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Abstract: Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-

outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed

to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and

interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces

nascent concepts related to the qualitative analysis of AOP networks. First, graph theory–based approaches for identifying

important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second,

considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment

perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic,

or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion

article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous

analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making.

The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry

Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734–1748. �C 2018 The

Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US

government work and, as such, is in the public domain in the United States of America.

Keywords: Adverse outcome pathway; Risk assessment; Predictive toxicology; Mixture toxicology; Adverse outcome

pathway network; Network topology; Interactions

INTRODUCTION

The adverse outcome pathway (AOP) framework uses a

modular structure to organize information concerning the linkage

between amolecular-level perturbationof abiological systemand

the adverseoutcome(s) that perturbationmay cause. Themodular

structure is composed of 2 basic units: key events and key event

relationships (Villeneuve et al. 2014a). These units are linked

together in definedsequences (i.e.,AOPs) thatdescribea seriesof

measureable biological changes (key events) reflecting progres-

sion froma specificmolecular initiating event to a defined adverse

outcome, and the scientific evidence that supports the relation-

ships (key event relationships) between those changes. Each AOP

can be viewed as one biologically plausible, and scientifically

defensible, chain of events that can lead from a defined biological

perturbation to an adverse outcome. However, asmore AOPs are

described, systems or assemblages of interconnected AOPs that

share one or more key events emerge. These assemblages are

termed AOP networks (Knapen et al. 2018).
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Aspart of a Society of Environmental Toxicology andChemistry

(SETAC)-sponsored PellstonWorkshop that focused on advancing

the AOP framework, the development and application of AOP

networks was identified as one of the major themes that emerged

from a review of more than 300 questions submitted by the

scientific, risk assessment, and regulatory communities (LaLone

et al. 2017). In the companion article (part I), Knapen et al. (2018)

highlight the distinction between network-guided AOP develop-

ment on the one hand (which follows the principles outlined for

development of individual AOP descriptions), and deriving AOP

networks fromavailable information in theAOPknowledgebaseon

the other hand (Society for the Advancement of AdverseOutcome

Pathways 2017). Data layers, analogous to those employed in

geographic information systems, were proposed as a way to

capture and represent the biological complexity underlying AOPs

and influencing their dynamics (e.g., feedback/feedforward loops,

modulating factors), without overly complicating the basic AOP

framework. Filters and information layers derived from structured

fields in the AOP knowledgebase were proposed as useful

techniques for customizing the global AOP network. Finally,

filtering and layering concepts were applied in a number of case

studies to demonstrate how AOP networks can be built to provide

answers to different types of questions (Knapen et al. 2018).

The present study builds on the concepts described by Knapen

et al. (2018) and focusesmore sharply on the issue of AOP network

application in risk assessment, research, and decision-making. In

particular, the study seeks to address how the network structure

itselfmaybeanalyzed toderive information that canguide research

and regulatory decision-making. First, we consider the similarities

and distinctions between AOP networks and other types of

complex networks that are commonly analyzed using techniques

from graph theory (Trudeau 2013) and network science (Lewis

2009). Using2exampleAOPnetworks,we illustrate theapplication

of a number of topology-based (Supplemental Data, Box 1)

network analyses, and how they can guide our understanding of

potential interactions among AOPs, as well as assay development

and/or design of alternative testing strategies (e.g., integrated

approaches to testing and assessment;Worth andPatlewicz 2016).

We then discuss how different strategies may be used to identify

the most important paths (called “critical paths”; Supplemental

Data, Box 1) through AOP networks. Finally, we explore how AOP

networks can provide first-order, qualitative insights into the

potential interactions among AOPs, as well as the underlying

ontological challenge that must be addressed to facilitate those

analyses.Morequantitative applicationsofAOPnetworks entailing

incorporation of stressor-specific data and detailed consideration

of response–response relationships defining transition from one

key event to the next in an AOP network are not addressed in the

present study. Together with the concepts and case studies

presented by Knapen et al. (2018), these examples address

prominent questions and themes (LaLone et al. 2017) concerning

AOP networks and their general application.

AOPS AS NETWORKS

The term network broadly refers to any type of intercon-

nected group. Many different types of networks can be

represented graphically as systems of nodes (generally repre-

sented as dots or shapes) and edges (generally represented as

lines; Table 1; Newman 2003; Lewis 2009; Trudeau 2013). The

modular structure of the AOP framework (i.e., key events and key

event relationships that can be reused in different AOPs) was

developed with the construction of networks in mind (Villeneuve

et al. 2014a; Organisation for Economic Co-operation and

Development 2016a). In the case of AOP networks, key events

are represented as nodes and key event relationships as directed

edges (arrows).

Based on the mathematical study of graphs (graph theory;

Pavlopoulos et al. 2011) and network science (Newman 2003;

Caldarelli and Catanzaro 2012), common sets of principles and

tools may be productively applied to analyze networks, including

AOP networks. In fact, many network science–based tools have

already become familiar to biologists and toxicologists: networks

and network science have increasingly been used to represent

and analyze molecular interactions or statistical associations

among transcripts, genes, proteins, metabolites, and their

regulatory factors. However, some important distinctions

between AOP networks and other types of biological networks

should be kept in mind (Table 2). First, in an AOP network, each

node (key event) represents a measurable change (e.g., an

increase or decrease) in the abundance of an object or state of a

process compared with a reference, such as a control. As a result,

a decrease in, for example, a hormone concentration, enzyme

activity, or heart rate is represented as a separate key event from

an increase in that hormone, enzyme activity, or heart rate. This

has implications for how AOP networks are constructed and

analyzed and how data may be layered on top of them. Second,

most biological networks describe interactions at a single level of

biological organization. By definition, AOP networks span

multiple levels of biological organization. Finally, AOPs and

AOP networks are focused on predictive utility over biological

fidelity. The AOPs and the AOP networks are intended to help

accurately predict how a system will respond to perturbation—

even if that involves somedegree of abstraction, simplification, or

implicit embedding of more extensive biological understanding

or structures within the key events and key event relationships

represented. The objects (e.g., genes, proteins, cells, organs)

included in an AOP description and measured as key events may

often be the minimum set needed to support extrapolation or

inference along the AOP. Detailed mechanistic understanding is

only needed to the extent that it supports confidence in

application. If the weight of correlative evidence is sufficient, an

AOP can be collapsed to relatively few key events. As a result,

considerable subjectivity is associated with the number of key

event nodes that may be used to describe the path from a

molecular initiating event to an adverse outcome.

To help illustrate the analyses and applications detailed in

the present study, 2 AOP networks were derived from existing

AOP descriptions within the AOP knowledgebase (Society for

the Advancement of AOPs 2017; Supplemental Data, SI.1).

