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Abstract

We investigate the effect of social media content on customer engagement using a large-scale field

study on Facebook. We content-code more than 100,000 unique messages across 800 companies engaging

with users on Facebook using a combination of Amazon Mechanical Turk and state-of-the-art Natural

Language Processing algorithms. We use this large-scale database of advertising attributes to test the

effect of ad content on subsequent user engagement − defined as Likes and comments − with the mes-

sages. We develop methods to account for potential selection biases that arise from Facebook’s filtering

algorithm, EdgeRank, that assigns posts non-randomly to users. We find that inclusion of persuasive

content − like emotional and philanthropic content − increases engagement with a message. We find that

informative content − like mentions of prices, availability and product features − reduce engagement

when included in messages in isolation, but increase engagement when provided in combination with

persuasive attributes. Persuasive content thus seems to be the key to effective engagement. Our results

inform advertising design in social media, and the methodology we develop to content-code large-scale

textual data provides a framework for future studies on unstructured natural language data such as

advertising content or product reviews.

Keywords: advertising, social media, advertising content, large-scale data, natural language process-

ing, selection, Facebook, EdgeRank.
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1 Introduction

Social media is increasingly taking up a greater share of consumers’ time spent online and, as a result, is

becoming a larger component of firm’s advertising budgets. Surveying 4,943 marketing decision makers at US

companies, the 2013 Chief Marketing Officer survey (www.cmosurvey.org) reports that expected spending

on social media marketing will grow from 8.4% of firms’ total marketing budgets in 2013 to about 22% in

the next 5 years. As firms increase their social media activity, the role of content engineering has become

increasingly important. Content engineering seeks to develop ad content that better engage targeted users

and drive the desired goals of the marketer from the campaigns they implement. Surprisingly however,

despite the numerous insights from the applied psychology literature about the design of the ad-creative

and its obvious relevance to practice, relatively little has been formally established about the empirical

consequences of advertising content outside the laboratory, in real-world, field settings. Ad content also is

under emphasized in economic theory. The canonical economic model of advertising as a signal (c.f. Nelson

(1974); Kihlstrom and Riordan (1984); Milgrom and Roberts (1986)) does not postulate any direct role for ad

content because advertising intensity conveys all relevant information about product quality in equilibrium to

market participants. Models of informative advertising (c.f. Butters (1977); Grossman and Shapiro (1984))

allow for advertising to inform agents only about price and product existence − yet, casual observation and

several studies in lab settings (c.f. Armstrong (2010)) suggest advertisements contain much more information

and content beyond prices. In this paper, we investigate the role of content in driving consumer engagement

in social media in a field setting and document that content matters significantly. We find that a variety

of emotional, philanthropic and informative advertising content attributes affect engagement and that the

role of content varies significantly across firms and industries. The richness of our engagement data and the

ability to content code ads in a cost-efficient manner enables us to study the problem at a larger scale than

much of the previous literature on the topic.

Our analysis is of direct relevance to industry in better understanding and improving firms’ social media

marketing strategies. Recent studies (e.g., Creamer 2012) report that only about 1% of an average firm’s

Facebook fans (users who have Liked the Facebook Page of the firm) actually engage with the brand by

commenting on, Liking or sharing posts by the firm on the platform. As a result, designing better advertising

content that achieves superior reach and engagement on social media is an important issue for marketing on

this new medium. While many brands have established a social media presence, it is not clear what kind

of content works better and for which firm, and in what way. For example, are posts seeking to inform

consumers about product or price attributes more effective than persuasive messages? Are videos or photos

more likely to engage users relative to simple status updates? Do messages explicitly soliciting user response

(e.g., “Like this post if ...”) draw more engagement or in fact turn users away? Does the same strategy apply

across different industries? Our paper explores these kinds of questions and contributes to the formulation

of better content engineering policies in practice.

Our empirical investigation is implemented on Facebook, which is the largest social media platform in

the world. Many top brands now maintain a Facebook page from which they serve posts and messages to

connected users. This is a form of free social media advertising that has increasingly become a popular and
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important channel for marketing. Our data comprises information on about 100,000 such messages posted

by a panel of about 800 firms over a 11-month period between September 2011 and July 2012. For each post,

our data also contains time-series information on two kinds of engagement measures − Likes and comments

− observed on Facebook. We supplement these engagement data with message attribute information that we

collect using a large-scale survey we implement on Amazon Mechanical Turk (henceforth “AMT”), combined

with a Natural Language Processing algorithm (henceforth “NLP”) we build to tag messages. We incorporate

new methods and procedures to improve the accuracy of content tagging on AMT and our NLP algorithm.

As a result, our algorithm achieves about 99% accuracy, recall and precision for almost all tagged content

profiles. The methods we develop will be useful in future studies analyzing advertising content and product

reviews.

Our data also has several advantages that facilitate a study of advertising content. First, Facebook posts

have rich content attributes (unlike say, Twitter tweets, which are restricted in length) and rich data on

user engagement. Second, Facebook requires real names and, therefore, data on user activity on Facebook

is often more reliable compared to other social media sites. Third, engagement is measured on a daily basis

(panel data) by actual post-level engagement such as Likes and comments that are precisely tracked within

a closed system. These aspects make Facebook an almost ideal setting to study the effect of ad content.

Our strategy for coding content is motivated by the psychology, marketing and economic literatures

on advertising (see Cialdini (2001); Chandy et al. (2001); Bagwell (2007); Vakratsas and Ambler (1999)

for some representative overviews). In the economics literature, it is common to classify advertising as

informative (shifting beliefs about product existence or prices) or persuasive (shifting preferences directly).

The basis of information is limited to prices and/or existence, and persuasive content is usually treated as

a “catch-all” without finer classification. Rather than this coarse distinction, our classification follows the

seminal classification work of Resnik and Stern (1977), who operationalize informative advertising based on

the number and characteristics of informational cues (see Abernethy and Franke, 1996 for an overview of

studies in this stream). Some criteria for classifying content as informative include details about product

deals, availability, price, and product related aspects that could be used in optimizing the purchase decision.

Following this stream, any product oriented facts, and brand and product mentions are categorized as

informative content. Following suggestions in the persuasion literature (Cialdini, 2001; Nan and Faber,

2004; Armstrong, 2010), we classify “persuasive” content as those that broadly seek to influence by appealing

to ethos, pathos and logos strategies. For instance, the use of a celebrity to endorse a product or attempts to

gain trust or good-will (e.g., via small talk, banter) can be construed as the use of ethos − appeals through

credibility or character − and a form of persuasive advertising. Messages with philanthropic content that

induce empathy can be thought of as an attempt at persuasion via pathos − an appeal to a person’s emotions.

Lastly, messages with unusual or remarkable facts that influence consumers to adopt a product or capture

their attention can be categorized as persuasion via logos − an appeal through logic. We categorize content

that attempt to persuade and promote relationship building in this manner as persuasive content.

Estimation of the effect of content on subsequent engagement is complicated by the non-random allocation

of messages to users implemented by Facebook via its EdgeRank algorithm. EdgeRank tends to serve to

users posts that are newer and are expected to appeal better to his/her tastes. We develop corrections
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to account for the filtering induced by EdgeRank. Our main finding from the empirical analysis is that

persuasive content drives social media engagement significantly. Additionally, informative content tends to

drive engagement positively only when combined with such content. Persuasive content thus seem to be the

key to effective content engineering in this setting. The empirical results unpack the persuasive effect into

component attribute effects and also estimate the heterogeneity in these effects across firms and industries.

We do not address the separate but important question of how engagement affects product demand and

firm’s profits so as to complete the link between ad-attributes and those outcome measures. First, the data

required for the analysis of this question at a scale comparable to this study are still not widely available to

researchers. Second, firms and advertisers care about engagement per se and seem to be willing to invest in

advertising for generating engagement, even though numerous academic studies starting with the well-known

“split-cable” experiments of Lodish et al. (1995) have found that the effect of advertising on short-term sales

is limited. Our view is that advertising is a dynamic problem and a dominant role of advertising is to build

long-term brand-capital for the firm. Even though the current period effects of advertising on demand is

small, the long-run effect of advertising may be large, generated by intermediary activities like increased

consumer engagement, increased awareness and inclusion in the consumer consideration set. Thus, studying

the formation and evolution of these intermediary activities − like engagement − may be worthwhile in order

to better understand the true mechanisms by which advertising affects outcomes in market settings, and to

resolve the tension between the negative results in academia and the continued investments in advertising in

industry. This is where we see this paper as making a contribution. The inability to connect this engagement

to firms’ profits and demand is an acknowledged limitation of this study.

Our paper adds to an emerging literature on the effects of ad content. A recent theoretical literature has

developed new models that allow ad content to matter in equilibrium by augmenting the canonical signaling

model in a variety of ways (e.g. Anand and Shachar (2009) by allowing ads to be noisy and targeted;

Anderson and Renault (2006) by allowing ad content to resolve consumers’ uncertainty about their match-

value with a product; and Mayzlin and Shin (2011) and Gardete (2013) by allowing ad content to induce

consumers to search for more information about a product). Our paper is most closely related to a small

empirical literature that has investigated the effects of ad content in field settings. These include Bertrand

et al. (2010) (effect of direct-mail ad content on loan demand); Anand and Shachar (2011); Liaukonyte et al.

(2013) (effect of TV ad content on viewership and online sales); Tucker (2012a) (effect of ad persuasion on

YouTube video sharing) and Tucker (2012b) (effect of “social” Facebook ads on philanthropic participation).

Also related are recent studies exploring the effect of content more generally (and not specifically ad content)

including Berger and Milkman (2012) (effect of emotional content in New York Times articles on article

sharing) and Gentzkow and Shapiro (2010) (effect of newspaper’s political content on readership). Finally,

our paper is related to empirical studies on social media (reviewed in Sundararajan et al. (2013); Aral et al.

(2013)). Relative to this literature, our study makes two main contributions. First, from a managerial

standpoint, we show that while persuasive ad content − especially emotional and philanthropic content −

positively impacts consumer engagement in social media, informative content has a negative effect unless it

is combined with persuasive content attributes. This is particularly important for marketing managers who

wish to use their social media presence to promote their brand and products. We also show how the insights
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Figure 1: (Left) Example of a firm’s Facebook Page (Walmart). (Right) Example of a firm’s post and subsequent user

engagement with that post (Tennis Warehouse). Example is not necessarily from our data.

differ by industry type. Second, none of the prior studies on ad content have been conducted at the scale of

this study. The rigorous content-tagging methodology we develop, which combines surveys implemented on

AMT with NLP-based algorithms, provides a framework to conduct large-scale studies analyzing content of

advertising.

2 Data

Our dataset is derived from the “pages” feature offered by Facebook. The feature was introduced on Facebook

in November 2007. Facebook Pages enable companies to create profile pages and to post status updates,

advertise new promotions, ask questions and push content directly to consumers. The left panel of Figure 1

shows an example of Walmart’s Facebook Page, which is typical of the type of pages large companies host

on the social network. In what follows, we use the terms pages, brands and firms interchangeably. Our data

comprises posts served from firms’ pages onto the Facebook profiles of the users that are linked to the firm

on the platform. To fix ideas, consider a typical post (see the right panel of Figure 1): “Pretty cool seeing

Andy giving Monfils some love... Check out what the pros are wearing here: http://bit.ly/nyiPeW.”1 In

this status update, a tennis equipment retailer starts with small talk, shares details about a celebrity (Andy

Murray and Gael Monfils) and ends with link to a product page. Each such post is a unit of analysis in our

data.

