Adverse Selection in Competitive Search Equilibrium

Veronica Guerrieri, Robert Shimer, and Randall Wright

Stanford GSB, 2009

Objective

- study adverse selection in environments with search frictions
- competitive search: principals compete to attract agents
- here: uninformed principals compete to attract heterogeneous agents
- principals form rational beliefs about matching probability and composition of agents associated to any contract

"Adverse Selection and Search" -p. 2

Objective

- study adverse selection in environments with search frictions
- competitive search: principals compete to attract agents
- here: uninformed principals compete to attract heterogeneous agents
- principals form rational beliefs about matching probability and composition of agents associated to any contract
- ISSUE: interaction of adverse selection and competitive search
 - 1. adverse selection affects the search equilibrium
 - 2. search affects the set of contracts offered in equilibrium

"Adverse Selection and Search" -p. 2

Results

- existence and uniqueness of equilibrium
- equilibrium may be constrained inefficient
- private information may distort terms of trade or market tightness
- three examples:
 - ▶ layoff insurance
 - > asset market
 - > rat race

"Adverse Selection and Search"

-p. 3

Literature

- competitive search: Montgomery (1991), Peters (1991), Shimer (1996), Moen (1997), Acemoglu and Shimer (1999), Burdett, Shi, and Wright (2001), Mortensen and Wright (2002)
- competitive search with asymmetric information: Inderst and Müller (1999), Faig and Jerez (2005), Moen and Rosen (2006), Guerrieri (2008)
- adverse selection with different market structures: Rothschild and Stigliz (1976), Miyazaki (1977), Wilson (1977), Riley (1979), Prescott and Townsend (1984), Gale (1992), Dubey and Geanakoplos (2002), Bisin and Gottardi (2006)

"Adverse Selection and Search"

Roadmap

- general model
 - > environment
 - > equilibrium definition
- example:
 - ▶ layoff insurance
- general results:
 - > existence and uniqueness
- other examples:
 - > asset market
 - > rat race

Model

"Adverse Selection and Search"

-p. 6

Environment

Iarge measure of ex-ante homogeneous principals

- continuum of measure 1 of heterogeneous agents
- \square $\pi_i > 0$ agents of type $i \in \{1, 2, ..., I\} \equiv \mathbb{I}$
- agent's type is his own private information
- principals and agents have single opportunity to match

- ❖ Timing
- Contracts
- Incentive Compatibility
- Matching
- Expected Utilities
- ❖ Equilibrium

Layoff Insurance

Characterization

Asset Market

Rat Race

Timing

Motivation	$lue{}$ each principal can post a contract C at a cost $k>0$
Model	
❖ Environment❖ Timing	$lue{}$ agents observe the set of posted contracts $\Bbb C$
ContractsIncentive Compatibility	agents direct search to their preferred one
MatchingExpected UtilitiesEquilibrium	principals and agents match in pairs
Layoff Insurance Characterization	matched principals and agents implement the contract
Asset Market Rat Race	$lue{}$ agents who fail to match get their outside option $=0$

Contracts

Motivation	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Model	
❖ Environment	\square $\mathbb Y$ is a compact metric space (allows for lotteries)
❖ Timing	- 13 a compact metric space (allows for lotteries)
❖ Contracts	
❖ Incentive Compatibility	\square if a principal and a type-i agent match and undertake y:
❖ Matching	
Expected Utilities	
❖ Equilibrium	\triangleright agent gets $u_i(y)$, continuous
Layoff Insurance	\triangleright principal date $\alpha_{i}(\alpha)$ continuous
Characterization	\triangleright principal gets $v_i(y)$, continuous
Asset Market	

- WLOG, contracts are revelation mechanisms
- \square a contract is a vector of actions $C \equiv \{y_1, \dots, y_I\}$, where y_i is prescribed if matched agent reports type i

