape of potential adverse outcomes resulting from

particular biological perturbations. This can enable strategic

identification of paths that have the greatest biological

likelihood and/or relevance for risk assessment. Within an

AOP network, the most significant path from an investigational

or biological standpoint is termed the critical path. In the present

article we distinguish “path” from “pathway” to recognize that

the critical path may not necessarily follow an entire AOP, and

may in fact emerge only through the assembly and consideration

of the interactions betweenmultiple AOPs. The interpretation of

what constitutes a critical path can vary widely depending on the

context and perspective of the AOP developed or end user.

Critical paths may be representative of a specific research

question, or of the strongest weight of evidence for certain

elements of the network. They may also represent the most

toxicologically relevant path that may have great importance in

the application of AOP networks for risk assessment. This can in

turn aid identification of endpoints or assays that can serve as

useful alternatives to the direct measurement of apical adverse

outcomes (Organisation for Economic Co-operation and Devel-

opment 2016a). Also, AOP network–based critical path delinea-

tion efforts may be useful for identifying data gaps that are

required to achieve a complete critical path description in

scenarios in which the AOP network includes poorly supported

AOPs. Even though critical paths currently remain a relatively

loosely defined concept and quantitative approaches (i.e.,

quantitative AOP development) may be required to formulate

FIGURE 2: Examples of adverse outcome pathway (AOP) network
analysis concepts and approaches. (A) Network topology analysis can
reveal converging, diverging, or mixed patterns. A mixed pattern can
take the shape of a bow-tie motif. (B) Two different examples of network
metrics calculated for the same hypothetical AOP network. The degree
of a node (key event [KE]) in the network is equal to the number of edges
(key event relationships [KERs]) connecting the node to the network and
is one way of expressing how connected that node is to the network. The
path occurrence is the number of times a node (KE) occurs in a path
connecting amolecular initiation event (MIE) to an adverse outcome (AO)
after evaluating all possible paths between the MIEs and AOs of the
network. The path occurrence may be an indication of the relative
importance of a node within the overall network.
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a more stringent definition, Villeneuve et al. (2018, part II)

recognize the need for different critical path identification

strategies, and distinguish among problem formulation, weight

of evidence, and biologically–toxicologically defined critical

paths, as well as the pure empirical identification of critical paths.

A third, and probably the most challenging, aspect of AOP

network analysis is the identification and characterization of

potential interactions between AOPs. The AOP interactions

describe how one or more components of a pathway may affect

another pathway in such a way that it modulates the adverse

outcome in terms of its biological properties, intensity,

probability, rate, and so on, compared with the outcome that

would be observed had the interaction not taken place.

Interactions between AOPs may be described as cross-talk

between AOPs, but because the concept of cross-talk is typically

associated with specific and rather strictly defined molecular

processes such as signal transduction cascades, “interactions” is

preferred as the descriptor. From a procedural perspective,

because nodes in AOPs represent directional changes in the

state of biological components (e.g., increased vs decreased

testosterone concentrations are 2 different key events) rather

than the biological components themselves (e.g., testosterone),

it is recognized that tools to automatically map key events

occurring on the same components during AOP network

extraction and analysis will be required before the full potential

of interaction analysis is achieved. Nevertheless, interactions are

anticipated to result in additive, synergistic, or antagonistic

responses (Vert and Chory 2011), and their analysis may provide

the opportunity to guide a more rational assessment of mixture

toxicity, for example (Villeneuve et al. 2018, part II).