1Retailer picked randomly from an online search; not necessarily from our data.
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2.1 Data Description

2.1.1 Raw Data and Selection Criteria

To collect the data, we partnered with an anonymous firm, henceforth referred to as Company X that pro-

vides analytical services to Facebook Page owners by leveraging data from Facebook’s Insights. Insights is

an analytics tool provided by Facebook that allows companies to monitor the performance of their Facebook

posts. Company X augments data from Facebook Insights across a large number of client firms with addi-

tional records of daily message characteristics, to produce a raw dataset comprising a post-day-level panel of

messages posted by companies via their Facebook pages. The data also includes two consumer engagement

metrics: the number of Likes and comments for each post each day. These metrics are commonly used in

industry as measures of engagement. They are also more granular than other metrics used in extant research

such as the number of fans who have Liked the page. Also available in the data are the number of impressions

of each post per day (i.e., the total number of users the post is exposed to). In addition, page-day level

information such as the aggregate demographics of users (fans) who Liked the page on Facebook or have ever

seen posts by the page are collected by Company X on a daily level2. This comprises the population of users

a post from a firm can potentially be served to. We leverage this information in the methodology we develop

later for accounting for non-random assignment of posts to users by Facebook. Once a firm serves a post,

the post’s impressions, Likes and comments are recorded daily for an average of about 30 days (maximum:

126 days).3 The raw data contains about a million unique posts by about 2,600 unique companies. We clean

the data to reflect the following criteria:

• Only pages located in the US.

• Only posts written in English.

• Only posts with complete demographics data.

After cleaning, the data span 106,316 unique messages posted by 782 companies (including many large

brands) between September 2011 and July 2012. This results in about 1.3 million rows of post-level daily

snapshots recording about 450 million page fans’ responses. Removing periods after which no significant

activity is observed for a post reduces this to 665,916 rows of post-level snapshots (where activity is defined

as either impressions, Likes, or comments). The companies in our dataset are categorized into 110 different

industry categories as defined by Facebook. These finer categories are combined into 6 broader industry

categories following Facebook’s page classification criteria. Table 1 shows these categories with examples.

2.1.2 Content-coded Data

We use a two-step method to label content. First, we contract with workers through AMT and tag 5,000

messages for a variety of content profiles. Subsequently, we build an NLP algorithm by combining several sta-

tistical classifiers and rule-based algorithms to extend the content-coding to the full set of 100,000 messages.

2In essense, our data is the most complete data outside of Facebook - the data includes more details and snapshots than
what Facebook offers exclusively to page owners via the Application Programming Interface called Facebook Query Language.

3A vast majority of posts do not get any impression or engagement after 7 days. After 15 days, virtually all engagements
and impressions (more than 99.9%) are accounted for.
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Celebrity & Public Figure Entertainment Consumer Products & Brands

Actor & Director (Danny Boyle) TV Shows (Star Trek) Clothing (Ralph Lauren)

Athlete (Roger Federer) Movies & Musics (Gattaca) Book (Dune)

Musicians & Bands (Muse) Recreation & Sports (Tennis) Cars (Tesla Motors)

Government Official (Barack Obama) Concert Tour (Coachella) Food & Groceries (Trader Joe’s)

Author (Frank Herbert) Entertainment (Monte Carlo) Electronics (Nokia)

Organizations & Company Websites Local Places & Businesses

Health Agency (WHO) Website (TED) Local Business (The Halal Guys)

Non-profit Organization (Wikipedia) Personal Website (Miller Photography) Restaurants & Cafe (Olive Garden)

Government Organization (US Army) App Pages (Google Search) Museum & Art Gallery (MoMA)

University (University of Pennsylvania) Hotel (Marriott)

Church & Religious (Catholic) Legal & Law (American Bar Association)

Table 1: Six Broader Categories of Pages and Some Examples of Finer Subcategories: This table documents how

base categories are merged into 6 broad categories. This follows the 6 broad page types listed on Facebook. Examples of actual

pages (not necessarily from our data) are in parentheses.

This algorithm uses the 5,000 AMT-tagged messages as the training data-set. Best practices reported in the

recent literature are used to ensure the quality of results from AMT and to improve the performance of the

NLP algorithm (accuracy, recall, precision). The resulting NLP algorithm achieves around 99% accuracy,

99% recall and 99% precision for almost all the content profiles we consider with 10-fold cross validation.

We describe these methods in more detail later in the paper.

The content in Facebook posts can be categorized as informative, persuasive, or both. Some messages

inform consumers about deals and discounts about products, while other messages seek to connect with

consumers on a personal level to promote brand personality, form relationships and are social in nature. We

call the first type informative content, and the second persuasive content. Many messages do both at the

same time by including casual banter and product information simultaneously (e.g., “Are you a tea person

or a coffee person? Get your favorite beverage from our website”).

Table 2 outlines the finer classification of the attributes we code up, including precise definitions, sum-

mary statistics, and the source for coding the attribute. As mentioned, we content-code messages into various

persuasive and informative attributes. In Table 2, the 8 variables: BRANDMENTION, DEAL, PRICECOM-

PARE, PRICE, TARGET, PRODAVAIL, PRODLOCATION, and PRODMENTION are informative. These

variables enable us to assess the effect of search attributes, brand, price, and product availability information

on engagement. The 8 variables: REMFACT, EMOTION, EMOTICON, HOLIDAYMENTION, HUMOR,

PHILANTHROPIC, FRIENDLIKELY, and SMALLTALK are classified as persuasive. These definitions in-

clude emotional content, humor, banter and more complex content like the “FRIENDLIKELY” classification,

which is a binary variable that reflect Mechanical Turk survey participant’s agreement that their “friends on

social media are likely to post a message as the one shown.”

Besides these main variables of interest, controls and content-related patterns noted as important in

industry reports are profiled. We include these content categories to investigate more formally considera-

tions laid out in industry white papers, trade-press articles and blog reports about the efficacy of message

attributes in social media engagement. It includes content that explicitly solicits readers to comment or

includes blanks for users to fill out (thus providing an explicit option to facilitate engagement). Additionally,
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characteristics like whether the message contained photos, website links, and the nature of the page-owner

(business organization versus celebrity) are also coded. Other message-specific characteristics and controls

include metrics such as message length in characters and SMOG (“Simple Measure of Gobbledygook”), an

automatically computed reading complexity index that is used widely. Higher values of SMOG implies a

message is harder to read. Table 3 shows sample messages taken from Walmart’s page in December 2012

and shows how we would have tagged them. The reader should note that some elements of content tagging

and classification are necessarily subjective and based on human judgement. We discuss our methods (which

involve obtaining agreement across 9 tagging individuals) in section 2.2. All things considered, we believe

this is one of the most comprehensive attempts at tagging advertising content in the empirical literature.

2.1.3 Data Descriptive Graphics

This section presents descriptive statistics of the main stylized patterns in the data. Figure 2 shows box plots

of the log of impressions, Likes, and comments versus the time (in days) since a post is released (τ). Both

comments and Likes taper off to zero after two and six days respectively. The rate of decay of impressions

is slower. Virtually all engagements and impressions (more than 99.9%) are accounted for within 15 days of

release of a post.

Figure 3 shows the average number of Likes and comments by message type (photo, link, etc.) over the

lifetime of a post. Messages with photos have the highest average Likes (94.7) and comments (7.0) over

their lifetime. Status updates obtain more comments (5.5) on average than videos (4.6) but obtain less Likes

than videos. Links obtain the lowest Likes on average (19.8) as well as the lowest comments (2.2). Figure

4 shows the same bar plots split across 6 industry categories. A consistent pattern is that messages with

photos always obtain highest Likes across industries. The figure also documents interesting heterogeneity in

engagement response across industries. The patterns in these plots echo those described in reports by many

market research companies such as Wildfire and comScore.

Figure 5 presents the average number of Likes and comments by content attribute. Emotional messages

obtain the most number of Likes followed by posts identified as “likely to be posted by friends” (variable:

FRIENDLIKELY). Emotional content also obtain the highest number of comments on average followed by

SMALLTALK and FRIENDLIKELY. The reader should note these graphs do not account for the market-size

(i.e. the number of impressions a post reached). Later, we present an econometric model that incorporates

market-size as well as selection by Facebook’s filtering algorithm to assess user engagement more formally.

Finally, Figure 6 shows the percentage of messages featuring a content attribute split by industry category.

We represent the relative percentages in each cell by the size of the bubbles in the chart. The largest bubble is

SMALLTALK for the celebrities category (60.4%) while the smallest is PRICECOMPARE for the celebrities

category (0%). This means that 6 in 10 posts by celebrity pages in the data have some sort of small

talk (banter) and/or content that does not relate to products or brands; and that there are no posts by

celebrity owned pages that feature price comparisons. Interestingly, celebrity pages also do little targeting

(i.e, via posts that explicitly call out to certain demographics or subpopulations with certain qualifications).

“Remarkable facts” (our definition) are posted more by firms in the entertainment category and less by places

and business-oriented pages. Consistent with intuition, consumer product pages and local places/businesses
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Variable Description Source Mean SD Min Max

TAU (τ) Time since the post release (Day) Facebook 6.253 3.657 1 16

LIKES Number of “Likes” post has obtained Facebook 48.373 1017 0 324543

COMMENTS Number of “Comments” post has obtained Facebook 4.465 78.19 0 22522

IMPRESSIONS Number of times message was shown to users Facebook 9969.2 129874 1 4.5×107

SMOG SMOG readability index (higher means harder to read) Computed 7.362 2.991 3 25.5

MSGLEN Message length in characters Computed 157.41 134.54 1 6510

HTTP Message contains a link Computed 0.353 0.478 0 1

QUESTION Message contains questions Computed 0.358 0.479 0 1

BLANK Message contains blanks (e.g. “My favorite artist is __”) Computed 0.010 0.099 0 1

ASKLIKE Explicit solicitation for “Likes” (e.g. “Like if ...”) Computed 0.006 0.080 0 1

ASKCOMMENT Explicit solicitation for “Comments” Computed 0.001 0.029 0 1

Persuasive

REMFACT Remarkable fact mentioned AMT 0.527 0.499 0 1

EMOTION Any type of emotion present AMT 0.524 0.499 0 1

EMOTICON Contains emoticon or net slang (approximately 1000

scraped from web emoticon dictionary e.g. :D, LOL)

Computed 0.012 0.108 0 1

HOLIDAYMENTION Mentions US Holidays Computed 0.006 0.076 0 1

HUMOR Humor used AMT 0.375 0.484 0 1

PHILANTHROPIC Philanthropic or activist message AMT 0.498 0.500 0 1

FRIENDLIKELY Answer to question: “Are your friends on social media

likely to post message such as the shown”?