Rat Race

Incentive Compatibility

Motivation

Model

- ❖ Environment
- **❖** Timing
- Contracts

Incentive Compatibility

- Matching
- Expected Utilities
- ❖ Equilibrium

Layoff Insurance

Characterization

Asset Market

Rat Race

Conclusions

 \square a contract $C = \{y_1, \dots, y_I\}$ is incentive-compatible iff

$$u_i(y_i) \ge u_i(y_j)$$
 for all i, j

 \square let $\mathbb C$ be the set of incentive-compatible contracts ($\bar{\mathbb C}\subset\mathbb C$)

Matching

Motivation

Model

- ❖ Environment
- **❖** Timing
- Contracts
- Incentive Compatibility

Matching

- Expected Utilities
- Equilibrium

Layoff Insurance

Characterization

Asset Market

Rat Race

- constant returns to scale matching function
- \square $\Theta(C)$: principal/agent ratio associated to contract C
- \square $\gamma_i(C)$: share of agents of type i seeking C
- $\square \Gamma(C) = (\gamma_1(C), \dots, \gamma_I(C))$
- $\ \ \square$ $\mu(\Theta(C))$: probability an agent seeking C matches
- $\ \square\ \eta(\Theta(C))\gamma_i(C)$: probability a principal posting C matches with a type i agent
- \square μ and η are continuous functions, $\mu(\theta) = \eta(\theta)\theta$

Expected Utilities

Motivation

Model

- Environment
- **❖** Timing
- Contracts
- Incentive Compatibility
- Matching

❖ Expected Utilities

❖ Equilibrium

Layoff Insurance

Characterization

Asset Market

Rat Race

Conclusions

 \square expected utility of principal offering $C = \{y_1, \ldots, y_I\}$:

$$\eta(\Theta(C)) \sum_{i=1}^{I} \gamma_i(C) v_i(y_i) - k$$

 \square expected utility of type-i agent seeking $C = \{y_1, \dots, y_I\}$:

$$\mu(\Theta(C))u_i(y_i)$$

Competitive Search Equilibrium

Motivation

Model

- Environment
- Timing
- Contracts
- Incentive Compatibility
- Matching
- Expected Utilities

Equilibrium

Layoff Insurance

Characterization

Asset Market

Rat Race

Conclusions

A CSE is a vector $\bar{U} = \{\bar{U}_1, \dots, \bar{U}_I\}$, a measure λ on \mathbb{C} , and two functions $\Theta(C)$ and $\Gamma(C)$ on \mathbb{C} s.t.

(i) profit maximization and free entry: $\forall C \in \mathbb{C}$,

$$\eta(\Theta(C))\sum_{i=1}^{I}\gamma_i(C)v_i(y_i)-k\leq 0$$
, with equality if $C\in\bar{\mathbb{C}}$;

(ii) optimal search: $\forall C \in \mathbb{C}$ and i,

$$\mu(\Theta(C))u_i(y_i) \leq \bar{U}_i \equiv \max \left\{ 0, \max_{C' = \{y'_1, \dots, y'_I\} \in \bar{\mathbb{C}}} \mu(\Theta(C'))u_i(y'_i) \right\},\,$$

with equality if $\Theta(C) < \infty$ and $\gamma_i(C) > 0$;

(iii) market clearing

Layoff Insurance (Rothschild and Stigliz 1976)

Model

Motivation

Model

Layoff Insurance

❖ Model

- Contracts and Payoffs
- ❖ Equilibrium
- ❖ Rothschild-Stiglitz
- ❖ Existence
- Efficiency

Characterization

Asset Market

Rat Race

- principals = homogeneous risk-neutral firms
 - > cost k to search for a worker
 - > can hire at most one worker
 - > productive match produces 1 unit of output
 - unproductive match leads to a layoff
- agents = heterogeneous risk-averse workers
 - $\triangleright p_i$ = probability of a productive match for type i
 - \triangleright 2 types with $k < p_1 < p_2$, share π_i
 - \triangleright p_i is private info, firms only verify ex-post realization
 - > utility of workers never employed is normalized to 0