AOP NETWORK APPLICATION: CASE
STUDIES

As described by Villeneuve et al. (2014b), AOP networks

(compared with single AOPs) were envisioned to be a more

realistic representation of the complex biological interactions

that would, for example, occur in response to exposures to

chemical mixtures or single toxicants exhibiting multiple

biological activities. The development and analysis of AOP

networks have the potential to provide important information

regarding the interactions among multiple AOPs, and repre-

sent an interface between the specific toxic outcome captured

in a single AOP and modulation of those outcomes due to

interactions occurring in a systems biology context. In

addition, analysis of the intersections (shared key events and

key event relationships) among AOPs that make up an AOP

network can reveal unexpected or underappreciated biologi-

cal connections. Consequently, it is anticipated that AOP

networks will ultimately be more informative than individual

AOPs in a decision-making context. For example, when one is

mapping the landscape of AOPs for a particular adverse effect,

the network will indicate the points of convergence of different

pathways, which may indicate the most promising key event for

development of in vitro assays that can be tailored to capture

all the pathways upstream from that key event. This approach

may be very useful for informing the construction of integrated

approaches to testing and assessment to cover the relevant

biology for a wide range of potential adverse outcomes

(Tollefsen et al. 2014). The AOP networks may also offer

insights into approaches for evaluating the toxicity of mixtures

to understand how a chemical acting via one AOP may be

impacted by another chemical acting via another AOP in a

relevant mixture.

Although some of the most prominent potential applications

of AOP networks have been noted, other applications may

undoubtedly emerge. For example, AOP networks could help

speed the design of new drugs or chemicals by providing early

warnings of potential side effects or toxicological events that

could possibly end up in adverse effects. Likewise, mapping

layers of information on modulating factors onto an AOP

network could help to identify vulnerable subcategories of

people or wildlife whose susceptibility may be increased or

decreased as a function of health status, microelement

deficiencies, environmental stresses, and so on. These could

either exacerbate the adverse effect of a chemical, or (equally

undesirable) undermine or counteract the effect of a drug. Given

thebroad range of applications, it is impractical to illustrate them

all. Thus, in the context of the present article, we highlight just a

few application case studies that illustrate some of the concepts

of AOP network development and analysis described previously

and also show how those processes can be applied to help

address questions related to chemical safety assessment.

Case study 1: AOP network for metabolic
disorders mediated by hepatic steatosis

The need to develop AOP networks to effectively evaluate

complex diseases was recently highlighted in the development

of mechanistic toxicity tests based on an AOP network for

hepatic steatosis, leveraging a large amount of publicly available

mechanistic, phenotypic, and toxicological liver data (Angrish

et al. 2016, 2017; Bell et al. 2016; Oki et al. 2016). Steatosis, also

known as fatty liver disease, is a regulatory endpoint and

pathologic condition in which energy metabolism is disrupted

and fat accumulates in the liver. Energy homeostasis is

dependent on the balance between energy intake and

expenditure, a process regulated by endocrine and cellular

communication among the brain, gut, and metabolic tissues

such as adipose, striated (skeletal and cardiac) muscle, pancreas,

and liver. At the molecular level, metabolism is coordinated by

broad chemical signals, including nutrients, hormones, and

environmental chemical signals that control systemic energy

homeostasis by binding to cognate cell surface, cytosolic, and

nuclear receptors. Chemical contact at any point along this

neuro–endocrine–organ network can impact complex signal

transduction, gene expression, protein activation cascades, and

so on to coordinate the energy demands of a biological system.

The challenge is that, because these receptors and signaling

pathways cross-talk, it is difficult to adapt existing assay data

(e.g., data from current ToxCastTM and Tox21 assays) to

strategies predictive of a steatotic outcome, possibly because

the events these assays represent are too far upstream of the

adverse outcome to allow for facilitation of reliable prediction of
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outcomes. Effectively, the interactions that occur in between are

too complex to model practically or reliably.

In the steatosis AOPnetwork, this challengewas overcomeby

identifying a network topology converging into 4 key events that

were viewed as critical paths leading to steatosis (i.e., fatty acid

uptake, efflux, synthesis, and oxidation; Figure 3). The assump-

tion was that assays measuring these points of convergence

would integrate the complex interplay of upstream events and

translate them into key event measures or points of departure

that are more proximally located relative to the adverse

outcome. It is conceivable that such an approach would have

the power to capture not only single chemical exposures, but

also mixture effects, as long as the effects were upstream of the

convergent key events.