AMT 0.533 0.499 0 1

SMALLTALK Contains small talk or banter (defined to be content other

than about a product or company business)

AMT 0.852 0.355 0 1

Informative

BRANDMENTION Mentions a specific brand or organization name AMT+Comp 0.264 0.441 0 1

DEAL Contains deals: any type of discounts and freebies AMT 0.620 0.485 0 1

PRICECOMPARE Compares price or makes price match guarantee AMT 0.442 0.497 0 1

PRICE Contains product price AMT+Comp 0.051 0.220 0 1

TARGET Message is targeted towards an audience segment (e.g.

demographics, certain qualifications such as “Moms”)

AMT 0.530 0.499 0 1

PRODAVAIL Contains information on product availability (e.g. stock

and release dates)

AMT 0.557 0.497 0 1

PRODLOCATION Contains information on where to obtain product (e.g.

link or physical location)

AMT 0.690 0.463 0 1

PRODMENTION Specific product has been mentioned AMT+Comp 0.146 0.353 0 1

MSGTYPE Categorical message type assigned by the Facebook Facebook

- App application related posts Facebook 0.099 0.299 0 1

- Link link Facebook 0.389 0.487 0 1

- Photo photo Facebook 0.366 0.481 0 1

- Status Update regular status update Facebook 0.140 0.347 0 1

- Video video Facebook 0.005 0.070 0 1

PAGECATEGORY Page category closely following Facebook’s categorization Facebook

- Celebrity Singers, Actors, Athletes etc Facebook 0.056 0.230 0 1

- ConsumerProduct consumer electronics, packaged goods etc Facebook 0.296 0.456 0 1

- Entertainment Tv shows, movies etc Facebook 0.278 0.447 0 1

- Organization non-profit organization, government, school organization Facebook 0.211 0.407 0 1

- PlaceBusiness local places and businesses Facebook 0.071 0.257 0 1

- Website page about a website Facebook 0.088 0.283 0 1

Table 2: Variable Descriptions and Summary for Content-coded Data: To interpret the “Source” column, note that

“Facebook” means the values are obtained from Facebook, “AMT” means the values are obtained from Amazon Mechanical

Turk and “Computed” means it has been either calculated or identified using online database resources and rule-based methods

in which specific phrases or content (e.g. brands) are matched. Finally, “AMT+Computed” means primary data has been

obtained from Amazon Mechanical Turk and it has been further augmented with online resources and rule-based methods.
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Sample Messages Content Tags

Cheers! Let Welch’s help ring in the New Year. BRANDMENTION, SMALLTALK,

HOLIDAYMENTION, EMOTION

Maria’s mission is helping veterans and their families find employment.

Like this and watch Maria’s story. http://walmarturl.com/VzWFlh

PHILANTHROPIC, SMALLTALK,

ASKLIKE, HTTP

On a scale from 1-10 how great was your Christmas? SMALLTALK, QUESTION,

HOLIDAYMENTION

Score an iPad 3 for an iPad2 price! Now at your local store, $50 off the

iPad 3. Plus, get a $30 iTunes Gift Card. Offer good through 12/31 or

while supplies last.

PRODMENTION, DEAL,

PRODLOCATION, PRODAVAIL,

PRICE

They’re baaaaaack! Now get to snacking again. Find Pringles Stix in your

local Walmart.

EMOTION, PRODMENTION,

BRANDMENTION,

PRODLOCATION

Table 3: Examples of Messages and Their Content Tags: The messages are taken from 2012 December posts on

Walmart’s Facebook page.

post the most about products (PRODMENTION), product availability (PRODAVAIL), product location

(PRODLOC), and deals (DEAL). Emotional (EMOTION) and philanthropic (PHILAN) content have high

representation in pages classified as celebrity, organization and websites. Similarly, the AMT classifiers

identify a larger portion of messages posted by celebrity, organization and website-based pages to be similar

to posts by friends.
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Figure 2: : Box Plots of Log(engagement+1) vs Time since Post Release: Three graphs show the box plots of (log)

impressions, comments and Like vs. τ respectively. Both comments and Likes taper to zero after two and six days respectively.

On the other hand, impressions die out slower. After 15 days, virtually all engagements and impressions (more than 99.9%) are

accounted for. There are many outliers.
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Figure 3: Average Likes and Comments by Message Type: This figure shows the average number of Likes and comments

obtained by posts over their lifetime on Facebook, split by message type.
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Figure 4: Average Likes and Comments by Message Type by Industry: This figure shows the average number of

Likes and comments obtained by posts over their lifetime split by message type for each industry.
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Figure 5: Average Likes and Comments by Message Content:This figure shows the average number of Likes and

comments obtained by posts over their lifetime split by message content.
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Figure 6: Bubble Chart of Broader Industry Category vs Message Content: This chart shows the relative percentage

of message contents appearing within industry categories for 5,000 messages. Larger and lighter bubbles imply a higher

percentage of messages in that cell. The largest bubble (60.4%) corresponds to SMALLTALK for the celebrity page category

and the smallest bubble (0%) corresponds to PRICECOMPARE for the celebrity category.

2.2 Amazon Mechanical Turk

We now describe our methodology for content-coding messages using AMT. AMT is a crowdsourcing mar-

ketplace for simple tasks such as data collection, surveys and text analysis. It has now been successfully

leveraged in several academic papers for online data collection and classification. To content-code our mes-

sages, we create a survey instrument comprising of a set of binary yes/no questions which we pose to workers
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(or “Turkers”) on AMT. Please see Appendix 1 for the final survey instrument.

Following best-practices in the literature, we employ the following strategies to improve the quality of

classification by the Turkers in our study.

1. For each message, at least 9 different Turkers’ inputs are recorded. We obtain the final classification

by a majority-voting rule.

2. We restrict the quality of Turkers included in our study to comprise only those with at least 100

reported completed tasks and 97% or better reported task-approval rates.

3. We use only Turkers from the US so as to filter out those potentially not proficient in English, and

to closely match the user-base from our data (recall, our data has been filtered to only include pages

located in the US).

4. We refined our survey instrument through an iterative series of about 10 pilot studies, in which we

asked Turkers to identify confusing or unclear questions. In each iteration, we asked 10-30 Turkers

to identify confusing questions and the reasons they found those questions confusing. We refined the

survey in this manner till almost all queried Turkers stated no questions were confusing.

5. To filter out participants who were not paying attention, we included an easily verifiable test question

“does the message have a dollar sign ($)?”. Responses from Turkers that failed the verification test are

dropped from the data.

6. In order to incentivize workers, we awarded additional bonuses of $2-$5 to the top 20 workers with

exceptional accuracy and throughput.

7. On average, we found that message tagging took a little over 3 minutes and it typically took at least

20 seconds or more to completely read the tagging questions. We defined less than 30 seconds to be

too short, and discarded any message tags with completion times shorter than that duration to filter

out inattentive Turkers and automated programs (“bots”).

8. Once a Turker tags more than 20 messages, a couple of tagged samples are randomly picked and

manually examined for quality and performance. This process identified about 20 high-volume Turkers

who completed all surveys in less than 10 seconds and tagged several thousands of messages (there

were also Turkers who took time to complete the surveys but chose seemingly random answers). We

concluded these were automated programs. These results were dropped, and the Turkers “hard blocked”

from the survey, via the blocking option provided in AMT.

We believe our methodology for content-classification has good external validity. The binary classification

task that we serve to the AMT Turkers in our study is relatively simpler than the more complex tasks for

which AMT-based data have been employed successfully in the literature. The existing AMT literature

has documented evidence that several of the strategies implemented above improves the quality of the data

generated (Mason and Suri (2012); Ipeirotis et al. (2010); Paolacci et al. (2010)). Snow et al. (2008) show

that combining results from a few Turkers can produce data equivalent in quality to that of expert labelers
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Figure 7: Cronbach’s Alphas for 5,000 Messages: This bar graph shows the inter-rater reliability measure of Cronbach’s

Alpha among at least 9 distinct Turkers’ inputs for each 5,000 messages. The mean is 0.82 and the median is 0.84. We replicated

the study with only those above 0.7 and found the result to be robust.

for a variety of text tagging tasks. Similarly, Sheng et al. (2007) document that repeated labeling of the type

we implement wherein each message is tagged by multiple Turkers, is preferable to single labeling in which

one person tags one sentence. Finally, evaluating AMT based studies, Buhrmester et al. (2011) concludes

that (1) Turkers are demographically more diverse than regular psychometric studies samples, and (2) the

data obtained are at least as reliable as those obtained via traditional methods as measured by psychometric

standards such as Cronbach’s Alpha, a commonly used inter-rater reliability measure. Figure 7 presents the

histogram of Cronbach’s Alphas obtained for the 5, 000 messages. The average Cronbach’s Alpha for our

5, 000 tagged messages is 0.82 (median 0.84), well above typically acceptable thresholds of 0.7. About 87.5%

of the messages obtained an alpha higher than 0.7, and 95.4% higher than 0.6. For robustness, we replicated

the study with only those messages with alphas above 0.7 (4,378 messages) and found that our results are

qualitatively similar.

At the end of the AMT step, approximately 2, 500 distinct Turkers contributed to content-coding 5, 000

messages. This constitutes the training dataset for the NLP algorithm used in the next step.

2.3 Natural Language Processing (NLP) for Attribute Tagging

Natural Language Processing is an interdisciplinary field composed of techniques and ideas from computer

science, statistics and linguistics for enabling computers to parse, understand, store, and convey information

in human language. Some notable applications of NLP are in search engines such as Google, machine

translation, and IBM’s Watson. As such, there are many techniques and tasks in NLP (c.f., Liu, 2011;

Jurafsky and Martin, 2008). For our purposes, we use NLP techniques to label message content from
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Facebook posts using the AMT labeled messages as the training data. Typical steps for such labeling tasks

include: 1) breaking the sentence into understandable building blocks (e.g., words or lemmas) and identifying

different sentence-attributes similar to what humans do when reading; 2) obtaining a set of training sentences

with labels tagged from a trusted source identifying whether the sentences do or do not have a given content

profile (in our case, this source comprise the 5000 AMT-tagged messages); 3) using statistical tools to

infer which sentence-attributes are correlated with content outcomes, thereby learning to identify content in

sentences. When presented with a new set of sentences, the algorithm breaks these down to building blocks,

identifies sentence-level attributes and assigns labels using the statistical models that were fine-tuned in the

training process.

Recent research in the social sciences has leveraged a variety of NLP methods to mine textual data and

these techniques have gained traction in business research (see for e.g., Netzer et al. (2012); Archak et al.

(2011); Ghose et al. (2012)). Our NLP methods closely mirror cutting edge multi-step methods used in the

financial services industry to automatically extract financial information from textual sources (e.g., Hassan

et al. (2011)) and are similar in flavor to winning algorithms from the recent Netflix Prize competition.4

The method we use combines five statistical classifiers with rule-based methods via heterogeneous “ensemble

learning” methods. The statistical classifiers are binary classification machine learning models that take

attributes as input and output predicted classification probabilities. The rule-based methods usually use

large data sources (a.k.a dictionaries) or use specific if-then rules inputted by human experts, to scan through

particular words or occurrences of linguistic entities in the messages to generate a classification. Rule-based

methods work well for classifying attributes when an exhaustive set of rules and/or dictionaries are available,

or if the text length is short as is our case. For example, in identifying brand and product mentions, we

augment our AMT-tagged answers with several large lists of brands and products from online sources and

a company list database from Thomson Reuters. We then utilize rule-based methods to identify brand and

product mentions by looking up these lists. Further, to increase the range of our brand name and product

database, we also ran a separate AMT study with 20,000 messages in which we asked AMT Turkers to

identify any brand or product name included in the message. We added all the brand and product names

we harvested this way to our look-up database. Similarly, in identifying emoticons in the messages, we use

large dictionaries of text-based emoticons freely available on the internet.

Finally, we utilize ensemble learning methods that combine classifications from the many classifiers and

rule-based algorithms we use. Combining classifiers is very powerful in the NLP domain since a single statis-

tical classifier cannot successfully overcome the classic precision-recall tradeoff inherent in the classification

problem.5 The final combined classifier has higher precision and recall than any of the constituent classifiers.