Contracts and Payoffs

Motivation

Model

Layoff Insurance

- ❖ Model
- Contracts and Payoffs
- ❖ Equilibrium
- ❖ Rothschild-Stiglitz
- ❖ Existence
- ❖ Efficiency

Characterization

Asset Market

Rat Race

- $lue{}$ action: $y=(c^e,c^u)$ with
 - $ightharpoonup c^e = consumption if productive$
 - $ightharpoonup c^u = consumption if unproductive$
- if firm and type-i worker match and undertake (c^e, c^u) :
 - \triangleright worker gets $u_i(c^e, c^u) = p_i U(c^e) + (1 p_i) U(c^u)$
 - ▶ firm gets $v_i(c^e, c^u) = p_i(1 c^e) (1 p_i)c^u$
- ontract: $C = \{(c_1^e, c_1^u), (c_2^e, c_2^u)\}$
- \square matching function: $\mu(\theta) = \min\{\theta, 1\}$

Equilibrium

Motivation

Model

Layoff Insurance

- ❖ Model
- Contracts and Payoffs
- Equilibrium
- ❖ Rothschild-Stiglitz
- ❖ Existence
- ❖ Efficiency

Characterization

Asset Market

Rat Race

- there exists a unique separating equilibrium
- all workers find a job with probability 1
- private info distorts contracts (relative to full info)
 - $\triangleright c_1^e = c_1^u = p_1 k \rightarrow \text{full insurance}$
 - $ightharpoonup c_2^e > c_1^e$ and $c_2^u < c_1^u o$ partial insurance

Rothschild-Stiglitz

Motivation

Model

Layoff Insurance

- ❖ Model
- Contracts and Payoffs
- ❖ Equilibrium

❖ Rothschild-Stiglitz

- Existence
- ❖ Efficiency

Characterization

Asset Market

Rat Race

Conclusions

- in RS if there is an equilibrium, least cost separating
- BUT if there are few bad agents, a pooling contract is profitable deviation ⇒ non-existence result
- if offering pooling contract, optimal offer full insurance
- onsider a contract $C^P = \{(c,c),(c,c)\}$ such that

$$U(c) \ge p_2 U(c_2^e) + (1 - p_2) U(c_2^u) > p_1 U(c_1^e) + (1 - p_1) U(c_1^u)$$

 \square if $\pi_1 < 1-c$ then the deviation is profitable given that

$$(1-\pi_1)-c>0$$

Existence

Motivation

Model

Layoff Insurance

- ❖ Model
- Contracts and Payoffs
- ❖ Equilibrium
- ❖ Rothschild-Stiglitz

Existence

- Efficiency
- Characterization

Asset Market

Rat Race

Conclusions

- why in our model this deviation is not profitable?
- $lue{}$ consider the same pooling contract $C^P = \{(c,c),(c,c)\}$
- to attract both types need

$$\mu\left(\Theta\left(C^{P}\right)\right)U\left(c\right) \geq \bar{U}_{1}$$

$$\mu\left(\Theta\left(C^{P}\right)\right)U\left(c\right) \geq \bar{U}_{2}$$

 $lue{lue}$ as long as one is a strict inequality, $\Theta\left(C^P\right)$ would adjust up to

$$\mu\left(\Theta\left(C^{P}\right)\right)U\left(c\right) = \bar{U}_{1}$$

$$\mu\left(\Theta\left(C^{P}\right)\right)U\left(c\right) < \bar{U}_{2}$$

■ BUT then bad types don't go → not profitable

Efficiency

equilibrium may be constrained inefficient
☐ few low types → cross-subsidization Pareto dominant
consider a planner that restrict firms to post pooling con-
tracts
in this case, the associated market tightness will be
equal to 1
an equilibrium is constrained inefficient when it does not
exists in RS!