For the first example, AOP 25 (aromatase inhibition leading to

reproductive dysfunction; Villeneuve 2017) was used as a

seed AOP, and an AOP network was derived to include all

AOPs that shared at least one key event with AOP 25
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(Figure 1; hereafter termed the cytochrome P45019 [CYP19]-

AOP network). Note that for the purposes of constructing the

CYP19-AOP network, key events representing an opposite

action (increase or decrease) on the same biological object or

process were included. The second network (Figure 2;

hereafter termed the thyroxine [T4]-AOP network) was

generated by searching the AOP-Wiki (Society for the

Advancement of AOPs 2017) for the term T4 (thyroxine,

one of the thyroid hormones). The list of AOPs to include was

compiled from the resulting AOP full text search results, and

an AOP network was constructed from the list of key event

relationships associated with those AOPs (Supplemental

Data, SI.1). Although many of the topological analyses,

identifications of critical paths, and considerations of inter-

actions associated with these networks can be accomplished

rather intuitively by visual inspection, these relatively simple

examples help to demonstrate how various computational

approaches could aid in the analysis of more complex AOP

networks. They also help to highlight some of the challenges

and limitations associated with the analysis of AOP networks.

Indeed, significant limitations need to be kept in mind

whenever one is applying and interpreting AOP networks. First

and foremost is the recognition that AOPnetworks are limited by

the scope of knowledge and relationships currently captured in

the AOP knowledgebase. The connections reflected in an AOP

network are only those for which AOP descriptions have been

developed. One cannot necessarily infer that a highly connected

key event in an AOP network is more biologically important than

a less connected key event. Such connections may simply reflect

the fact that more extensive AOP development was centered

around one particular key event than around others. Similarly,

there is no objective way to define how many key events to

include in a given AOP description (Villeneuve et al. 2014b). The

level of abstraction or biological resolution to include in the AOP

description is determined by the individual AOP developer, the

scope of the available data, and the perception of the detail

required to support an application. Thus, in applying the

approaches discussed in the present study, it is important to

remember that AOPs are not necessarily comprehensive

representations of the biological system(s) thatmay be impacted

by a given stressor or combination of stressors. Likewise, with the

exception of AOPs that have gone through a formal review

process by the Organisation for Economic Co-operation and

Development or have been published in a peer-reviewed journal

prior to (or in conjunction with) entry into the AOP-Wiki, there is

no explicit quality assurance for AOPs in the AOP-Wiki. Instead,

the AOP-Wiki relies on feedback from the scientific community

for quality control (LaLone and Hecker 2017). Thus interpreta-

tions based on AOP networks need to bemade with caution and

with consideration of the quality and completeness of the

underlying information.

AOP NETWORK ANALYTICS

Network topology

An AOP network effectively describes/represents a set of

scientifically credible possibilities concerning 1) the diversity of

biological perturbations that may cause a defined biological

effect (e.g., an adverse outcome), and/or 2) the diversity of

effects thatmay result from a stressor-induced biological change

(e.g., a molecular initiating event). It also lays out the conditions

TABLE 1: Examples of networks that are commonly represented graphically as systems of nodes and edges

Network type Nodes Edges

Transportation Stations Routes between stations
Computer Computers and servers Data transmission
Social People Relationships
Molecular biology Genes and proteins Interactions
Ecological/food web Species Energy flow
AOP Key events Key event relationships

AOP¼ adverse outcome pathway.

TABLE 2: Distinctive attributes of AOP networks compared with other types of biological networks (e.g., gene, protein, metabolite interaction
networks; cell signaling networks)

Attribute Typical biological networksa AOP networks

Nodes Discrete objects (e.g., a transcript, a protein,
a cell, a species)

A measurable change in state (i.e., an increase or decrease) of an object or process
(e.g., enzyme activity, circulation, behavior) compared with a reference state
(e.g., a control)

Edges Represent interactions at the same level of
biological organization

Often involve transition from one biological level of organization to another

Intended
fidelity

Representational focus—intended to accurately
reflect the true/real structure of the system

Dynamical focus—intended to accurately represent and predict how a system will
respond to perturbation, even if that involves some degree of abstraction,
simplification, or implicit embedding of more detailed underlying systems
understanding

aTypical of many biological networks; exceptions can be expected.
AOP¼ adverse outcome pathway.
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under which one possibility or another can be expected,

noting that the various possibilities are not necessarily

mutually exclusive. Although detailed explanations of the

underlying support for those possibilities can be found in the

descriptions of the individual AOPs, key events, and key

event relationships (Organisation for Economic Co-operation

and Development 2016a; Society for the Advancement of

AOPs 2017), a great deal of information can be derived

through examination and analysis of the overall structure of

the network (i.e., the network topology). Conceptually, some

of this information can be quickly gleaned from visual

examination of the network graph, and it is recognized that

an appropriate visualization and layout of a network is often a

critical step in understanding (Newman 2003). However, as

the networks become larger and more complex, it will be

increasingly necessary to use various graph theory–based

tools and computational algorithms to identify important and

informative topological features. For computational pur-

poses, AOP networks can be represented in a variety of

forms such as adjacency matrices or from–to matrices (see the

Supplemental Data). These can be readily processed using

various software packages developed for network analyses

(see Cytoscape 2017; the graph, RBGL, and Rgraphviz

packages in Bioconductor, etc.). Custom tools specifically

designed for analysis of AOP networks, such as the

AOPXplorer (Burgoon 2017), are also under development.

Identifying points of convergence/divergence. Paths be-

tween key events within the AOP network can be described as

either convergent, divergent, or mixed (Knapen et al. 2018).

Identifications of convergent and divergent topologies are some

of the most obviously useful analyses that one might apply to an

AOP network. In a convergent topology (Supplemental Data,

Box 1), key events from 2 or more AOPs are directed toward a

common downstream key event (which could be the adverse

outcome). Convergent motifs can help identify AOPs that may

contribute in a joint manner toward the same outcome(s),

suggesting potential additive or even synergistic effects if the

upstream pathways are activated. In contrast, divergent

structures branch off from a common key event toward a range

of possible outcomes and can, for example, help define the

pleiotropic effects a particular molecular initiating event or

perturbation may have either within an individual organism or

across different biological contexts (e.g., taxa, life stages, sexes,

etc.). The key events that represent points of convergence in an

AOP network (termed convergent key events; Knapen et al.

2018) could represent highly integrative endpoints that can

detect the influences of a number of upstream perturbations. In

contrast, a key event that serves as a point of divergencemay be

a measurement with particularly high predictive utility. Viewed

from a drug development perspective, a drug that prevents a

key event representing a point of convergence in an AOP

network could potentially be designed to treat the effects of a

FIGURE 1: Example adverse outcome pathway (AOP) network 1 (cytochrome P45019 [CYP19]-AOP network). Shown is the network of all AOPs in the
AOP-Wiki (Society for Advancement of AOPs 2017) that share at least one key event with those in AOP 25 (Villeneuve 2017). Rounded rectangles
indicate key events. Arrows indicate key event relationships, with the arrow emanating from the upstreamkey event and into the downstreamkey event.
Molecular initiating events are colored green. Adverse outcomes are colored red. Solid lines indicate relationships between key events that are
adjacent in the sequence described in the AOP, and dashed lines indicate nonadjacent relationships. Arrow thickness indicates strength of evidence as
defined in the AOP-Wiki for each key event relationship, where weak¼ thinnest arrows, strong¼ thickest arrows, and moderate¼midsized arrows. A
dotted line outlines a disconnected portion of the network. Unless noted otherwise, all key event titles and relationship information are directly as
defined in the AOP-Wiki (Society for the Advancement of Adverse Outcome Pathways 2017; AOPs 25, 7, 23, 122, 123, 30, 29, 100, 155, 156, 157, 158,
159, and 216; Supplemental Data, Table S.1). The key event relationships shared bymore than one AOP are shown as nonredundant (i.e., represented
by a single arrow). VTG¼ vitellogenin; HIF-1¼hypoxia-inducible factor 1; TH¼ thyroid hormone; T4¼ thyroxine; ROS¼ reactive oxygen species.
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range of upstream contributors to a disease state. Conversely,

examination of AOPs that diverge from a key event that could

be elicited by a drug treatment could help to identify potential

side effects. Mixed structures may be characterized by points

of convergence in the network that then diverge to a range of

possible downstream outcomes. This divergence can often

result in the “bow-tie” motif that is characteristic of many

biological signaling networks, with the “knot” in the bow-tie

often representing an important integrative biological signal

(Friedlander et al. 2015). In the T4-AOP network, for example,

the key event “T4 in serum, Decreased” (AOP-Wiki, Event 281;