To the best of our knowledge, the cutting edge multi-step NLP method used in this paper has not been used

in business research journals.6

4See http://www.netflixprize.com.
5The performance of NLP algorithms are typically assessed on the basis of accuracy (the total % correctly classified), precision

(out of predicted positives, how many are actually positive), and recall (out of actual positives, how many are predicted as
positives). An important tradeoff in such algorithms is that an increase in precision often causes decrease in recall or vice versa.
This tradeoff is similar to the standard bias-variance tradeoff in estimation.

6Although there exist business research papers combining statistical classifiers and rule-based algorithms, to our knowledge,
none utilize ensemble learning methods which are critical in increasing accuracy, precision, and recall. For example, these
methods were a key part of the well-known Netflix-Prize winning algorithms. One of the contributions of this paper is the
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For interested readers, the NLP algorithm’s training and classification procedures are described in the

following steps. Figure 8 shows the process visually.

Training The Algorithm

1. The raw textual data of 5, 000 messages in the training sample are broken down into basic building

blocks of sentences using stop-words removal (removing punctuation and words with low information

such as the definite article “the”), tokenization (the process of breaking a sentence into words, phrases,

and symbols or “tokens”), stemming (the process of reducing inflected words to their root form, e.g.,

“playing” to “play”), and part-of-speech tagging (determining part-of-speech such as nouns). For refer-

ence see Jurafsky and Martin (2008). In this process, the input to the algorithm is a regular sentence

and the output is an ordered set of fundamental linguistic entities with semantic values. We use a

highly regarded python NLP framework named NLTK (Bird et al., 2009) to implement this step.

2. Once the messages are broken down as above, an algorithm extracts sentence-level attributes and

sentence-structure rules that help identify the included content. Some examples of sentence-level

attributes and rules include: frequent noun words (bag-of-words approach), bigrams, the ratio of part-

of-speech used, tf-idf (term-frequency and inverse document frequency) weighted informative word

weights, and whether “a specific key-word is present” rule. For completeness, we describe each of

these in Table 4. The key to designing a successful NLP algorithm is to figure out what we (humans)

do when identifying certain information. For example, what do we notice about the sentences we

have identified as having emotional content? We may notice the use of certain types of words, use

of exclamation marks, the use of capital letters, etc. At the end of this step, the dataset consists

of sentence-level attributes generated as above (the x -variables), corresponding to a series of binary

(content present/not-present) content labels generated from AMT (the y-variables).

3. For each binary content label, we then train a classification model by combining statistical and rule-

based classifiers. In this step, the NLP algorithm fits the binary content label (the y-variable) using

the sentence-level attributes as the x -variables. For example, the algorithm would fit whether or not

a message has emotional content as tagged by AMT using the sentence attributes extracted from the

message via step 2. We use a variety of different classifiers in this step including logistic regression with

L1 regularization (which penalizes the number of attributes and is commonly used for attribute selection

for problems with many attributes; see (Hastie et al., 2009)), Naive Bayes (a probabilistic classifier

that applies Bayes theorem based on presence or absence of features), and support vector machines

(a gold-standard algorithm in machine learning that works well for high dimensional problems) with

different flavors of regularization and kernels 7.

4. To train the ultimate predictive classifier, we use ensemble methods to combine results from the multiple

statistical classifiers we fit in step 3. The motivation for ensemble learning is that different classifiers

application of ensemble learning methods, which we believe hold much promise in future social science research based on text
data.

7We tried support vector machines with L1 and L2 regularization and various kernels including linear, radial basis function,
and polynomial kernels. For more details, refer to Hastie et al. (2009).
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perform differently based on underlying characteristics of data or have varying precision or recall in

different locations of the feature vector space. Thus, combining them will achieve better classification

output either by reducing variance (e.g. Bagging (Brieman, 1996)) or reducing bias (e.g. Boosting

(Freund and Schapire, 1995)). Please see Xu and Krzyzak (1992); Bennett (2006) for further reading on

ensemble methods. This step involves combining the prediction from individual classifiers by weighted-

majority voting, unweighted-majority voting, or a more elaborate method called isotonic regression

(Zadrozny and Elkan, 2002) and choosing the best performing method in terms of accuracy, precision

and recall for each content profiles. In our case, we found that support vector machine based classifiers

delivered high precision and low recall, while Naive Bayes based classifiers delivered high recall but

low precision. By combining these, we were able to develop an improved classifier that delivers higher

precision and recall and in effect, higher accuracy. Table 5 shows the improvement of the final ensemble

learning method relative to using only one support vector machine. As shown, the gains from combining

classifiers are substantial.

5. Finally, we assess the performance of the overall NLP algorithm on three measures, viz., accuracy,

precision, and recall (as defined in Footnote 4) using the “10-fold cross validation” method. Under

this strategy, we split the data randomly into 10 equal subsets. One of the subsets is used as the

validation sample, and the algorithm trained on the remaining 9 sets. This is repeated 10 times, each

time using a different subset as the validation sample, and the performance measures averaged across

the 10 runs. The use of 10-fold cross-validation reduces the risk of overfitting and increases the external

validity of the NLP algorithm we develop. Note, 10-fold cross-validation of this sort is computationally

intensive and impacts performance measures negatively and is not implemented in some existing papers

in business research. While the use of 10-fold cross-validation may negatively impact the performance

measures, it is necessary to increase external validity. Table 5 shows these metrics for different content

profiles. The performance is extremely good and comparable to performance achieved by the leading

financial information text mining systems (Hassan et al., 2011).

6. We repeat steps 2-5 until desired performance measures are achieved.

Tagging New Messages

1. For each new messages repeat steps 1-2 described above.

2. Use the ultimate classifier developed above to predict whether a particular type of content is present

or not.

One can think of this NLP algorithm as emulating the Turkers’ collective opinion in content-coding.
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Figure 8: Diagram of NLP Training and Tagging Procedure: This diagram shows the steps of training the NLP

algorithm and using the algorithm to tag the remaining messages. These steps are described in Section 2.3.

Rules and Attributes Description

Bag of Words Collects all the words and frequency for a message. Different variations include

collecting top N most occurring words.

Bigram A bigram is formed by two adjacent words (e.g. “Bigram is”, “is formed” are bigrams).

Ratio of part-of-speech Part-of-speech (noun, verb, etc) ratio in each message.

TF-IDF weighted informative word Term-Frequency and Inverse Document Frequency weighs each word based on their

occurrence in the entire data and in a single message.

Specific Keywords Specific keywords for different content can be collected and searched. e.g.,

Philanthropic messages have high change of containing the words “donate” and “help”.

For brand and product identification, large online lists were scraped and converted into

dictionaries for checking.

Frequency of different punctuation

marks

Counts the number of different punctuations such as exclamation mark and question

mark. This helps to identify emotion, questions, appearance of deals etc.

Count of non-alphanumerics Counts the number of characters that are not A-Z and 0-9.

Table 4: A Few Examples of Message Attributes Used in Natural Language Processing Algorithm
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With Ensemble Learning (The
Best Performing Algorithm)

Without Ensemble Learning
(Support Vector Machine version

1 + Rule-based)
Accuracy Precision Recall Accuracy Precision Recall

REMFACT 0.998 0.998 0.998 0.939 1 0.556

EMOTION 0.996 0.992 0.999 0.951 0.987 0.390

HUMOR 0.999 0.999 1 0.977 1 0.142

PHILANTHROPIC 0.999 0.999 1 0.983 1 0.803

FRIENDLIKELY 0.997 0.996 0.998 0.942 1 0.514

SMALLTALK 0.858 0.884 0.803 0.821 0.960 0.670

DEAL 0.996 0.999 0.994 0.97 1 0.805

PRICECOMPARE 0.999 0.999 1 0.999 1 0.857

TARGETING 0.999 0.998 1 0.966 1 0.540

PRODAVAILABILITY 0.999 0.998 1 0.917 1 0.104

PRODLOCATION 0.970 0.999 0.901 0.939 0.990 0.887

Table 5: Performance of Text Mining Algorithm on 5000 Messages Using 10-fold Cross Validation: This table

presents metrics for performance of the classification algorithms used. The left 3 columns show the metrics for the final algorithm

which combines classifiers via ensemble learning method while the right 3 columns show the metric for a support vector machine

algorithm. Notice that the support vector machine classifier tends to have low recall and high precision. Naive Bayes tends

to have high recall but low precision. Classifiers on their own cannot successfully overcome precision-recall tradeoff (if one is

higher, one is lower). But combining many different classifiers with ensemble learning can increase both precision and recall.

3 Empirical Strategy

Our empirical goal is to investigate the effect of message ad content on subsequent customer engagement.

Engagement − the y-variable − is observed in the data; and content − the x-variables − has been tagged

as above and is also observed. If messages are randomly allocated to users, the issue of assessing the

effect of message-content on engagement is straightforward; one simply projects x on y. Unfortunately, a

complication arises because Facebook’s policy of delivery of messages to users is non-random: users more

likely to find a post appealing are more likely to see the post in their newsfeed, a filtering implemented via

Facebook’s “EdgeRank” algorithm. The filtering implies a selection problem in estimation of the effect of

post-characteristics on engagement − if we see that posts with photos are more likely to be commented on

by users, we do not know if this is effect of including a photo in a post, or whether Facebook is more likely

to show posts with photos to users who are more likely to comment on them. The issue has been ignored

in the literature on social media analysis so far. We address the selection issue via a two-step procedure,

first by building a semiparametric model of “EdgeRank” that delivers an estimate of the expected number of

impressions a post is likely to receive, and then, by incorporating this model to run a selectivity-corrected

projection of Likes and comments on post characteristics in the second-stage (Blundell and Powell, 2003). For

the first-stage, we exploit the fact that we observe the aggregated decisions of Facebook to serve impressions

to users, and that “EdgeRank” is based on three variables as revealed by Facebook.

Addressing the problem is complicated by the secretiveness of EdgeRank and by data availability. We

know from publicly available documentation that EdgeRank’s assignment of a post to a user is based on the

so-called “3 Ts”: Type, Tie, and Time.8

8As disclosed first at the 2010 “f8” conference. See http://whatisEdgeRank.com for a brief description of EdgeRank.
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Figure 9: Impression-Engagement Funnel: Facebook’s EdgeRank chooses subset of Page fans to show posts released by

the page and fans who’ve seen the post engage with the post based on content and type. EdgeRank is modeled with generalized

additive model and the final engagement is estimated through aggregate logistic regression. Details of estimation are in Sections

3.1 and 3.2.

• Type (z) refers to the type of post. Facebook categorizes post-type into 5 classes: status update, photo,

video, app, or link.

• Tie (hijt) refers to the affinity score between page j (company) and the Facebook user i (viewer of the

post) at time t which is based on the strength and frequency of the interaction history between the

user and the page.

• Time (τ) refers to the time since the post.

Our dataset contains direct observations on the variables Type and Time. We do not have individual-level

data on a user’s history with pages to model tie strengths. However, we exploit the fact that we have

access to demographics data on the set of users who could potentially have been shown a post released by

a firm, versus who were actually shown the post. The difference reflects the selection by EdgeRank, which

we utilize as a proxy measure of Tie-strength based targeting. Since we do not know the exact functional

form of EdgeRank’s targeting rule, we work with a semiparametric specification, utilizing flexible splines

to capture the effect of EdgeRank. At the end of this step, we thus develop a flexible approximation to

EdgeRank’s targeting. In the second step, we can then measure the effect of ad content on Likes and

comments, by controlling for the non-random targeting using our first-stage model. Figure (9) shows the

empirical strategy visually. The econometrics below sets up estimation using the aggregate post-level panel

data split by demographics that we observe, while acknowledging the fact that non-random targeting is

occurring at the individual-level.
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3.1 First-stage: Approximating EdgeRank’s Assignment

We represent post k’s type in a vector zk, the time since post k was released in τk, and the history of user

i’s past engagement with company j on Facebook in a vector hijt. Table 6 summarizes the notation.