Characterization

Assumptions

Motivation

Model

Layoff Insurance

Characterization

Assumptions

- Optimization Problem
- Existence
- Uniqueness
- Positive Utility

Asset Market

Rat Race

Conclusions

- \square define $\bar{\mathbb{Y}}_i \equiv \{y \in \mathbb{Y} \mid \bar{\eta}v_i(y) \geq k \text{ and } u_i(y) > 0\}$
- $lue{}$ A1. Monotonicity: for all $y \in \bigcup_i ar{\mathbb{Y}}_i$

$$v_1(y) \leq v_2(y) \leq \ldots \leq v_I(y)$$

A2. Local non-satiation: for all $i, y \in \bar{\mathbb{Y}}_i$, and $\varepsilon > 0$

$$\exists y' \in B_{\varepsilon}(y) \text{ s.t. } v_i(y') > v_i(y)$$

 $lue{}$ A3. Sorting: for all $i, y \in \overline{\mathbb{Y}}_i$, and $\varepsilon > 0$, $\exists y' \in B_{\varepsilon}(y)$ s.t.

$$u_j(y') > u_j(y)$$
 for all $j \ge i$

$$u_i(y') < u_i(y)$$
 for all $j < i$

Optimization Problem

Motivation

Model

Layoff Insurance

Characterization

Assumptions

Optimization Problem

- Existence
- Uniqueness
- Positive Utility

Asset Market

Rat Race

Conclusions

consider the constrained maximization problem

$$\begin{split} \bar{U}_i &= \max_{\theta \in [0,\infty], y \in \mathbb{Y}} \mu(\theta) u_i(y) \\ \text{s.t. } \eta(\theta) v_i(y) &\geq k, \\ \mu(\theta) u_j(y) &\leq \bar{U}_j \text{ for all } j < i. \end{split}$$

- \square call a solution to the collection of (P-i) a solution to (P)
- \square if for some i the constraint set is empty or the problem has a negative maximum set $\bar{U}_i=0$
- $lue{}$ **Lemma:** (P) has a solution and $ar{U}$ is unique
 - ightharpoonup recursive structure of (P) \Rightarrow solve (P-1) first...

Existence

Motivation

Model

Layoff Insurance

Characterization

- Assumptions
- Optimization Problem

Existence

- Uniqueness
- Positive Utility

Asset Market

Rat Race

- Proposition 1: assume A1-A3, let $\{\bar{U}_i\}$, $\{\theta_i\}$, and $\{y_i\}$ be a solution to (P)
- lacksquare there exists a CSE $\{\bar{U},\lambda,\bar{\mathbb{C}},\Theta,\Gamma\}$ with

1.
$$\bar{U} = \{\bar{U}_i\}$$

2.
$$\bar{\mathbb{C}} = \{C_i\}$$
, where $C_i = (y_i, \dots, y_i)$

3.
$$\Theta(C_i) = \theta_i$$

4.
$$\gamma_i(C_i) = 1$$

Uniqueness

Motivation

Model

Layoff Insurance

Characterization

- Assumptions
- Optimization Problem
- Existence

Uniqueness

Positive Utility

Asset Market

Rat Race

- Proposition 2: assume A1-A3, let $\{\bar{U}, \lambda, \bar{\mathbb{C}}, \Theta, \Gamma\}$ be a CSE
- $lue{}$ let $\{\bar{U}_i\}=\bar{U}$
- Lake any $\{\theta_i, y_i\}$ s.t. $\exists C_i = \{y_1, \dots, y_i, \dots, y_I\} \in \mathbb{C}$ with $\theta_i = \Theta(C_i) < \infty$, $\gamma_i(C_i) > 0$
- \square $\{\bar{U}_i\}$, $\{\theta_i\}$, and $\{y_i\}$ solve (P)