Society for the Advancement of AOPs 2017) represents the

knot in a bow-tie motif (Figure 2). In the case of an AOP

network, key events at the center of a bow-tie structure may

represent a particularly important measurement that is

frequently made in toxicological studies, an important control

point in the biological system, or a biological change of

particular interest to one or more AOP developers and

potentially to risk assessors.

Computationally, points of convergence or divergence in an

AOP network can be identified and quantified by various node

ranking and centrality measures (Supplemental Data, Box 1;

Huber et al. 2007; Pavlopoulos et al. 2011). For an AOP

network, the “degree” (Table 3) of any key event is defined by

the number of unique key event relationships it is linked to

(Supplemental Data, Tables S.4 and S.5). For example, in the

CYP19-AOP network, the key event “Reduction, 17beta-

estradiol synthesis by ovarian granulosa cells” (AOP-Wiki

Event 3; Society for the Advancement of AOPs 2017) is linked

to 6 unique key event relationships (Figure 3A and Supple-

mental Data, Table S.4). In addition, because all the key event

relationships in an AOP network are directed, the degree of

each key event node in an AOP network can be further broken

down in terms of the number of upstream (degreein) or

downstream (degreeout) key events it is linked to via key event

relationships. The key event “Reduction, 17beta-estradiol

synthesis by ovarian granulosa cells” is downstream of 5 key

events, but upstream of just 1 key event (Figure 3A and

Supplemental Data, Table S.4); therefore it would be a point of

convergence in the AOP network. Key events linked to more

upstream than downstream key events (degreein>degreeout)

can be broadly viewed as points of convergence in an AOP

network, whereas those linked to more downstream than

upstream key events (degreeout>degreein) represent points of

divergence.

It can also be informative to consider how many paths

through the network pass through any given key event. In graph

theory this is termed “betweenness” (Table 3 and Supplemental

FIGURE 2: Example adverse outcome pathway (AOP) network 2 (thyroxine [T4]-AOP network). Shown is the network of 14 AOPs related to disruption
of thyroid hormone signaling (Society for theAdvancement of AdverseOutcomePathways 2017;AOPs 8, 42, 54, 155, 156, 157, 158, 175, 188, 189, 190,
191, 192, and 193; Supplemental Data, Table S.2). Squares indicate key events. Arrows indicate key event relationships with the arrow emanating from
the upstreamkey event and into the downstreamkey event. The key event relationships linking nonadjacent key eventswere filtered out of this network,
and key event relationships shared by more than one AOP are shown as nonredundant (i.e., represented by a single arrow). In addition, to improve
overall connectivity, the networkwas curated slightlywith regard to titles and relationship informationdefined in theAOP-Wiki (see Supplemental Data,
Table S.3 for details). Network overview is as follows.Molecular initiating events are colored green. Adverse outcomes are colored red. Arrow thickness
indicates strength of evidence as defined in the AOP-Wiki for each key event relationship, where weak¼ thinnest arrows, strong¼ thickest arrows, and
moderate¼midsized arrows. A shaded circle highlights a key event that serves as the knot of a bow-tie motif within the network. A sequence of black
dots highlights 2 examples of AOPs not described in theAOP-Wiki that emerge through network connectivity. A blue shaded rectangle highlights 2 key
events that represent the same object, but different actions, within the AOP network. TH¼ thyroid hormone; GABAergic¼g-aminobutyric acid-ergic;
BDNF¼brain-derived neurotrophic factor; TR¼ thyroid hormone receptor.
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Data, Figure S.5 and Tables S.5 and S.6). Traditionally,

betweenness calculations consider the number of shortest paths

(between every pair of nodes in the entire network) that have to

pass through the node in question. However, in the context of an

AOP network, the paths betweenmolecular initiating events and

adverse outcomes, rather than just any 2 key events in the

network, are of particular interest. Consequently, using a custom

R code (AOP Simple Path Occurrence; Table 3), we derived a

variation on the betweenness calculation that considers key

events specifically with regard to the number of paths between a

TABLE 3: Overview of graph theory–based network analyses and their potential application(s) to AOP network analysis

Analysis/metric Description Potential use(s)

Node degree
(degreein and
degreeout)

The number of KERs linked to a KE.
Directed networks, including AOP networks, can be broken

down into degreein and degreeout, where degreein indicates
the number of connections to upstream KEs, and degreeout
indicates the number of connections to downstream KEs.

Identify highly connected KEs within the overall AOP network.
Identify points of convergence and/or divergence in the AOP

network.

Betweenness
centrality

Measure of the number of shortest paths between any KEs (j, k)
in the AOP network that pass through the KE of interest (i)
(Kitsak et al. 2007).

Betweenness centrality is defined as:

gðvÞ ¼ S
s6¼v 6¼t

sstðvÞ
sst

where sstðvÞ is the number of shortest paths from s to t
through KE v and sst is the number of shortest paths
from s to t.

Identify important points of convergence/divergence in AOP
networks.

The KEs with high betweenness may represent measurements
that are frequently made, critical control nodes within
biological systems, or biological changes of particular
interest to one or more groups involved in AOP
development.

AOP Simple
Path
Occurrence

A variation on betweenness centrality that only considers the
shortest path between MIEs and adverse outcomes, not
between all pairs of KEs in the network.

An AOP Simple Path Occurrence is defined as:
VðvÞ ¼ S

m2M6¼v 6¼a2Að Þ
smaðvÞ

where smaðvÞ is the number of shortest paths from m to a
through node v, M is the set of MIEs, and A is the set of
adverse outcomes. Note that, as for betweenness centrality
(above), this calculation can also be normalized to the total
number of shortest MIE-to-adverse outcome paths in the
network.

Normalized AOP Simple Path Occurrence:

VðvÞ ¼ S
m2M6¼v 6¼a2Að Þ

smaðvÞ
sma

Identify important points of convergence/divergence in AOP
networks.

Identify KEs with high predictive value in terms of connecting
many upstream MIEs to downstream AOs.

Topological
sorting

A topological sort (or ordering) is a linear arrangement of the
KEs of an AOP network such that for every KER {KEi,KEj}
upstream KEi appears before downstream KEj in the
arrangement (Skiena 1990; Weisstein 2017).

This sorting can only be applied if there are no cycles in the
network, such that KEi could appear both before and after
another KEj.