To understand our procedure, let n
(d)
kjt denote the number of users of demographic type d = 1, .., D who

were shown post k by firm j at time t. We refer to n
(d)
kjt as impressions. n

(d)
kjt is indirectly reported in the

data and can be reverse-engineered from Company X’s reports. A description of this procedure is provided

in Appendix 2. Let N
(d)
jt denote the total number of users of demographic type d for firm j on day t to

whom the post can potentially be delivered. N
(d)
jt is directly observed in the data, and comprises all users of

demographics d who have Liked the firm on Facebook. To be clear, note that Liking a post is different from

Liking a page − Liking a page provides the firm that maintains that page an opportunity to serve its posts

to that user via Facebook’s Newsfeed. N
(d)
jt is a count of all such users.

Now, note that by EdgeRank’s assignment rule, the aggregated impressions for demographic type d, n
(d)
kjt,

is an (unknown) function of liked-fans N
(d)
jt , the tie strength between users within demographic bucket d and

the posting firm, h
(d)
ijt , the type of post zk, and time since post release τk,

E(n
(d)
kjt) = g(N

(d)
jt , h

(d)
ijt , zk, τk) (1)

We do not observe individual-level data on each users i′s interaction with every post which could be the

basis of estimating Equation (1). Instead, we can construct the aggregated number of impressions and liked-

fans within a set of demographic buckets in the data. To use this variation as a source of approximating

EdgeRank, we approximate the RHS of Equation (1) as,

E(n
(d)
kjt) ≈ gd(N

(d)
jt , θ

(d)
1j , zk, τk) (2)

where, we use a firm-demographic bin specific fixed effect, θ
(d)
1j , to capture the effect of user history. This

approximation would literally be true if all individuals within demographic bucket d had the same history

with firm j. In practice, this is not the case, and this may induce approximation errors into the procedure,

because additional history-heterogeneity within demographic buckets is not modeled (or is assumed into the

Notation Description

i User
j Firm
k Post
t Time (day)

zk post k’s media type (5 options: photo, video, status update, app, link)
τk Time since post k was released

hijt History of user i’s past engagement with firm j
g(.) EdgeRank score approximating function

n
(d)
kjt Impressions of post k by page j at time t by users in demographics bin d

N
(d)
jt Number of users of demographics bin d who Liked page j as of time t

θ
(d)
0 Intercept term for each demographics d
θ(d). Parameters in EdgeRank approximation for demographics bin d

Table 6: User-level Setup Notation
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error term). This is a caveat to our analysis. Access to individual-level data could be the basis of improving

this procedure and relaxing this assumption. We view Equation (2) as a flexible approximation that allows

us to leverage the observed variation in firm-level impressions across demographics, while enabling us to

include firm and demographic-level fixed effects into a procedure that best approximates EdgeRank based

on what we as researchers (and firms) know about Facebook’s filtering algorithm. We will also estimate the

right-hand function gd(.) separately for each demographic bucket, in effect allowing for slope heterogeneity

in demographics in addition to intercept heterogeneity across demographics.

The next step relates to approximating the function gd(.). Since we do not know the exact functional

form of the above selection equation, we approximate the function semiparametrically via a Generalized

Additive Model (GAM) (c.f., Hastie and Tibshirani (1990)). The GAM is a generalized linear model with

additive predictors consisting of smoothed (e.g. interpolation and curve fitting) covariates. The GAM fits

the following flexible relationship between a set of covariates X and dependent variable Y ,

µ(E(Y |X1, X2, ..., Xp)) = α+ s1(X1) + s2(X2) + ...+ sp(Xp)

where µ is a link function (e.g. gaussian, poisson, gamma), and s1, s2, ...sp are nonparametric smoothing

functions such as cubic splines or kernel smoothers. We model the EdgeRank selection equation for each

demographic d as the following,

hd

[

log(n
(d)
kjt + 1)

]

= θ
(d)
0 + θ

(d)
1j + θ

(d)
2 N

(d)
jt + s1(N

(d)
jt ; θ

(d)
3 ) +

5
∑

r=2

θ
(d)
4r I (zk = r) (3)

+

16
∑

r=2

θ
(d)
5r I (τk = r) + ε

(d)
kjt

where, hd ≡ g−1
d (.) is the identity (Gaussian) link function, θ

(d)
0 is an intercept term unique to each demo-

graphic, d, and θ
(d)
1j is a firm-demographic fixed effect that captures the tie strength between the firm j and

demographics d.9 N
(d)
jt is the number of fans of demographic d for firm j at time t and denotes the potential

audience for a post. s1 is a cubic spline smoothing function, essentially a piecewise-defined function consist-

ing of many cubic polynomials joined together at regular intervals of the domain such that the fitted curve,

the first and second derivatives are continuous. We represent the interpolating function s1 (.) as a linear

combination of a set of basis functions b (.) and write: s1(N
(d)
jt ; θ

(d)
3 ) =

∑q

r=3 br

(

N
(d)
jt

)

θ
(d)
3r , where the br (.)

are a set of basis functions of dimension q to be chosen and θ
(d)
3. are a set of parameters to be estimated. We

follow a standard method of generating basis functions, br (.), for the cubic spline interpolation as defined in

Wood (2006). Fitting the spline also requires choosing a smoothing parameter, which we tune via generalized

cross-validation. We fit all models via the R package mgcv described in Wood (2006).

Finally, we include dummy variables for post-type (zk) and for each day since release of the post (τk; up

to 16 days), to capture the effect of post-type and time-since-release semiparametrically. These are allowed

to be d−specific. We collect the set of parameters to be estimated for each demographic bucket in a vector,

9We also tried Poisson and Negative Binomial link functions (since n
(d)
kjt

is a count variable), as well as the identity link

function without logging the y-variable. Across these specifications, we found the identity link function with log (y) resulted
in the best fit, possibly due to many outliers. We also considered specifications with numerous interaction of the covariates
included, but found they were either not significant or provided trivial gains in the R2.
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θ(d). , which we estimate by GAM estimation. The estimated parameter vector, denoted θ̂(d). , d = 1, .., D,

serves as an input to the second stage of the estimation procedure.

3.2 Second-stage: Modeling Engagement given Post-Assignment

We operationalize engagement via two actions, Likes and comments on the post. The selection problem was

that users can choose to Like or comment on a post only if they were served impressions, which generates non-

random censoring because impression assignment was endogenous to the action. We address the censoring by

including a correction for the fact that a user was shown a post non-randomly, estimated semiparametrically

as above. Suppose Ψ̂
(d)
kjt denotes the fitted estimate from the first-stage of the expected number of impressions

of post k for firm j amongst users of type d at time t,

Ψ̂
(d)
kjt = gd

(

N
(d)
jt , zk, τk; θ̂

(d)
)

For future reference, note the expected number of impressions of post k for firm j at time t across all

demographic buckets is simply the sum,

Ψ̂kjt =

D
∑

d=1

gd

(

N
(d)
jt , zk, τk;

ˆθ(d)
)

Now, we let the probability that users will Like a post given the full set of post characteristics and auxiliary

controls, Mkt, be logistic with parameters ψ,

π(Mkt;ψ) =
1

1 + e−Mktψ
(4)

The parameter vector, ψ, is the object of inference in the second stage.10 We observe Qkjt, the number

of Likes of the post in each period in the data. To see the intuition for our correction, note that we can

aggregate Equation (4) across users, so that the expected number of Likes is,

E(Qkjt) ≈
D
∑

d=1

Ψ̂
(d)
kjt ×

[

1

1 + e−Mktψ

]

(5)

with Ψ̂
(d)
kjt are treated as known. The right-hand side is a weighted sum of logit probabilities of Liking a

post. Intuitively, the decision to Like a post is observed by the researcher only for a subset of users who were

endogenously assigned an impression by FB. The selection functions Ψ̂
(d)
kjt serve as weights that reweigh the

probability of Liking to account for the fact that those users were endogenously sampled, thereby correcting

for the non-random nature of post assignment when estimating the outcome equation.

We could use the expectation in Equation (5) as the basis of an estimation equation. Instead, for efficiency,

we estimate the parameter vector ψ by maximum likelihood. We specify the probability that Qkjt out of the

Ψ̂kjt assigned impressions are observed to Like the post, and that Ψ̂kjt −Qkjt of the remaining impressions

are observed not to, is binomial with probability, π(Mkt;ψ),

Qkjt ∼ Binomial(Ψ̂kjt,π(Mkt;ψ)) (6)

10Allowing ψ to be d-specific in Equation (4) is conceptually straightforward. Unfortunately, we do not have Likes or
comments split by demographics in order to implement this.
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Maximizing the implied binomial likelihood across all the data, treating Ψ̂kjt as given, then delivers

estimates of ψ. The intuition for the selection correction here is the same as that encapsulated in Equation

(5). We can repeat the same procedure using the number of comments on the post as the dependent variable

so as the recover the effect of post-characteristics on commenting as well. This two-step procedure thus

delivers estimates of the causal effects of post-characteristics on the two outcomes of interest.

Discussion of Identification Identification in the model derives from two sources. First, we exploit the

observed discrepancy in demographic distributions between the set of individuals to whom a post could have

been served, versus those who were actually served. The discrepancy reflects the filtering by EdgeRank. Our

first stage essentially projects this discrepancy onto post-type, time-since-release, page and demographic

characteristics in a flexible way. This essentially serves as a “quasi” control function that corrects for the se-

lectivity in the second stage (Blundell and Powell, 2003), where we measure the effect of post characteristics

on outcomes. The second source of identification arises from exploiting the implied exclusion restriction that

the rich set of AMT-content-coded attributes affect actual engagement, but are not directly used by EdgeR-

ank to assign posts to users. The only post-characteristics used by EdgeRank for assignment is zk, which

is controlled for. Thus, any systematic correlation in outcomes with AMT-content-coded characteristics,

holding zk fixed, do not reflect selection-related considerations.