Positive Utility

Motivation

Model

Layoff Insurance

Characterization

- Assumptions
- Optimization Problem
- Existence
- Uniqueness

Positive Utility

Asset Market

Rat Race

Conclusions

Proposition 3: assume A1-A3,

$$\{y \in \mathbb{Y} | \eta(0)v_i(y) > k \text{ and } u_i(y) > 0\} \neq \emptyset \text{ for all } i$$

- $lue{}$ in equilibrium, $ar{U}_i > 0$ for all i
- NOTE: positive gains of trade for some i do not guarantee $\bar{U}_i > 0$ (next example)

Asset Market (Akerlof 1970)

Model

Motivation

Model

Layoff Insurance

Characterization

Asset Market

❖ Model

- Assumptions
- ❖ Equilibrium
- ❖ No Trade

Rat Race

- sellers own heterogeneous apples
- buyers value apples more than sellers
- \square an action is $y = (\alpha, t)$:
 - $\triangleright \alpha$ = probability seller gives up apple
 - \triangleright t = transfer from buyer to seller
- \square if buyer and type-i seller match and undertake (α, t) :
 - \triangleright seller's payoff: $u_i(\alpha, t) = t \alpha a_i^S$
 - \triangleright buyer's payoff: $v_i(\alpha, t) = \alpha a_i^B t$

Assumptions

Motivation	\square assume there are only two types $I=2$
	= accoming the different and only two types $I=Z$
Model	

- \blacksquare type 2 sellers have a better apple: $a_2^S > a_1^S \ge 0$
- \blacksquare preferences of buyers and sellers aligned: $a_2^B>a_1^B\geq 0$
- $lue{}$ for now assume gains from trade: $a_i^B > a_i^S + k$
- \square matching $\mu(\theta) = \min\{\theta, 1\}$

❖ Model❖ Assumptions

Asset Market

Layoff Insurance

Characterization

- ❖ Equilibrium
- * Equilibrium

No Trade

Rat Race

Equilibrium

Motivation

Model

Layoff Insurance

Characterization

Asset Market

- ❖ Model
- Assumptions

❖ Equilibrium

❖ No Trade

Rat Race

Conclusions

there exists a CSE with:

1.
$$\alpha_i = 1$$
 and $t_i = a_i^B - k$ for all i

2.
$$\theta_1 = 1$$
 and $\theta_2 = \frac{a_1^B - a_1^S - k}{a_2^B - a_1^S - k} < 1$

- NOTE: private information affects market tightness
- $lue{}$ rationing through lpha would be more costly due to k
- lacksquare Pareto improvement if $\pi_1 < rac{a_2^B a_2^S k}{a_2^B a_1^S k}$

No Trade

 \blacksquare then, $\bar{U}_1 = \bar{U}_2 = 0$, no contracts are posted

bad asset shuts down the market for a good one

- Layoff Insurance
 Characterization
- Orialactorization
- Asset Market
- ❖ Model

Model

- Assumptions
- ❖ Equilibrium
- ❖ No Trade

Rat Race

Rat Race (Akerlof 1976)

Model

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

❖ Model

- Assumptions
- Benchmark
- ❖ Equilibrium

- workers heterogeneous in preferences and productivity
- homogeneous firms need to hire a worker to produce
- \square an action is y = (c, h):
 - \triangleright c = wage
 - \triangleright h = hours worked
- $lue{}$ if a firm and a type-i worker match and undertake (c,h)
 - \triangleright worker's payoff: $u_i(c,h) = u_i(c,h)$
 - \triangleright firm's payoff: $v_i(c,h) = f_i(h) c$

Assumptions

Motivation assume there are only two types I=2

 $lue{}$ wlog type 2 is more productive: $f_2(h) > f_1(h)$ for all h

single crossing assumption:

$$-\frac{\partial u_2/\partial h}{\partial u_2/\partial c} < -\frac{\partial u_1/\partial h}{\partial u_1/\partial c}$$