Topological sorting can be useful for identifying the relative
proximity of a KE in the network to the MIE (origin) or adverse
outcome (terminus) of the AOPs it intersects with.

Eccentricity The maximum shortest path length between KEi and another
KEj in the network, defined as:
ecc¼max{dist (i,j)}

Note that eccentricity is distinct from eccentricity centrality
(Cecc), which is the inverse:
Cecc ¼ 1

maxfdist ði;jÞg

(Pavlopoulos et al. 2011; Cytoscape 2017; Netzwerkin 2017).

Useful for identifying the most upstream and downstream KEs
in the network.

Can also help identify upstream KEs that are connected to
AOPs for which larger numbers of KEs have been defined.

Contraction Identifies and removes cycles from the network, generating a
graph that can be analyzed using algorithms applicable only
to acyclic graphs.

Identification of cycles in an AOP network that may represent
important features such as positive or negative feedback
loops or modulating factors intrinsic to the AOP network.

Connectivity A metric that indicates the number of connected components
relative to the overall size of the network, where E¼ the
number of KERs and N¼ the number of KEs.
C ¼ E

NðN�1Þ

The overall connectivity within an AOP network may indicate
the relative potential for known complex interactions, and
thus the potential uncertainty in predicting outcomes along
those networks.

Matching index A measure of how similar 2 KEs are within an AOP network
based on the number of common neighbors they share,
defined as:

Mij ¼
Snc
Snt

where nc¼neighbors common to KEi and KEj, and nt¼ total
neighbors of KEi and KEj (Pavlopoulos et al. 2011).

Can be used to cluster KEs that are connected to similar
upstream and/or downstream biology within an AOP network
and sort KEs based on similarities in toxicological function.

AOP¼ adverse outcome pathway; KE¼ key event; KER¼ key event relationship; MIE¼molecular initiating event.
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molecular initiating event and an adverse outcome that pass

through them. Based on this calculation, we can see that the

T4-AOP network (Figure 2) “T4 in serum, Decreased” (AOP-Wiki

Event 281; Society for the Advancement of AOPs 2017) has the

greatest AOP Simple Path Occurrence (Supplemental Data,

Figure S.6), whereas in the main connected portion of the

CYP19-AOP network (Figure 1), “Decreased, population trajec-

tory” (AOP-Wiki Event 360; Society for the Advancement of AOPs

2017)has thegreatestAOPSimplePathOccurrence (Supplemental

Data, Figure S.7). Key events with high AOP Simple Path

Occurrence are likely to be “hubs” in the overall AOP network

and thus may be particularly useful to measure or to manipulate

experimentally.

Eccentricity and topological sorting. The intent of topo-

logical sorting (Table 3) is to order the nodes in a directed

network such that earlier nodes in a sequence are listed or

displayed before later nodes when the nodes are arranged in

a line. Individual AOPs are inherently sorted this way based

on the sequence of cause–effect relationships they outline.

Consequently, for a single AOP or a small AOP network, the

causal sequence of key events is easy to discern based on the

key event relationships (arrows; see Figures 1 and 2).

However, as the AOP networks grow in size, even when the

molecular initiating events and adverse outcomes are

highlighted (e.g., color in Figures 1 and 2), it can become

increasingly difficult to identify where various key events lie in

terms of relative position along the sequence(s) from a

molecular initiating event to an adverse outcome. Likewise, it

can be difficult to pick out which key events even lie a

long the paths that can trigger a given adverse outcome.

Nevertheless, a number of computational approaches can

help to reveal the ordering and relationships among key

events represented in the network.

Calculation of key event “eccentricity” (Table 3) is one

approach that can be used to discriminate molecular

initiating events, or the furthest upstream key events from

adverse outcomes, or the furthest downstream key events

(Supplemental Data, Figure S.8 and Tables S.8 and S.9).

Because AOP networks are directed networks, the farther

downstream a key event is, the greater its eccentricity score

will be (and the lower the inverse, eccentricity centrality, will

be), because it is increasingly difficult to draw a directional

path from that key event to another key event in the network.

However, because calculation of eccentricity depends on

path length (a somewhat subjective result of the number of

key events an AOP developer includes in an AOP descrip-

tion), the results can be misleading if there are AOPs with a

wide range of different lengths (numbers of key events

included) in the network. For example, in the T4-AOP

network, even though “Inhibition, Deiodinase 3”

(AOP-Wiki, Event 1153; Society for the Advancement of

AOPs 2017) is a molecular initiating event, it has a lower

eccentricity score than many other key events in the network

because one can only draw a path to 2 other key events in the

network before reaching a terminal adverse outcome

(Supplemental Data, Figure S.8).

Topological sorting (Skiena 1990; Weisstein 2017; Table 3) is

an alternative approach toward ordering key events based on

their causal and dependent relationships that is less impacted by

subjectively defined path lengths (Figure 4 and Supplemental

Data, Figures S.9 and S.10). Although topological sorting can

FIGURE 3: Adverse outcome pathway (AOP) network example 1 (cytochrome P45019 [CYP19]-AOP network) with view zoomed in on key features. (A)
Zoomed-in view illustrating degree for the key event titled “Reduction, 17beta-estradiol synthesis by ovarian granulosa cells” (AOP-Wiki, Event 3;
Society for the Advancement of AOPs 2017). (B) Zoomed-in view of several pairs of key events, highlighted by blue boxes, that represent the same
object, but different actions, within the AOP network.
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yield a solution that is nonunique, the dependent order of key

events in the network is always maintained such that no causal

(upstream) key events are positioned before their dependent

(downstream) key events. Thus, for an AOP network that has

been topologically sorted, if the analyst chooses a single key

event, that key event can depend, at most, on the set of key

events that precede it in the sorting. It cannot be dependent on

any key events positioned further downstream.

One important caveat to topological sorting is that it can only

be applied to acyclic graphs (e.g., no cycles such as feedforward

loops). Cycles may occur in someAOP networks, even if there are

no cycles in the individual AOPs from which the network was

derived. The most common cause of cycles in an AOP network is

the presence of a key eventi that is upstream of key eventj in one

AOP, but downstream of key eventj in another. This situation

effectively introducesa2-wayarrow into thenetwork, even though

each of the original AOPs was unidirectional. To perform

topological sorting, the cyclesmust be removed and represented

as a single node on the graph through a process termed

“contraction” (Table3 andFigure4).Given that contractionof 2or

more key events involved in a cycle results in a single node in the

graphical depiction of the network, protocols for assigning

attributes (e.g., title, shape, color, etc.) to the resulting contracted

key events need to be defined so that they are apparent and

interpretable. Nonetheless, the contraction process itself can be

informative, because it provides a rapid, computational means to

identifypotential feedbackorcross-talkprocesses thatare intrinsic

to an AOP network and may have an important bearing on the

ability to predict outcomes. It is notable that numerous questions

submitted to the SETACHorizon Scanning exercise were focused

on methods to identify and describe feedback and feedforward

processes using the AOP framework (LaLone et al. 2017).