Once the convergent key events were identified and the

corresponding assays were developed, a second step was to

utilize data from those assays to predict steatotic outcomes as

well as their severity. A challenge is that the compensatory

actions of these 4 key events collectively balance liver lipid

levels. Consequently, progression toward a steatosis adverse

outcome depends on the combination and magnitude of the

change in key events and the interaction among all 4 key events

and their associated AOPs. Although in some cases, only 1 of

those 4 key events may be impacted and that 1 alone could be

sufficient to elicit the adverse outcome, in most cases it is likely

that more than 1 of the convergent key events will be affected.

This can be expected to yield consequences different from those

that might be predicted based on impacts on any one of those

key events alone. For example, an exposure that increases lipid

uptake may be sufficient to cause steatosis, whereas an

alternative exposure that also activates lipid efflux may

compensate for increased uptake and restore balance such

that no adverse outcome is observed. This is a salient example of

why the consideration of AOP networks has been viewed as

critical to the use of the AOP framework for predictive

toxicology. As such critical paths and points of convergence

are identified, AOP network analyses can inform the develop-

ment of complementary, biologically based mathematical

models that facilitate an alternatives-based (e.g., cell-based

assays) chemical evaluation workflow.

Case study 2: Decreased serum thyroid hormone
AOP network for alternative assay development

An example of network-guided AOP development that has

led to de facto construction of an AOP network in the AOP-Wiki

is centered around circulating thyroid hormone concentrations.

Two major points of convergence/divergence (i.e., key events

resembling the knot of a bow-tie motif; see the Visualizing AOP

network data using layers section) in this multitaxon AOP

network are decreased serum T4 (thyroxine) and decreased

serum T3 (triidothyronine, see Figure 4A).

This thyroid hormone disruption AOP network has been

employed to support the development and application of

guideline toxicity tests and, subsequently, alternatives to those

same whole-animal test guidelines. For example, the amphibian

metamorphosis assay (Organisation for Economic Co-operation

and Development [OECD] test guideline 231; Organisation for

Economic Co-operation and Development 2009) was devel-

oped for the purpose of screening chemicals for their ability to

disrupt the thyroid hormone signaling axis in vertebrates. The

branches in the AOP network provide the scientifically plausible

and evidence-based foundation for linking the shared key event

of decreased serum T4 to impaired amphibian metamorphosis

as an indicator of thyroid axis disruption. Adverse neuro-

developmental outcomes in rodents build the case for the

relevance of the amphibian metamorphosis assay for screening

thyroid-disrupting chemicals that can be adverse to humans

(Figure 4A). Given the time- and resource-intensive nature of the

amphibian metamorphosis assay, it was desirable to replace it

with in vitro assays that could be used to screen large libraries of

chemicals for their ability to disrupt the thyroid axis. Basedon the

AOP network, assays for thyroid peroxidase activity, the sodium

iodide symporter, iodothyronine deiodinase, and iodotyrosine

deiodinase activities were developed to assess the potential

mechanisms through which chemicals could alter circulating T4

and/or tissue T3 concentrations (Figure 4A). Not all these targets

have been covered in existing high-throughput screening

programs (e.g., ToxCast, Tox21), so the AOP network helps to

inform the development of a more comprehensive screening

battery for this important mode of endocrine disruption.

FIGURE 3: Adverse outcome pathway (AOP) network for metabolic
disorders mediated by hepatic steatosis. The high level of cross-talk
between the different receptors and associated signaling pathways
complicates the use of existing high-throughput screening data as
predictors of a steatotic outcome. This challenge was overcome by
identifying a network topology converging into 4 key events (i.e.,
lipogenesis, and fatty acid uptake, efflux, and oxidation) that were
viewed as critical paths leading to steatosis. Assays measuring these
points of convergence integrate the complex interplay of upstream
events and translate them intomeasures that aremore directly related to
the adverse outcome. FA¼ fatty acid; TAG¼ triacylglycerol;
PI3K¼phosphatidylinositol-3-kinase; AKT¼protein kinase B;
PPAR¼peroxisome proliferator-activated receptor; LXR¼ liver X
receptor; CAR¼ constitutive androstane receptor; PXR¼pregnane X
receptor; FXR¼ farnesoid X receptor; RXR¼ retinoid X receptor.
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As part of another alternative testing development effort, a

question was posed as to how the fish early life stage test (OECD

test guideline 210; Organisation for Economic Co-operation

and Development 2013b) might be replaced by more rapid

and cost-effective alternatives (Villeneuve et al. 2014a). Although

a modified fish embryo test (OECD test guideline 236;