 \square matching $\mu(\theta) = \min\{\theta, 1\}$

Layoff Insurance

Characterization

Asset Market

Rat Race

Model

❖ Model

Assumptions

❖ Benchmark

❖ Equilibrium

Benchmark

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

- ❖ Model
- Assumptions

Benchmark

Equilibrium

Conclusions

full info equilibrium determined by three equations:

optimality for hours

$$-\frac{\partial u_i(c_i, h_i)/\partial h}{\partial u_i(c_i, h_i)/\partial c} = f_i'(h_i)$$

> optimality for vacancy creation:

$$\mu'(\theta_i) \left(f_i(h_i) - c_i + \frac{u_i(c_i, h_i)}{\partial u_i(c_i, h_i) / \partial c} \right) = k$$

> free-entry condition

$$\frac{\mu(\theta_i)}{\theta_i}(f_i(h_i) - c_i) = k$$

Equilibrium

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

- ❖ Model
- Assumptions
- ❖ Benchmark
- ❖ Equilibrium
- Conclusions

- there is a unique separating equilibrium
- private info distorts contracts:
 - low type not distorted
 - ▶ high type distorted (overemployment):

$$-\frac{\partial u_2(c_2, h_2)/\partial h}{\partial u_2(c_2, h_2)/\partial c} > f_2'(h_2)$$

market tightness may be distorted in either direction

Equilibrium

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

- ❖ Model
- Assumptions
- Benchmark

❖ Equilibrium

Conclusions

- there is a unique separating equilibrium
- private info distorts contracts:
 - low type not distorted
 - high type distorted (overemployment):

$$-\frac{\partial u_2(c_2, h_2)/\partial h}{\partial u_2(c_2, h_2)/\partial c} > f_2'(h_2)$$

market tightness may be distorted in either direction

NOTE: equilibrium may be constrained inefficient

few low types or high cost of screening, crosssubsidization may Pareto dominate

Motivation Model	general framework combining search frictions and adverse selection
_ayoff Insurance	
Characterization	existence and uniqueness
Asset Market	
Rat Race	general algorithm to characterize equilibrium
Conclusions	
	private information can affect contracts and/or matching
	equilibrium may be Pareto dominated

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

Conclusions

Incentive Feasibility

- Allocation
- ❖ Incentive-Feasibility

Incentive Feasibility

"Adverse Selection and Search"

Allocation

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

Conclusions

Incentive Feasibility

Allocation

❖ Incentive-Feasibility

- An allocation is
 - ightharpoonup a vector \bar{U} of expected utilities for the agents
 - ightharpoonup a measure λ over $\mathbb C$ with support $\bar{\mathbb C}$
 - \triangleright a function $\tilde{\Theta}: \bar{\mathbb{C}} \mapsto [0, \infty]$
 - ightharpoonup a function $\tilde{\Gamma}:\bar{\mathbb{C}}\mapsto\Delta^I$

Incentive-Feasibility

Motivation

Model

Layoff Insurance

Characterization

Asset Market

Rat Race

Conclusions

Incentive Feasibility

Allocation

Incentive-Feasibility

An allocation is incentive feasible if

1.

$$\int \left(\eta(\tilde{\Theta}(C)) \sum_{i=1}^{I} \tilde{\gamma}_i(C) v_i(y_i) - k \right) d\lambda(C) = 0;$$

2. for any $C \in \overline{\mathbb{C}}$ and i s.t. $\tilde{\gamma}_i(C) > 0$ and $\tilde{\Theta}(C) < \infty$,

$$\mu(\tilde{\Theta}(C))u_i(y_i) = \bar{U}_i = \max_{C' \in \bar{\mathbb{C}}} \mu(\tilde{\Theta}(C'))u_i(y_i')$$

3.

$$\int \frac{\tilde{\gamma}_i(C)}{\tilde{\Theta}(C)} d\lambda(C) \leq \pi_i, \text{ with equality if } \bar{U}_i > 0$$

14.461 Advanced Macroeconomics I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.