Connectivity. Evaluation of overall connectivity (Table 3) in

AOP networks may also have some utility. Connectivity

measures evaluate the relative extent to which there is a

directed path from one key event to any other key event in the

network. The AOP networks with greater connectivity indicate

greater potential for known complex interactions, and thus

greater potential uncertainty in predicting outcomes along

those networks. In contrast, lower connectivity may suggest that

there are just a few points of interaction that may need to be

considered when one is inferring effects along the AOP network.

Matching indices, clustering, and network motifs. Parti-

cularly as the number of AOPs in the AOP knowledgebase grows

and the associated AOP network expands, analyses that

computationally identify AOPs sharing many of the same key

events may also be quite useful. A matching index (Pavlopoulos

et al. 2011; Table 3) can be applied to sort key events with regard

to their similarity to one another. Likewise, a variety of common

clustering approaches (e.g., neighbor joining) can be applied to

adjacency matrices or other computational representations of

AOP networks to identify key events or AOPs that share many of

the same links and then cluster them away from those that are

very independent (Pavlopoulos et al. 2011). Thus, for example, if

one was observing effects associated with a particular key event

or a common set of key events, clustering could be applied to

identify the group of AOPs one might want to consider in an

assessment.

Finally, there are computational approaches that can be used

to highlight the presence of recurring patterns, or network

motifs, that appear in a network significantly more than in a

randomized network (Milo et al. 2002). Commonmotifs found in

other types of molecular biological networks include feedfor-

ward and feedback loops, diamond structures, and even more

complex structures (Vazquez et al. 2004; Alon 2007). However, in

many cases, features like feedback loops or signal transduction

cascades are not directly represented as key events in an AOP,

but rather are embedded in the description of the biological

plausibility and/or quantitative understanding of a key event

relationship. Thus, it is unclear what types of over-represented

motifs may be discovered as AOP networks are analyzed. This

should prove to be an interesting research area in upcoming

years.

Key event adjacency and topology-based analyses. In the

AOP-Wiki, “nonadjacent key event relationships” (Supplemen-

tal Data, Box 1), previously termed “indirect key event relation-

ships” (Organisation for Economic Co-operation and

Development 2016a), are often created as a means to capture

evidence that may skip over one or more of the key events in the

FIGURE 4: Generic example illustrating contraction and topological sorting of a network. (A) Generic directed network graph containing a cycle (key
events 3, 4, and 5). (B) Graph of the same network following contraction of key events 3, 4, and 5, into a single contracted key event. Contraction results
in a directed acyclic graph. (C) Graph of the contracted adverse outcome pathway network following topological sorting.
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pathway. The creation of key event relationship descriptions for

key events that are not next to one another in the sequence

defined for an AOP helps to more fully capture the weight of

evidence supporting an AOP while maintaining the modular

structure of the knowledgebase and framework (Organisation

for Economic Co-operation and Development 2016a). However,

these nonadjacent key event relationships create some chal-

lenges in using topology-based analyses. Specifically, inclusion

of nonadjacent key event relationships in an AOP network can

inflate node degree and betweenness centrality or deflate

distance-based calculations like eccentricity (Table 3) by

introducing artificially short paths into the network (for

examples, see Supplemental Data, Tables S.4–S.9). One

solution is to filter the network to only include adjacent key

event relationships when calculating topology-based analyses.

However, such filtering can be challenging in the sense that

adjacency is AOP specific. Because there is subjectivity in the

number of key events included in an AOP description, a pair of

key events that are adjacent in one AOP may in be nonadjacent

in another. In general, if a key event relationship connects

adjacent key events in any AOP in the knowledgebase, it should

be viewed as an “adjacent key event relationship” for the

purposes of network derivation. A comparison of results for the

filtered versus unfiltered network (excluding versus including

nonadjacent key event relationships) may be informative for

certain questions. For example, in cases in which the number of

key event relationships connected to a key event increases

significantly when nonadjacent key event relationships are

included, the results could be indicative of key events for which

greater amounts of empirical evidence are likely available (i.e.,

key events that have been measured more frequently than other

key events in the network).

Critical paths

By providing a framework for the description of the overall

landscapeofpotential adverseoutcomes resulting fromparticular

biological perturbations, AOP network analyses can enable

strategic identification of paths that have the greatest biological

likelihood and/or relevance for risk assessment. This can in turn

aid in the identification of endpoints with good predictive value

that can serve as useful alternatives to the direct measurement of

apical adverse outcomes (Organisation for Economic Co-opera-

tion and Development 2016b). For the purposes of our

discussion, the path through an AOP network that is considered

tobemost important to an assessment or researchquestion (and/

or most dominant or biologically significant) was termed the

“criticalpath” (SupplementalData,Box1). In thepresent studywe

distinguish “path” from “pathway” to recognize that the critical

path from a key event to an adverse outcome within the AOP

network may not necessarily follow the sequence laid out in an

individual AOP in the knowledgebase, nor does it necessarily

equate to a defined biological pathway, but rather may be a path

that emerges only through the assembly and consideration of the

interactions between multiple AOPs (Figure 5A). For example, in

the AOP-Wiki, no AOPs linking inhibition of dual oxidases to

decreased cognitive function or impaired learning andmemory in

mammals have been described to date. However, within the T4-

AOP network (Figure 2), these emerge as potential paths through

which an effect could occur.

Perspectives on what constitutes the critical path of interest

can vary widely based on the regulatory context and/ormandate

under which a risk assessment might be done, the research

question an investigator may be interested in, or the type of

application for which anAOPnetwork is used. As a result, there is

no one-size-fits-all approach to critical path identification.

However, some of the more common types of data or

information that may drive a critical path analysis are outlined

in the following sections.

Problem formulation–defined critical paths. Problem for-

mulation is the first step in environmental risk assessment; the

scope and goals of the assessment are defined, a clear

articulation of the question to be addressed is developed,

and measurement endpoints are defined (US Environmental

Protection Agency 1992, 1998). Inmany cases, up-front problem

formulation (US Environmental Protection Agency 1992, 2014)

can significantly reduce the range of paths that one would

consider within a given AOP network, thereby aiding identifica-

tion of the critical paths. Many of the filters and layers discussed

by Knapen et al. (2018) can be effectively applied to narrow the

range of possibilities and derive an AOP network that is fit-for-

purpose. This allows for derivation of an AOP network that

retains pathways relevant to the scope, question, and measure-

ment endpoints defined while eliminating less relevant or

ancillary pathways from the network so as not to overcomplicate

the analysis. For example, if one were chargedwith conducting a

risk assessment focused on cancer risk in humans, the network

could be filtered to display only those paths that are relevant to

humans (based on taxonomic applicability annotations associ-

ated with the key events and key event relationships) and linked

via one or more paths through the network to the outcome of

increased tumor formation.

The relevance of the apical adverse outcome in different

regulatory contexts can be a particularly important factor to

consider. Although all AOPs will ostensibly extend to an

outcome that is accepted as adverse, this may not be true for

all possible risk contexts and purposes. For example, an

outcome like liver fibrosis may be of concern for a human health

risk assessment, but would not necessarily be considered in an

ecological risk assessment if a strong link to survival, growth, or

reproduction was not established. Likewise, whereas a re-

searcher may be interested in links between a molecular

initiating event and behavioral effects that are plausibly related

to impaired survival or reproduction, a risk assessor may be

unable to consider such data unless the relevance to a

population-level assessment can be established by strong

empirical support. In essence, up-front problem formulation

and scoping are needed to define the fit-for-purpose critical

path(s) in an AOP network for a given application.