4 Results

4.1 First-Stage

The first-stage model, as specified in Equation 3, approximates EdgeRank’s post assignment algorithm. We

run the model separately for each of the 14 age-gender bins used by Facebook. These correspond to two

gender and seven age bins. For a given bin, the model relates the number of users of demographic type

d who were shown post k by firm j at time t to the post type (zk), days since post (τ) and tie between

the firm and the user. Table 7 presents the results. The intercepts (θ
(d)
0 ) indicate that posts by companies

in our dataset are shown most often to Females ages 35-44, Females 45-54 and Males 25-34. The lowest

number of impressions are for the 65+ age group. In our model, tie between a user and a firm is proxied by

a fixed-effect for each firm-demographic pair. This implies 800 × 14 fixed effects corresponding to 800 firms

and 14 demographic bins. Due to space constraints, we do not present all the estimated coefficients. Table

7 presents the coefficients for two randomly chosen firms. The first is a new-born clothing brand and the

second is a protein bar brand. For ease of visualization, these fixed effects are shown graphically in Figure

10 (only the statistically significant coefficients are plotted). For posts by the the new-born clothing brand,

the most impressions are among from females in the age-groups of 25-34, 18-24 and 35-44. Among males,

ages 25-34 receive the most number of impressions. For posts by the protein bar brand, impressions are

more evenly distributed across the different demographic bins, with the Male 18-24 group receiving the most

impressions. These estimated coefficients are consistent with our expectations for the two brands.
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Female
F 13-17 F 18-24 F 25-34 F 35-44 F 45-54 F 55-64 F 65+

Intercept 5.528*** 6.071*** 6.446*** 7.165*** 7.209*** 6.133*** 4.887***

Page 1 fixed effect - new

born clothing brand

-0.210 2.458*** 2.685*** 1.544** 0.888 0.813 0.489

Page 2 fixed effect -

protein bar brand

-0.573*** 1.285*** 1.466*** 0.928*** 0.016 1.671*** 1.518***

Message Type - App is the base

Link 0.010 0.045*** 0.063*** 0.042*** 0.051*** 0.051*** 0.048***

Photo 0.253*** 0.318*** 0.340*** 0.309*** 0.297*** 0.267*** 0.249***

Status Update 0.100*** 0.161*** 0.175*** 0.152*** 0.152*** 0.129*** 0.114***

Video 0.033 0.041 0.061** 0.041 0.021 0.024 0.030

N
(d)
jt

(Fan Number) 2.0 ×

10−6***

1.8 ×

10−6***

7.2 ×

10−6***

1.9 ×

10−5***

1.9 ×

10−5***

3.8 ×

10−5***

8.5 ×

10−5***

s(N
(d)
jt

) significance *** *** *** *** *** *** ***

R-Squared 0.78 0.78 0.77 0.78 0.78 0.78 0.77

Male
M 13-17 M 18-24 M 25-34 M 35-44 M 45-54 M 55-64 M 65+

Intercept 5.486*** 6.118*** 7.075*** 6.635*** 6.125*** 5.151*** 4.011***

Page 1 fixed effect - new

born clothing brand

0.156 0.932 1.673** 1.082 0.722 0.209 0.111

Page 2 fixed effect -

protein bar brand

1.867*** 2.423*** 0.907*** 0.670*** 1.158*** 1.575*** 1.502***

Message Type - App is the base

Link -0.005 0.025*** 0.033*** 0.034*** 0038*** 0.049*** 0.030***

Photo 0.226*** 0.284*** 0.295*** 0.277*** 0.254*** 0.230*** 0.212***

Status Update 0.077*** 0.124*** 0.126*** 0.120*** 0.106*** 0.103*** 0.084***

Video 0.014 0.039 0.044* 0.031 0.016 0.007 0.023

N
(d)
jt

(Fan Number) 3.6 ×

10−6***

1.0 ×

10−6***

6.7 ×

10−6***

2.5 ×

10−5***

3.8 ×

10−5***

5.2 ×

10−5***

2.3 ×

10−4***

s(N
(d)
jt ) significance *** *** *** *** *** *** ***

R-Squared 0.79 0.80 0.79 0.78 0.78 0.77 0.76

*App is the base for message type. Significance Level: ’***’ <0.001 ’**’ < 0.01 ’*’ 0.05

Table 7: EdgeRank Model Estimates: This table presents the coefficients obtained from 14 generalized additive models

for EdgeRank, calculated for each demographic bin. There are 14 demographic (gender-age) bins provided by Facebook. F13-17

means all females in the age between 13 and 17. Time since post (τ), and page-level fixed effects are not included in the table

and presented graphically separately.

The estimates for message type are roughly the same in all demographic bins. For all demographics,

the photo type has the highest coefficient (around 0.25) suggesting that photos are preferred to all other

media types by EdgeRank. This is likely because users have historically engaged better with photos causing

Facebook to show photos more often. The next most preferred post type is the status update with coefficients

averaging around 0.12 followed by videos and links. The baseline post type, apps, is the message type that

is least preferred by EdgeRank. The rank ordering of coefficients for message type do not strictly follow the

rank ordering of number of posts released by firms, which is shown in Table 2. Whereas links are posted more

often, photos get more impressions relative to posts of other types, clearly highlighting the role of EdgeRank.

Days since post (τ) are not presented in Table 7 due to space constraints. However, Figure 11 presents a

box plot of the coefficients for τ across all 14 demographic bins. All coefficients are negative and significant
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and also more negative for higher values of τ , implying that EdgeRank prefers to show more recent posts.

Finally, the coefficients for number of fans, N
(d)
jt

, are positive and significant but they have relatively low

magnitude. This is because our model includes a smoothed term of the number of fans, s(N
(d)
jt

), which soaks

up both the magnitude and nonlinearity. The smoothed fan-numbers are all significant.

The generalized additive model of EdgeRank recovers coefficients that make intuitive sense and are

consistent with claims made in several industry reports (e.g. that photos have the highest EdgeRank weight).

Further, the model fit appears to be good especially given that we have used generalized cross validation to

guard against overfitting.
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Figure 10: Page-level Fixed effect Estimates from Generalized Additive Model Across 14 Demographic Bins:

This bar graph shows two randomly chosen page-level fixed effect estimates from the EdgeRank models. Only the statistically

significant estimates are shown. New born clothing brands are positively significant for 18-24 female, 25-34 female, 35-44 female

and 25-34 male. Protein bar brands have the highest fixed effect among 18-24 male demographics.
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Figure 11: Time Since Post Release (τ) Coefficients Box plot Across Demographics: This box plot shows the

coefficients on τ across all the demographics bin. τ = 1 is the base case and every coefficients are significant at the highest level

of p < 0.001.
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Variable Comment Like

Constant -6.913***(0.002) -4.671***(0.001)
Persuasive 0.053***(0.001) 0.061***(0.000)
Informative -0.143***(0.001) -0.068***(0.000)

Persuasive × Informative 0.012***(0.000) 0.003***(0.000)

McFadden R-sq. 0.015 0.009
Nagelkerke R-sq. 0.015 0.009
Log-likelihood -4208220.431 -33678695.014

Deviance 8012471.987 66409947.187
AIC 8416448.861 67357398.028
N 665916 665916

Significance ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Table 8: Persuasive vs Informative: Logistic regression for {Comment, Like} with composite summary variables for

persuasive and informative content.

4.2 Second-Stage

In the second-stage, we measure the effect of content characteristics on engagement using our selectivity-

corrected model from the first-stage. All results in this section are based on an analysis of the entire

set of over 100,000 messages (i.e. the 5000 AMT-tagged messages as well as the messages tagged using

NLP). The results for only the 5,000 AMT-tagged messages are qualitatively similar and are presented in

the appendix. To present the results in a simple way, we first create two composite summary variables

corresponding to persuasive content and informative content. Persuasive (informative) composite variables

are created by adding up the content variables categorized as persuasive (informative) in Table 2. To

be clear, the persuasive variable is obtained by adding values of REMFACT, EMOTION, EMOTICON,

HOLIDAYMENTION, HUMOR, PHILANTHROPIC, FRIENDLIKELY, and SMALLTALK resulting in a

composite variable ranging from 0 to 8. The informative composite variable is obtained by adding values

of BRANDMENTION, DEAL, PRICECOMPARE, PRICE, TARGET, PRODAVAIL, PRODLOCATION,

and PRODMENTION resulting in a composite variable ranging from 0 to 8. Table 8 shows the result of

logistic regression on engagement with these composite variables and interaction of those two variables as

the x-s.

We find that persuasive content has a positive and statistically significant effect on both types of engage-

ment; further, informative content reduces engagement. Interestingly, the interaction between persuasive and

informative content is positive, implying that informative content increases engagement only in the presence

of persuasive content in the message. This suggests that mixing persuasive and informative content should

be made a basis of content engineering for improving engagement with consumers on this medium.

Table 9 presents the results of aggregate logistic regression with the full list of content variables. We

present results for both engagement metrics (Likes/comments) as well as for models with and without the

EdgeRank correction. We exclude the 16 estimated τ coefficients from the table since they are all negative

and statistically significant just as in the EdgeRank model in Figure 11. Scanning through the results, we

observe that the estimates are directionally similar, in most cases, with and without EdgeRank correction.
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However, the magnitudes often change. For example, consider the coefficients for message type Photo. In

the model without EdgeRank correction, Photos are very likely to get comments (coefficient = 0.844) and

Likes (coefficient = 1.023). After EdgeRank correction, the results are similar but the magnitude of the

effect drops. This makes sense because we know that EdgeRank prefers Photos. Similarly, Status Updates

continue to be more likely (than apps) to get comments and Likes but the effect size is smaller after EdgeRank

correction. In some instances, there are directional changes for some coefficients. For example, the result

that links are more likely to get Likes/comments relative to apps changes sign after EdgeRank correction.

This highlights the importance of EdgeRank correction. Several industry reports (e.g., Wildfire 2012) often

evaluate user content preference without accounting for EdgeRank and we clearly find that the conclusions

may often be changed (or sometimes even reversed) after EdgeRank correction. For example, most industry

reports’ ordering of engaging media type often list status update to be more engaging than videos. While we

find this to be true before EdgeRank correction for Likes, we find that this is reversed after the EdgeRank

correction.

We find that high reading complexity (SMOG) decreases both Likes and comments whereas shorter

messages (MSGLEN) are Liked and commented on more, albeit with a small effect size. Having links

(HTTP) is worse for engagement whereas asking questions (QUESTION) significantly increase comments

but at the cost of Likes. Using blanks in the post to encourage comments has a similar effect of increasing

comments but hurting Likes. Interestingly, while the odds ratio of comments increases by 75% if a post

asks a question, it increases by 214% if blanks are included suggesting that blanks are more effective than

questions if the goal is to increase comments. Asking for Likes increase both Likes and comments, whereas

asking for comments increase comments but at the cost of Likes. It is clear that even these simple content

variables impact user engagement.

The next 16 variables in the table are the persuasive and informative content variables. Figure 12 charts

the coefficients for these variables in a bar graph and demonstrates the sharp difference between persuasive

and informative content types. Looking at comments, a striking pattern is that most informative contents

have a negative impact whereas persuasive contents have a positive impact. The informative content variables

with the most negative impact are PRICE, DEAL and PRODMENTION. The persuasive content variables

with the most positive impact are EMOTION and PHILANTHROPIC. Interestingly, HOLIDAYMENTION

discourages comments.11 One possible explanation is that near holidays, all Facebook pages indiscriminately

mention holidays, leading to a dulled responses. For example, during Easter, the occurrence of holiday

mention jumped to nearly 40% across all posts (of our data) released that day compared to the average

occurrence of about 1%. Looking at Likes, fewer persuasive content variables have positive impact but

the results are qualitatively similar to that for comments. Among persuasive contents, EMOTION has

the most positive impact on Likes whereas HOLIDAYMENTION has the most negative impact. Most

informative content variables continue to have a negative impact, with PRICE and DEAL having the most

negative impact. The results also highlight that there exist some differences between impact on Likes versus

Comments.

Figure 13 shows the results on content effects by industry. Only the statistically significant results are

11We checked for correlation with other contents to investigate this matter but no correlation was over 0.02.
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Figure 12: Post Characteristic Coefficients for Comments and Likes: These bar graphs show the coefficients of

logistic regression for both EdgeRank corrected and uncorrected models. Only the significant coefficients are plotted.

graphed and all results are EdgeRank-corrected. The coefficients are very different across industries both

in magnitude and, for some variables, in direction. For example, emotional and philanthropic content has

the most positive impact on Facebook pages of type “Organizations” which include non-profits, educational

organizations and religious groups. Further, while mentioning holidays has a negative impact on engagement

for most industry types, it has a positive impact on engagement for Organizations. Similarly, looking at

informative contents, we observe that variables such as Price, Product Availability and Product Mention

generally have a negative impact on engagement for most industry types but they have a positive impact for

industry type “Celebrity.” Users seem to more forgiving of celebrity pages endorsing products and sharing

price information. Similarly, the message type coefficients also vary by industry. Coefficients for message

type Link are negative for celebrity, consumer product, and entertainment pages whereas they are positive

for organization, places and business, and websites.