Organisation for Economic Co-operation and Development

2013c) had been proposed as an alternative that could cover

muchof the toxicological spaceencompassedby the fish early life

stage test, it was recognized that certain developmental events

occurring after hatch, during the larval to juvenile transition, could

be missed. One example was swim bladder inflation, which in

common laboratory-model cyprinids such as zebrafish and

fathead minnow occurs in 2 stages: inflation of the posterior

chamber shortly after hatch, followed by inflation of the anterior

chamber several days to weeks later (Villeneuve et al. 2014a;

Nelson et al. 2016; Stinckens et al. 2016; Cavallin et al. 2017).

Although a range of biological perturbations may disrupt this

event, decreases in circulating T4 and/or deiodination of T4 to T3

have been defined, through development of an AOP network, as

a means through which chemicals could impact swim bladder

inflation in fish, a key event that has been linked to reduced

young-of-year survival (Czesnyetal. 2005;WoolleyandQin2010).

The AOP network that focused on swim bladder inflation in fish

was subsequently integrated with the broader amphibian/

mammalian AOP network described in the previous paragraph,

resulting in a multitaxon thyroid AOP network (Figure 4).

Consequently, the same battery of in vitro assays that can

plausibly screen for thyroid-disrupting chemicals in amphibian

andmammalianmodels could also cover toxicological space that

might be missed if a fish embryo test were employed as the only

alternative to a fish early life stage test.

From a network development perspective, the thyroid AOP

network demonstrates how some of the proposed filters and

layers might be applied (Figure 4B). For example, application of

a life-stage filter would show that the AOP mediated via

FIGURE 4: Adverse outcome pathway (AOP) networks related to disruption of the thyroid axis. (A) Multitaxon thyroid hormone disruption AOP network
includingmammalian, amphibian, and teleost endpoints. Theblue regions illustrate how a taxonomic applicability layermaybeused to add relevant data
to theprimarynetwork representation. Thekeyeventshighlighted in yellow indicate2majorpointsof convergence/divergence in thenetwork, resembling
the knot of a bow-tie motif. (B) Filtered thyroid AOP network only containing key events that are relevant to fish. The dashed brown area illustrates how
additional filtering might be used to further refine the network (e.g., to only include key events that are relevant to specific life stages). The blue area
illustrates the use of a layer to indicate the presence of a feedback loop acting on an AOP in the network, and the interaction between the feedback loop
and one of the molecular initiating events in the network. Red negative sign¼ inhibition processes. Red arrow¼DIO inhibition, which decreases
conversion of T4 into T3, thereby inhibiting the feedback inhibition of T3 on TRH and TSH synthesis. IYD¼ iodotyrosine deiodinase; NIS¼ sodium-iodide
symporter; TPO¼ thyroperoxidase; DIO¼ iodothyronine deiodinase; TH¼ thyroid hormone; T4¼ thyroxine; T3¼ triiodothyronine; TRH¼ thyrotropin-
releasing hormone; TSH¼ thyroid-stimulating hormone; thyrotropin; SB¼ swim bladder.
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inhibition of the thyroid peroxidase enzyme is only relevant to

larval fish. If the exposure was during the embryo stage only and

the focus was inflation of the posterior chamber, then

iodothyronine deiodinase enzyme inhibition would represent

the critical path in the network. Alternatively, if the exposure

occurred or was sustained until after hatch, both thyroid

peroxidase and iodothyronine deiodinase inhibition would be

inferred to be contributing to reduced anterior swim bladder

inflation, suggesting that the outcome may be more severe

than that triggered by a chemical exhibiting only one of the

2 bioactivities. Furthermore, invoking the feedback loop layer in

the AOP network visualization could unveil additional detail

relevant to predicting the interactive effect of these 2 AOPs,

because the molecular initiating event of iodothyronine

deiodinase inhibition also impacts the negative feedback loop

mechanism itself. Adding the quantitative properties of this

feedback mechanism to the response–response relationship of

the key event relationship linking decreased T4 levels to reduced

anterior swim bladder inflation might provide for a more

accurate prediction of the joint effect of the 2 AOPs than the

basic AOP network alone would provide.