Weight-of-evidence–defined critical paths. Critical paths

may also be identified based on the weight of evidence

supporting the key event relationships between the key events.
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As AOPs are being described in the AOP knowledgebase,

weight-of-evidence or confidence calls are being made by the

AOPdeveloper(s) (Becker et al. 2015;Organisation for Economic

Co-operation and Development 2016a). These calls of high,

medium, or low confidence in a key event relationship and high,

medium, or low understanding of the quantitative nature of the

relationship between each pair of key eventsmay help to identify

the critical paths that a risk assessor might be interested in. For

example, if an authority wants to use an in vitro bioassay result as

the basis for a hazard assessment in a regulatory setting, that

authority may require a relatively high confidence in that

measurement as a scientifically credible and defensible predic-

tor of likelihood to cause the adverse outcome(s) (e.g., all the

weight-of-evidence calls are ranked high or at least moderate).

The assessor could prioritize the critical paths for digging into

the details of the evidence supporting the key event relation-

ships and ensuring that the data are of adequate quality to

support extrapolation of the in vitro data to probable apical

hazard(s), ignoring the paths for which only weak evidence has

been assembled. In contrast, a researcher may be specifically

interested in those parts of the AOP network where evidence is

weakest, which may represent critical data gaps that could be

important to address.

To aid in this process, a key event relationship confidence

assessment filter or layer (Knapen et al. 2018) could be applied

to an AOP network (forming a weighted network) prior to

analysis, to ensure that only high-confidence paths are

considered. For example, in AOP network 2 (Figure 2), the

thickness of the key event relationships (arrows) reflects

whether low, medium, or high confidence was assigned to

each, with high confidence represented by the thickest arrows.

Based on visual inspection of the network, the paths linking

sodium iodide symporter (AOP-Wiki, Event 424; Society for

the Advancement of AOPs 2017), or thyroperoxidase inhibi-

tion (AOP-Wiki, Event 279; Society for the Advancement of

AOPs 2017) to decreased cognitive function (AOP-Wiki,

Event 402; Society for the Advancement of AOPs 2017), or

altered amphibian metamorphosis (AOP-Wiki, Event 1101;

Society for the Advancement of AOPs 2017) have higher

average key event relationship confidence calls compared

with the path linking iodotyrosine deiodinase inhibition (AOP-

Wiki, Event 1152; Society for the Advancement of AOPs 2017)

to the same adverse outcomes (Supplemental Data,

Figure S.11). Thus, an assessor may be comfortable using

thyroperoxidase and sodium iodide symporter assay data,

but not iodotyrosine deiodinase assay data, as a basis for

hazard identification. Conceptually, this type of weight-of-

evidence analysis could be done computationally, but

decisions regarding how to weight adjacent and nonadjacent

key event relationships along a path and how best to sum,

average, or normalize the weight of evidence along each path

would need to be defined.

In a risk assessment, all available studies are reviewed, and

the quality of the data for each study is taken into

consideration in an effort to identify critical effect and the

best point of departure. When this process is translated to an

AOP network, easily measured key events that link to paths for

which all downstream edges indicate high confidence and/or

high quantitative understanding may lend themselves to

prioritization of sentinel, measurable, or critical endpoints.

Depending on the needs of the assessment, if additional

confidence were needed, the downstream key events along

the path point to confirmatory endpoints to include in the

assessment.

FIGURE 5: Generic illustration of various types of interactions relevant to the analysis of adverse outcome pathway (AOP) networks. (A) Graphical
depiction of emergent AOPs that can arise when individual AOP descriptions are linked as an AOP network. (B) Illustration of some common types of
interactions found inAOPnetworks. (C) Illustration of howAOP interactionsmay impact the intensity of perturbation of the key events (KEs) downstream
of the point of interaction, and AOP networkmotifs that would commonly be associatedwith those interactions. SODA¼ same object, different action,
where object and action are ontology terms that are used in defining a key event; MIE¼molecular initiating event.
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Similarly, for a given risk assessment, the assessor may have a

defined set of available data. These data may align with a range

of different key events in the AOP network, and some of the data

may be more reliable (and thus weighted more heavily) than

others. Because it would generally be preferred to weight the

risk assessment more heavily toward the outcomes that align

with higher confidence data, analysis of the AOP network (e.g.,

matching indices or clustering) could guide determination of the

paths linked to high-confidence data, which in turn could define

the critical path(s) to consider in the assessment. In principle,

there is no reason thatmultiple criteria (i.e., confidence in the key

event relationships, confidence in the data aligning with various

key events that lead to the critical effect, and taxonomic

relevance to the problem formulation) could not be considered

together, allowing for even further refinement and definition of

the most critical path for an assessment.

Biologically or toxicologically defined critical paths. Most

of the considerations for defining critical paths described in the

Problem formulation–defined critical paths and Weight-of-

evidence–defined critical paths sections relate to the goals

and objectives of certain steps in the risk assessment process

(e.g., problem formulation or hazard identification). However, a

number of considerations are more intrinsic to the biology that

may define or further refine critical paths. For example, for a

stressor that can trigger multiple pathways (e.g., polypharma-

cology), the critical path may be defined based on the molecular

initiating event triggered at the lowest dose (i.e., defined by the

relative sensitivity of the different pathways). Pathways that are

only triggered at concentrations 10 or 100 times greater than

others could plausibly be much less relevant to consider under

most exposure scenarios. Generally speaking, pathways that are

more readily perturbed by a given stressor (e.g., more sensitive)

may frequently be more critical than less sensitive pathways.

However, there can be exceptions.

Time-to-effect is another intrinsic biological consideration

that could be used to define critical path. For multiple paths

activated at approximately the same dose, the path that could

produce a relevant adverse effect earliest in the time course of

exposure might be viewed as the most critical path. A simple

example of time-to-effect was noted by Villeneuve et al.

(2014c), who identified inhibition of glycogen synthase kinase

as an molecular initiating event that could plausibly lead to

impaired swim bladder inflation and subsequent reductions in

young-of-year survival in fish. Although this AOP could be

relevant in some exposure scenarios (e.g., exposures starting

later in development), it was also acknowledged that assuming

continuous exposure throughout development, impaired wnt

signaling (a key event in the AOP) would be expected to cause

lethal developmental abnormalities (represented as other

branches in the AOP network) well before the swim bladder

inflates. Thus, the swim bladder–mediated outcome was

unlikely to be the critical path within that AOP network under

most exposure conditions. Using a temporality layer (Knapen

et al. 2018), a weighted network could be generated in which

time-to-effect could be calculated for each path through the

network and used to aid critical path identification (e.g.,

Supplemental Data, Figure S.12). Although time-to-effect

information was not routinely captured in the AOP-Wiki up

through 2017, updates to the guidance document (Organisa-

tion for Economic Co-operation and Development 2016a) and

sections in the AOP-Wiki now prompt AOP developers to

supply that information where possible. Thus, development of

a temporality layer should be increasingly feasible in years to

come.