Overall, we find that persuasive content engages users better than informative content but their effec-

tiveness varies across industries. Results from alternative model specifications as well as for our original

specification applied to only the set of 5000 AMT-tagged messages, which are shared in the appendix, show

that the main results are robust across these different specifications and datasets.
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NO ER COMMENT OR ER COMMENT OR NO ER LIKE OR ER LIKE OR

Constant -8.232***(0.004) 0.000 -6.889***(0.004) 0.001 -5.206***(0.001) 0.005 -3.892***(0.001) 0.020

SMOG -0.042***(0.000) 0.959 -0.068***(0.000) 0.934 -0.029***(0.000) 0.971 -0.061***(0.000) 0.941

MSGLEN 0.000***(0.000) 1.000 -0.000***(0.000) 1.000 -0.000***(0.000) 1.000 -0.000***(0.000) 1.000

HTTP -0.545***(0.002) 0.580 -0.355***(0.002) 0.701 -0.388***(0.000) 0.678 -0.189***(0.000) 0.828

QUESTION 0.497***(0.001) 1.644 0.564***(0.001) 1.758 -0.284***(0.000) 0.753 -0.175***(0.000) 0.839

BLANK 1.020***(0.003) 2.773 1.146***(0.003) 3.146 -0.701***(0.002) 0.496 -0.596***(0.002) 0.551

ASKLIKE 0.101***(0.010) 1.106 0.221***(0.010) 1.247 0.502***(0.003) 1.652 0.565***(0.003) 1.759

ASKCOMMENT 0.502***(0.021) 1.652 0.469***(0.021) 1.598 -0.252***(0.011) 0.777 -0.465***(0.011) 0.628

Persuasive

REMFACT -0.021***(0.002) 0.979 0.014***(0.002) 1.014 -0.054***(0.001) 0.947 -0.021***(0.001) 0.979

EMOTION 0.203***(0.002) 1.225 0.256***(0.002) 1.292 0.213***(0.001) 1.237 0.260***(0.001) 1.297

EMOTICON 0.159***(0.004) 1.172 0.121***(0.004) 1.129 -0.062***(0.001) 0.940 -0.020***(0.001) 0.980

HOLIDAYMENTION -0.468***(0.014) 0.626 -0.388***(0.014) 0.678 -0.323***(0.004) 0.724 -0.183***(0.004) 0.833

HUMOR 0.028***(0.002) 1.028 0.072***(0.002) 1.075 -0.052***(0.000) 0.949 0.009***(0.000) 1.009

PHILANTHROPIC 0.202***(0.002) 1.224 0.174***(0.002) 1.190 0.028***(0.001) 1.028 0.002*(0.001) 1.002

FRIENDLIKELY -0.011***(0.002) 0.989 -0.006***(0.002) 0.994 0.070***(0.001) 1.073 0.080***(0.001) 1.083

SMALLTALK 0.057***(0.002) 1.059 -0.086***(0.002) 0.918 -0.060***(0.001) 0.942 -0.146***(0.001) 0.864

Informative

BRANDMENTION 0.001(0.002) 1.001 0.081***(0.002) 1.084 -0.018***(0.000) 0.982 0.021***(0.000) 1.021

DEAL -0.146***(0.002) 0.864 -0.172***(0.002) 0.842 -0.192***(0.001) 0.825 -0.207***(0.001) 0.813

PRICECOMPARE -0.036***(0.001) 0.965 -0.006***(0.001) 0.994 -0.032***(0.000) 0.969 -0.047***(0.000) 0.954

PRICE -0.013**(0.005) 0.990 -0.317***(0.005) 0.728 -0.178***(0.001) 0.837 -0.471***(0.001) 0.624

TARGET -0.041***(0.002) 0.960 -0.071***(0.002) 0.931 0.027***(0.001) 1.027 -0.019***(0.001) 0.981

PRODAVAIL -0.083***(0.002) 0.920 -0.064***(0.002) 0.938 -0.115***(0.001) 0.891 -0.073***(0.001) 0.930

PRODLOCATION -0.072***(0.002) 0.931 0.011***(0.002) 1.011 0.064***(0.001) 1.066 0.138***(0.001) 1.148

PRODMENTION -0.074***(0.002) 0.929 -0.151***(0.002) 0.860 0.080***(0.001) 1.083 0.012***(0.001) 1.012

Message Type - App is the base

-Link 0.221***(0.003) 1.247 -0.370***(0.003) 0.691 0.125***(0.001) 1.133 -0.505***(0.001) 0.604

-Photo 0.844***(0.003) 2.326 0.373***(0.003) 1.452 1.023***(0.001) 2.782 0.561***(0.001) 1.752

-Status Update 1.117***(0.003) 3.056 0.641***(0.003) 1.898 0.462***(0.001) 1.587 -0.083***(0.001) 0.920

-Video 0.042***(0.009) 1.043 0.398***(0.009) 1.489 -0.061***(0.003) 0.941 0.231***(0.003) 1.260

Industry Category - Celebrity is the base

-ConsumerProduct 0.177***(0.002) 1.194 -0.347***(0.002) 0.707 -0.409***(0.001) 0.664 -0.932***(0.001) 0.394

-Entertainment 0.470***(0.002) 1.600 0.529***(0.002) 1.697 -0.250***(0.001) 0.779 -0.193***(0.001) 0.824

-Organization 0.598***(0.002) 1.818 0.408***(0.002) 1.504 0.028***(0.001) 1.028 -0.171***(0.001) 0.843

-PlaceBusiness 0.500***(0.005) 1.649 -0.021***(0.005) 0.979 -0.685***(0.002) 0.504 -1.275***(0.002) 0.279

-Websites 0.307***(0.003) 1.359 0.182***(0.003) 1.200 0.214***(0.001) 1.239 0.041***(0.001) 1.042

McFadden R-sq. 0.223 0.171 0.296 0.201

Nagelkerke R-sq. 0.223 0.172 0.297 0.203

Log-likelihood -2594461.972 -3570184.37 -14596455.538 -27221231.997

Deviance 4784243.846 6736399.867 28244853.214 53495021.154

AIC 5189021.945 7140466.74 29193009.075 54442561.994

N 665916 665916 665916 665916

Significance ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Table 9: Aggregate Logistic Regression Results For Comments and Likes: This table presents the aggregate logistic

regression on comments and Likes for both EdgeRank-corrected (ER) and uncorrected (NO ER) for all data. OR means Odds

ratio and shows the odds ratio for the estimates left of the column.
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Figure 13: Logistic Regression by Industry (Comments and Likes): This bar graphs show the coefficients of logistic

regression for EdgeRank-corrected model. Only the significant (at p<0.05 - but most are p<0.001) coefficients are graphed. In

Like (right) graph, ASKCOMMENT for website is at -4.8 but zoomed in to make the graph look better.

4.3 Out-of-Sample Prediction & Managerial Implications

To conclude the paper, we assess the extent to which the models we develop may be used as an aid to content

engineering, and to predict the expected levels of engagement for various hypothetical content profiles a firm

may consider for a potential message it could serve to users. First, we present an illustration set of out-

of-sample prediction of engagement with real posts. Then we discuss a back-of-the-envelope calculation to

show how adding or removing particular content profiles may affect engagement outcomes for typical posts

in our data. Our intent is to give the reader a rough sense for the predictive validity of our estimates as a

tool to assess expected engagement for hypothetical content bundles.

To illustrate the above, we choose three posts released around the same time outside our sample. To

emphasize that our second-stage model of engagement has predictive power, we choose these to be for the

same firm, of the same message type and having roughly the same number of impressions (i.e., we are taking

out the effect of EdgeRank). Table 10 shows the messages, the actual lifetime engagement realized for those

messages, and the content tags we generated for those messages. For each message, we use the coefficients

from our second stage to predict the expected engagement. In the “Content Coef:” column, we present the

latent linear index of the logistic function of the respective engagement probabilities obtained by multiplying
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the coefficients for the engagement model (Table 9, EdgeRank corrected) with indicator variables for whether

each type of content attribute is present in these messages, and then adding these up. In the last two columns

we present the predicted and actual ranks for the three messages in terms of their engagement. We see that

the match is very good and that the model can effectively help a marketer select the post that maximizes

engagement.

Now imagine that a firm starts with the second message as the base creative. Content engineering for this

message using the model is straightforward. For instance, if the marketer is assessing the potential impact

of adding a philanthropic aspect to message two, we can determine that it will increase the latent linear

index for comments from 0.941 to 0.941 + 0.174 = 1.115, which increases the predicted comments rank of

this message to 1, and increases the predicted odds ratio for comments by 19%. Similarly, if the marketer

is considering asking for comments explicitly, this will increase the number of comments for the message

obtained by increasing the latent linear index from 0.941 to 0.941 + 0.469 = 1.410. In this sense, the model

is able to aid the assessment of the anticipated engagement from various possible content bundles.

Next, we discuss a back of the envelope calculation to assess the effect of adding new content to typical

posts in our data. The average post in the data obtains 10, 000 impressions, 5 comments and 50 Likes. Thus,

the probability of a comment is 0.0005 and the probability of a Like is 0.005. Suppose one can engineer a

change in content that increases the probability of comments and Likes respectively to (0.00065,0.0065) −

this increase, for instance, is the increase predicted by our estimates generated by adding emotional content

to a post with no emotional content. The new predicted comments and Likes are 6.5 and 65 respectively, i.e.,

a 30% increase in comments and Likes. Now note that the standard deviation of the number of impressions

is 129,874. For a message two standard deviations from the mean number of impressions, i.e., at 10,000 +

2×129,874 = 269,748 impressions, a 30% increase in comments and Likes translates to roughly an increase

of 41 comments and 405 Likes, suggesting that content engineering can produce a fairly substantial increase

in engagement for many posts.

Sample Messages

{Actual Comments, Actual Likes}

Content Tags Content
Coef

{Com,Likes}

Comments

Rank

Likes

Rank

Don’t forget in celebration of hitting over

70,000 we are giving all our awesome fans

{exclusively} the "employee discount" take

20% off your entire order on our website

{http://anonymized.com} with the code:

SOMECODE and it is good until 3/16/12. Enjoy

some shopping on us :) {12, 83}

HTTP, DEAL,
PRODLOCA-
TION,

PRODAVAIL,

EMOTICON

{-0.459,-0.351} Actual:3

Predicted:3

Actual:2

Predicted:2

Who is ready for a givvveeeawayyyyy?! :) :)

(35 mins from now!)

{132, 438}

EMOTION,

EMOTICON,

QUESTION

{0.941,0.065} Actual:2

Predicted:2

Actual:1

Predicted:1

COMPLETE THIS SENTENCE: Crafting is best with

________.

{416, 72}

BLANK,

SMALLTALK

{1.060,-0.742} Actual:1

Predicted:1

Actual:3

Predicted:3

Table 10: Predicted versus Actual Engagement Ranking for Three Illustrative Posts: Note: we anonymized some

parts of the messages for presentation.
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5 Conclusions and Implications

We show through a large-scale study that content engineering in social media has a significant impact on

user engagement as measured by Likes and comments for posts. Our analysis shows that persuasive content,

such as emotional and philanthropic content, has a positive impact on engagement. This suggests that firms

gain from sharing their brand personality and information about their social initiatives in social media.