Additional case studies

Two additional, fully described case studies are given in the

Supplemental Data to provide the interested reader with further

examples illustratingAOPnetworkdevelopmentandapplication in

more advanced scenarios. The first case study illustrates the

applicationofAOPnetworks to support theassessmentof complex

mixtures. A water sample extract of a metropolitan wastewater

treatment plant was tested using a number of ToxCast assays to

evaluate the ability of the sample to activate different nuclear

receptors and transcription factor promoter–regulated reporter

sequences. Assay activity was mapped to molecular initiating

events described in the AOP-Wiki, and the resulting AOP network

was filtered to focus on key events that weredirectly relevant to the

observed bioactivities. The resulting set of AOP networks was

further filtered to exclude AOPs that did not terminate at adverse

outcomes that would be considered relevant to ecological risk

assessment. Focusing on the remaining AOPs, known potential

hazards to aquatic vertebrate wildlife associated with this mixture

could be identified. The second case study provides an example of

how an AOP network approach was used to explore the

polypharmacological profile of the pharmaceutical beclometha-

sone dipropionate using the fatheadminnow. Because of its ability

to modulate the glucocorticoid receptor, beclomethasone dipro-

pionate is used to treat chronic inflammatory conditions, but the

drug also has the ability to modulate the androgen and

progesterone receptors. Data generated during drug develop-

ment were used to identify the cascades of key events likely to be

triggered, and this information was organized within an AOP

network. Chronic in vivo exposures to beclomethasone dipropi-

onate were then carried out to generate a quantitative AOP

network, which provided evidence that the polypharmacology

profile of the beclomethasone dipropionate was indeed critically

important to interpret and accurately predict the toxicological

profile of the drug (Margiotta-Casaluci et al. 2016).

SUMMARY AND CONCLUSIONS

Based on the results of a SETAC-sponsoredHorizon Scanning

exercise focused on advancing the AOP framework, the

development of guidance and best practices related to AOP

network derivation and application was identified as a critical

need. This not only included questions and concerns focusing

directly on AOP networks, but also on different related topics

such as mixture toxicity assessment, the implementation and

graphical representation of feedback loops within the AOP

framework, the characterization of interactions among path-

ways, the ability to include information on extrinsic modulating

factors, and so on. Although the concept of constructing

networks has always been deliberately, but possibly rather

implicitly, built into the AOP framework (Villeneuve et al. 2014b,

2014c), the number of available AOPs has only recently reached

a level sufficient to begin developing AOP networks. Recogniz-

ing different needs and strategies for developing AOP networks,

we distinguish between network-guided AOP development and

AOP network derivation based on the AOP knowledgebase. We

then propose the use of filters and layers to simplify visualization

and interpretation of AOPnetworks, and to tailor them to suit the

needs of a given research question or application. The AOP

networks can subsequently be analyzed in a variety of ways to

extract useful information, including topological analyses,

critical path identification, and characterization of interactions

among AOPs within a network. The concepts described in the

present article, and in its companion article focused on AOP

network analytics, are intended to serve as a starting point for

further development of the AOP network concept and of the

AOPknowledgebase to increase its capabilities formanagingand

analyzing AOP networks, but also to catalyze AOP network

development and application by the different stakeholder

communities. Along with other manuscripts produced as a result

of the April 2017 SETAC Pellston Workshop on Advancing the

Adverse Outcome Pathway Framework (LaLone et al. 2017a), we

hope to serve the ongoingdevelopment of theAOP framework in

general as a critical concept to support 21st century approaches

to toxicological research and regulation.

Supplemental Data—The Supplemental Data are available on

the Wiley Online Library at DOI: 10.1002/etc.4125.
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