It is acknowledged that some additional intrinsic and extrinsic

factors may impact which path will be the critical one, or which

path can shift the network toward a different critical path. For

example, one might generally consider an AOP leading to

complete infertility to be more critical than one that increases

susceptibility to infection. However, if, under the exposure

scenario being considered, an infection-driven AOP leading to

acute mortality has been triggered, its intersection with the

increased susceptibility pathway may make its immediate

significance greater than that of long-term infertility. In other

cases, intersecting AOPs in the network may enhance or

strengthen the identification of a particular adverse outcome

as the terminus of a critical path. For example, in the case of

polypharmacological responses to synthetic glucocorticoids,

immunosuppression exacerbates the effect of other AOPs,

leading to decreased egg production (Margiotta-Casaluci et al.

2016; Knapen et al. 2018). Thus, information from the AOP

network can actually be leveraged and utilized to support the

appropriate consideration of different types of data (i.e., from

endpoints or assays aligned with AOPs) based on the fact that

additional critical key events may emerge in a given system of

interest depending on the specific status (e.g., healthy vs

diseased), environmental conditions, or polytoxicological im-

pacts of a given stressor.

Empirical identification of critical paths. As AOP networks

are developed and applied, it will become increasingly

feasible to identify the most critical paths in the AOP network

based on experience. As an example, we can consider the case

of a chemical tested in ToxCast
1

that has been shown to

trigger a number of different biological changes mapping to

key events in an AOP network (e.g., similar to case study 3 in

Knapen et al. 2018). The AOP network lays out a range of

possible effects. However, after the compound is tested in

vivo, it may become evident that the actual profile of observed

effects followed a particular path through the network. With

experience in testing more and more stressors, it may become

apparent (based on the accumulated data) that among all the

key events investigated, certain sequences of key events are

observed more frequently than others (at least for stressors

that fall within the domain tested). These essentially become

empirically identified critical paths. Once these are known,

other possible outcomes documented via the AOP network

can be probabilistically de-emphasized, allowing one to focus

on the most likely outcome(s) based on previous experience,

while still recognizing other possible outcomes that could

occur. The most commonly dominant paths may become

those for which development of quantitative understanding

and computational tools needed to infer or predict effects

1744 Environmental Toxicology and Chemistry, 2018;37:1734–1748—D.L. Villeneuve et al.

�C 2018 The Authors wileyonlinelibrary.com/ETC



along the pathway (i.e., development of quantitative AOPs; for

an example, see Conolly et al. 2017) may be of higher priority.

In addition, when the critical path(s) identified empirically

represents a path that emerged from the network (rather than

from the description of an individual AOP; Figures 2 and 5A),

then identification of the critical path could plausibly lead to

development of new guidelines for toxicity tests or testing

strategies, in that the critical path might link together a series

of endpoints and assays that had not been previously grouped

as a predictive unit or motif.

Limitations of critical path identification. Although con-

ceptually there are many benefits to the identification of critical

paths, it remains to be seen whether dominant paths will really

emerge through prospective AOP network-informed testing

and/or retrospective AOP network-based meta-analyses. Accu-

rate identification of critical paths will be limited by the scope of

existing data. Furthermore, it is unclear whether critical paths will

be conserved across species, even if the AOPs in question are

relevant to their taxonomic domain, or whether certain paths will

be more dominant in some species than others. As noted

previously (in the AOPs as Networks section), the AOP knowl-

edgebase, and thus the AOP networks, are not yet comprehen-

sive. An undiscovered or unannotated AOP may end up being

more critical within a given network than those identified

through any of the methods previously described. Although

there will always be a theoretical risk that the true critical path(s)

may not be identified, that risk should decrease as more AOPs

are described in the knowledgebase and more toxicity testing

results are interpreted in an AOP network context.

Overall, the identification of critical paths within AOP

networks is an emerging concept that will aid elucidation of

the most fit-for-purposes assays for which there will be a good

predictive value with respect to the potential adverse outcomes.

By highlightingmore directly the link between themeasured key

event and the adverse outcome, it is anticipated that this

structure will ultimately allow better communication with

regulators and other stakeholders and will advance the use of

AOPs for risk assessment.

Interactions among AOPs

A third critical aim with regard to analysis of AOP networks is

consideration of the potential interactions among AOPs. The

concept of AOP interactions describes how one ormore features

of an AOP or its underlying biology affects another. The

consequence of these interactions may be a biological outcome

that is different from the one that would be observed had the

interaction not occurred. As a result, the ability to understand the

potential consequences of interactions among AOPs that may

be activated within an organism is, arguably, one of the greatest

challenges to the predictive utility of the AOP framework. It is

also perhaps the most important challenge to meet given the

ubiquity of exposure to multiple stressors and the fact that

individual stressors may have multiple modes of action.

Interactions among AOPs can take place at many different

levels of biological organization. For example, at the cellular

level there can be interactions among signaling pathways,

receptor cross-talk, or assembly and regulation of transcription

factor complexes. Knowledge of many of these interactions has

been collected and made accessible in several computational

databases, such as the XTalkDB (Sam et al. 2017). Moreover,

studies that describe how to leverage this knowledge to address

specific biomedical challenges have been published (see Jaeger

et al. 2016). Another important example of pathway interactions

involves cross-talk between nuclear receptors. Numerous

examples in the context of endocrine disruption have recently

been reviewed by Kiyama (2016). Even when there are no

directly shared key events, multiple pressures on a biological

system can lead to systemic impacts such as mitochondrial

energy depletion, limiting enzyme depletion, or changes in

intracellular or extracellular matrix organization (Koch and Funk

2001). Likewise, as tissue or organ functions are impacted,

effects in one organ can be expected to impact functions

elsewhere in the body. Cross-talk between cell-signaling path-

ways and between various organ systems has been extensively

studied over decades. Thus, it is not our intent in the present

study to review all the possible biological interactions that may

translate to interactions among AOPs. Instead, we aim to

introduce some of the ways AOP networks can be qualitatively

analyzed to gain insight into interactions and their potential

consequences. A more quantitative assessment of how AOP

interactions may influence the probability or severity with which

downstream key events are observed is beyond the scope of the

present study and is being addressed by other authors (LaLone

and Hecker 2017).

Interactions and AOPs. Interactions within an AOP network

can result in either an intensity or a trajectory of biological change

that is different from what would be expected based on

consideration of any one constituent AOP (Figure 5). Potential

shifts in intensity/severity are probably the most easily identified

and intuitively interpreted of the AOP interactions. Typical

examples of cross-talk–induced change include additive, syner-

gistic, and antagonistic responses (Vert and Chory 2011). These

apply equally well to the potential qualitative consequences that

one might expect as a result of interactions among AOPs.

From a risk assessment perspective, pathway interactions

that result in additivity or synergism are of primary concern,

because the interactions among multiple AOPs have the

potential to amplify risk. Fortunately, convergent topologies

generally associated with probable increased severity of a given

adverse outcome or key event are among the easiest to

qualitatively detect and interpret using AOP network analytics

approaches. The ability to visually or computationally identify

points at which effects of separate stressors may converge (see

the Network topology section) to influence common down-

stream key events can be a basis for considering those stressors

jointly in a risk assessment. This is a significant potential

application of AOP networks, because currently risk assessors

have relatively few tools for identifying whether potential

additive or synergistic effects should be considered.

Antagonistic interactions between AOPs that would be

expected to result in diminished severity are a bit more
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challenging to detect based on AOP networks. This is because

key events are defined as a measurable change in a biological

state, expressed as an increase or decrease compared with a

control/reference. Because each key event in an AOP network

represents a directional change of state (see AOPs as networks

section), counteracting effects on the same object or process will

generally be defined as separate key events (separate nodes) in

the network and are therefore not typically represented as

convergent motifs/key events. For example, in the CYP19-AOP

network (Figures 1 and 3B), estrogen receptor agonism (AOP-

Wiki, Event 111; Society for the Advancement of AOPs 2017) is

represented as a key event that is distinct from antagonismof the

estrogen receptor (AOP-Wiki, Event 112; Society for the

Advancement of AOPs 2017). This makes sense from a

descriptive point of view, because both key events are

functionally distinct and the downstream consequences of

each are different. However, this is problematic if one wants

to understand the potential antagonistic interaction between

AOPs containing these key events because they have no key

events in common. Instead, in this case, these parallel paths are

only represented in the sameAOP network diagrambecause the

network developer identified that they represent opposite

actions on the same object (the estrogen receptor) andmanually

added them (Figure 1). An example can be found in the T4-AOP

network (Figure 2) with regard to the effects of deiodinase 3

inhibition (AOP-Wiki, Event 1153; Society for the Advancement

of AOPs 2017) relative to inhibition of deiodinase 1 or 2 (AOP-

Wiki, Events 1002, 1009; Society for the Advancement of AOPs

2017). In this case, the 3 AOPs appear to converge on the

adverse outcome of altered amphibian metamorphosis (AOP-

Wiki, Event 1101; Society for the Advancement of AOPs 2017),

which, on the basis of topology alone, would suggest additivity

or synergism. However, a closer look at the key events reveals

that the biological effect of deiodinase 3 inhibition is the

opposite of that of deiodinase 1 or deiodinase 2 inhibition, which

would suggest an antagonistic interaction.

With this factor in mind, it is important that computational

tools developed for AOP network extraction be able to identify

key events representing opposite effects on the same object

(termed same object, different action [SODA]; blue rectangles in

Figures 2 and 3B). Using natural language semantics for key

event titles, SODAs can be difficult to identify. However, with

updates to the AOP-Wiki that now represent key events using

structured 3-component ontology terms (Ives et al. 2017), it

should be computationally straightforward to identify these

features. The remaining questions are how to best represent

them visually within the network, and how to handle them

computationally when calculating network statistics or conduct-

ing quantitative analyses of AOP networks (not considered in the

present study). Regardless of the final implementation, appro-

priate annotation of SODAs in an AOP network would have

immediate use for identifying points of potential antagonistic

interaction.

Perhaps the most challenging types of effects that may result

from interactions among AOPs are those associated with

emergent pathways (Figures 2 and 5A). Emergent pathways

do not follow the trajectory of any of the individual AOPs

described in the AOP-Wiki, but rather yield a new phenotypic

sequence and/or outcome altogether. They may represent

phenotypes or adverse outcomes that can only occur if 2 ormore

perturbations occur within the network. Thus, they may be

difficult to define from individual stressor experiments alone.

However, a significant advantage of de facto network construc-

tion using the modular AOP framework is that these more

complex (and more difficult to elucidate) responses may

nonetheless be coded into an AOP network as key events and

key event relationships are linked to different AOPs. Emergent

pathways that arise as AOP networks are constructed may

provide a basis for understanding what might be otherwise

unanticipated or idiosyncratic patterns of results. In this respect,

one could envision scenarios in which an investigator might

query the AOP knowledgebase with an observed pattern of

effects (a set of key events), and then expand an AOP network

around those key events to identify whether a plausible

interactive mechanism, relevant to the exposure conditions of

interest, exists. The emergence of novel pathways as more

individual AOPs are described in the knowledgebase and linked

through shared key events thus represents a unique, and

potentially powerful, attribute of the AOP networks and the AOP

framework as a whole.

Important considerations. As is generally the case with

AOPs, the ability to understand potential interactions among

AOPs and predict their consequences depends on how

comprehensively the AOPs cover the relevant biology. When

large data gaps exist between molecular initiating events and

key events, when the key event relationships are weak, or when

AOPs relevant to the modes of action of concern are sparse, it is

difficult to obtain a comprehensive picture of potential

interactions among AOPs or to use AOP networks to understand

observed patterns of response. This should always be consid-

ered as a limiting factor when one is assessing the predictive

utility of an AOP network.

On the other hand, when the pathway coverage is rich, the

information can become overwhelming and may obscure rather

than illuminate the critical path(s). This hearkens back to the

importance of scoping and problem formulation, as well as the

ability to efficiently filter the overall AOP network represented in

the AOP-Wiki to find the AOPs most important to a given

research or regulatory question (Knapen et al. 2018). Likewise,

when AOP networks are large, topological and graph theory–

based computational analyses may be critical for honing in on

important network features.

Finally, consideration of interactions between AOPs that

change the severity or intensity of effect on a given key event or

adverse outcome leads one into the quantitative analysis of

AOPs. At the level described in the present study and the

companion article by Knapen et al. (2018), we focus primarily on

the qualitative analysis of AOP networks. However, it is

recognized that a quantitative understanding of AOPs is needed

to accurately predict the probability or severity of the outcome

one might expect for a given exposure scenario based on AOPs

or an AOP network (Conolly et al. 2017). The development of

quantitative analysis utilizing AOPs and AOP networks is
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considered elsewhere (Conolly et al. 2017; LaLone and Hecker

2017).

CONCLUSIONS

The need to consider concurrent effects on multiple AOPs

and their potential interactions was identified as a major theme

through the SETAC Horizon Scanning exercise on “Advancing

the utility of the AOP framework in research and regulation”

(Lalone et al. 2017). Although this need was recognized from

the inception of the AOP framework (Villeneuve et al. 2014a,

2014b), we have only recently begun to approach the critical

mass of AOPs needed to start deriving AOP networks from the

AOP-Wiki to analyze them and test their predictive utility.

Filters and layers based on structured annotation of domains of

applicability, weight of evidence, quantitative understanding of

key event relationships, and other features provide the

potential to derive and customize the AOP networks best

suited to one’s research question or problem formulation.

Once derived, the AOP networks can be analyzed in a variety of

ways to extract useful information. Various topological analyses

can be applied to identify key features to target for assay or

model development. Critical paths based on risk assessment

goals, biological attributes, or empirical testing can be defined.

Together, these approaches, along with tools still under

development, can help us to identify and understand the

complex interactions that may occur when multiple AOPs are

activated in different contexts. Broadly speaking, all these

approaches are in their infancy with regard to understanding

and illustrating their practical utility and limitations. The

concepts described serve as a starting point to aid the ongoing

development of the AOP-Wiki and associated software

applications like AOPXplorer (Burgoon 2017). In addition, the

ideas we present can inform the design of applications case

studies that will put these concepts to the test. Along with other

articles associated with the April 2017 SETAC Pellston

Workshop on Advancing the Adverse Outcome Pathway

Framework (LaLone and Hecker 2017), the present study

serves the ongoing development of the AOP framework as a

critical concept to support 21st century approaches to

toxicological research and regulation.
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