Further, we find that product informative content has a negative impact on user engagement. This presents

a challenge to marketers who seek to build a large following on social media and who seek to leverage that

following to disseminate information about new products and promotions. One takeaway from our study

is that these strategies work when product informative content is combined with persuasive content. In

addition, our results are moderated by industry type suggesting there is no one-size-fits-all content strategy

and that firms need to test multiple content strategies. These results account for post selection by EdgeRank,

Facebook’s filtering algorithm, which to our knowledge, has been largely ignored in the literature.

Because of the scale of our study (over 800 firms and 100,000 messages analyzed), we believe our results

generalize and have broad applicability. Nonetheless, it is important to recognize the results from any study

on consumer response to content depend on the mix of content used in the study. For example, we find that

posts mentioning holidays, especially by consumer product companies, have a negative effect on engagement.

This may be due to excessive use of holiday messages by firms. It is possible that the effect may be positive

if firms use these kinds of posts in moderation. Similarly, we find that emotional messages have a positive

impact on engagement. Here again, it is possible this effect may reduce in the future if firms start using

emotional content excessively pushing consumer response to the region of declining returns. Hence, it is

important to interpret our results in the context of the content mix used by firms and redo the analysis in

the event of large-scale changes in the content mix used by firms.

We used two metrics for user engagement, namely Likes and comments on posts. There may be other

measures worth considering, including whether users share posts with friends, visit the websites of firms

posting messages, or buy more products from these firms. Our use of Likes and comments is motivated both

by the widespread use of these metrics in social media settings, and also the availability of data. Future

studies that evaluate other measures of interest can add value, particularly in validating the generalizability

of our findings and in exploring mechanisms underpinning the effects we describe. On a related note, as we

acknowledge upfront in the introduction of the paper, we do not address the question of how engagement

affects product demand and firm’s profits so as to complete the link between ad-attributes and those outcome

measures. Such data are still not widely available at the scale needed for this study. Further, advertisers are

often interested in social media engagement per se on the maintained assumption that such engagement can

often to translate into brand-loyalty or purchases in the long-term. Although it is not the focus of our study,

it is worth highlighting that several extant studies have studied the link between Facebook advertising and

engagement (albeit at a smaller scale). For example, based on randomized studies, comScore (2012) reports

a 38% lift in purchase for fans exposed to Starbucks advertising on Facebook through Facebook Pages or

Facebook paid advertising (in the same study, compared to the control group, fans of Target were 19% more

likely to purchase at Target in the four weeks following exposure to Facebook messages). Chadwick-Martin-
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Bailey (2010) document that users who sign-up as fans of the Facebook Page of a firm are more likely to

recommend and buy the product of the page than before. Kumar et al. (2013) show that social media can be

used to generate growth in sales, and ROI, connecting social media metrics such as “comments” to financial

metrics.

The competition for consumer attention across media outlets is intense, especially on social media plat-

forms. Consumers, in turn, are overwhelmed by the proliferation of online content, and it seems clear that

marketers will not succeed without engineering this content for their audience. We hope this study con-

tributes to improve content engineering by firms on social media sites and, more generally, creates interest

in evaluating the effects of advertising content on consumer engagement.
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Appendix 1: Survey Instrument

Figure 14: Survey Form Used in Amazon Mechanical Turk

Appendix 2: Discussion of the Number of Impressions

We discuss our procedure for constructing n
(d)
kjt, the number of impressions for each message k of firm j in

day t split by demographic bin d for use in the EdgeRank correction model. As mentioned above, n
(d)
kjt is

not directly reported by Company X (or made available to page-owners by Facebook Insights). Instead,

Company X reports n
(d)
jt , the number of impressions for all posts associated with firm j in demographic

bucket d on day t, which is essentially n
(d)
kjt summed across all k associated with j. To assess how we may

split this across the various demographic buckets, we checked the extent to which pages release different types

of posts over time. The bulk of impressions for a post occur within the first week of its release. Hence, the

total impressions for a page on a given day out of a specific demographic bucket, n
(d)
jt , reflects the aggregate

impressions to users in that bucket of all posts released by that firm over the past one week. Since EdgeRank

allocates posts to users by post-type, if the firm releases the same type of posts (i.e., photos, videos, status

updates, apps or links) over a week’s duration, then the the split of n
(d)
jt across the various k posts released

by firm j within the past week may be roughly the same. In other words, the distribution of demographics

of the impressions of all posts released by a firm in the past week should be the same if all those released

posts are similar.

To check informally if this is the case, we picked a random sample of 10, 000 page-7-day combinations

from our data. For each combination, we collated all the posts released by that page during that 7-day
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window and tabulated the type of these posts (i.e., photos, videos, status updates, apps or links). We then

construct two concentration metrics, C1, the proportion of posts released by that page during that 7-day

window that belong to the highest type bucket, and C2, the proportion of posts released by that page during

that 7-day window that belong to the highest and second-highest type bucket. C1 and C2 are analogous

to top-firm and top-two-firm concentration ratios used in industry-concentration studies, and measure the

extent to which the posts released by a page in a given 7-day period are spread across types. If all posts

released by a page during that 7-day window are of the same type, C1 and C2 will be both 1. The spread

away from 1 thus indicates higher variation in post-types released by an average Facebook page over a week’s

duration. Table 11 reports on the distribution of C1 and C2 we computed in this manner. Looking at Table

11, we find that the median C1 is .71 (mean .72) and the median C2 is 1.0 (mean .94). Most pages seem

to be releasing at-most 2-types of posts within a week window, and more than 2/3rd of posts released by an

average page in an average week are of the same type. Given this, we assume that n
(d)
jt is equally split across

all k associated with a firm over the past 7-day period. We construct the variable n
(d)
kjt in the left hand-side

of the EdgeRank correction equation 2 in this manner.

Min. 1st Qu. Median Mean 3rd Qu. Max.

C1 0.250 0.535 0.706 0.719 0.915 1.000
C2 0.500 0.889 1.000 0.942 1.000 1.000

Table 11: Distribution of the Top (C1) and Top-two (C2) Concentration Ratios of the type of Posts Served by

a Facebook Page over a Randomly picked 7-day period

The method is not without its limitations. We view it as a practical way to deal with the lack of

data-reporting by Facebook, while exploiting the variation embedded in the observed impressions and to

correlate it with the observed variation in the the potential market for each post in each demographic bucket
(

N
(d)
jt

)

. The method produces potential measurement error in the dependent variable, n
(d)
kjt in the EdgeRank

correction stage. Measurement error in the dependent variable is absorbed into the RHS unobservables and

is usually less of a concern. The fact that we include page-fixed effects separately for each demographic

(θ
(d)
1j in Equation 3) also mitigates concerns that these unobservables may systematically be correlated with

included characteristics. More broadly, to the best of our knowledge, the full details of EdgeRank are not

known to any firm or researcher. In our view, a “perfect” solution to the selection problem is unlikely to be

achieved without knowledge of Facebook’s targeting rule.
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Appendix 3: Result for AMT-Tagged & Different Models

NO ER COMMENT OR ER COMMENT OR NO ER LIKE OR ER LIKE OR

Constant -7.099***(0.010) 0.001 -6.042***(0.010) 0.002 -4.715***(0.003) 0.009 -3.779***(0.003) 0.023

SMOG -0.100***(0.001) 0.905 -0.123***(0.001) 0.884 -0.047***(0.000) 0.954 -0.062***(0.000) 0.940

MSGLEN -0.001***(0.000) 0.999 -0.000***(0.000) 1.000 -0.000***(0.000) 1.000 -0.000***(0.000) 1.000

HTTP -0.304***(0.005) 0.738 -0.183***(0.005) 0.833 -0.111***(0.002) 0.895 -0.026***(0.001) 0.974

QUESTION 0.228***(0.004) 1.256 0.253***(0.004) 1.288 -0.303***(0.001) 0.739 -0.197***(0.001) 0.821

BLANK 0.932***(0.012) 2.540 0.914***(0.012) 2.494 -0.957***(0.010) 0.384 -1.076***(0.010) 0.341

ASKLIKE -0.351***(0.033) 0.704 -0.240***(0.033) 0.787 -0.066***(0.009) 0.936 0.085***(0.009) 1.089

ASKCOMMENT 0.678***(0.048) 1.970 0.202***(0.048) 1.224 0.123***(0.020) 1.131 -0.380***(0.020) 0.684

Persuasive

REMFACT 0.169***(0.006) 1.184 0.203***(0.005) 1.225 -0.017***(0.002) 0.983 0.012***(0.002) 1.012

EMOTION 0.119***(0.006) 1.126 0.184***(0.006) 1.202 0.152***(0.002) 1.164 0.203***(0.002) 1.225

EMOTICON -0.523***(0.026) 0.593 -0.594***(0.026) 0.552 -0.623***(0.008) 0.536 -0.528***(0.008) 0.590

HOLIDAYMENTION -1.483***(0.033) 0.227 -1.328***(0.033) 0.265 -0.428***(0.006) 0.652 -0.277***(0.006) 0.758

HUMOR -0.131***(0.012) 0.877 0.022(0.012) 1.022 -0.358***(0.004) 0.699 -0.143***(0.004) 0.867

PHILANTHROPIC 0.351***(0.007) 1.420 0.217***(0.007) 1.242 0.226***(0.002) 1.254 0.108***(0.002) 1.114

FRIENDLIKELY -0.168***(0.005) 0.845 -0.104***(0.005) 0.901 0.205***(0.002) 1.228 0.185***(0.002) 1.203

SMALLTALK -0.003(0.004) 0.997 -0.099***(0.004) 0.906 -0.001(0.001) 0.999 -0.070***(0.001) 0.932

Informative

BRANDMENTION -0.195***(0.004) 0.823 -0.184***(0.004) 0.832 -0.118***(0.001) 0.889 -0.143***(0.001) 0.867

DEAL -0.023**(0.007) 0.977 0.086***(0.006) 1.090 -0.426***(0.002) 0.653 -0.226***(0.002) 0.798

PRICECOMPARE 0.826***(0.193) 2.284 0.385*(0.193) 1.470 -0.452***(0.103) 0.636 -0.839***(0.103) 0.432

PRICE -0.098***(0.014) 0.907 -0.611***(0.014) 0.543 -0.320***(0.005) 0.726 -0.826***(0.005) 0.438

TARGET 0.104***(0.010) 1.110 -0.109***(0.010) 0.897 0.035***(0.003) 1.036 -0.089***(0.003) 0.915

PRODAVAIL -0.259***(0.007) 0.772 -0.366***(0.007) 0.694 0.069***(0.002) 1.071 -0.051***(0.002) 0.950

PRODLOCATION -0.111***(0.006) 0.895 0.008(0.005) 1.008 -0.208***(0.002) 0.812 -0.078***(0.002) 0.925

PRODMENTION -0.194***(0.005) 0.824 -0.392***(0.005) 0.676 0.272***(0.001) 1.313 0.054***(0.001) 1.055

Message Type - App is the base

-Link 0.191***(0.008) 1.210 -0.354***(0.008) 0.702 -0.100***(0.003) 0.905 -0.640***(0.003) 0.527

-Photo 0.577***(0.008) 1.781 0.050***(0.008) 1.051 0.653***(0.002) 1.921 0.102***(0.002) 1.107

-Status Update 1.273***(0.008) 3.572 0.752***(0.008) 2.121 0.588***(0.003) 1.800 0.168***(0.003) 1.183

-Video -0.240***(0.027) 0.787 -0.665***(0.027) 0.514 -0.650***(0.011) 0.522 -1.211***(0.011) 0.298

Industry Category - Celebrity is the base

-ConsumerProduct -0.040***(0.006) 0.961 -0.316***(0.006) 0.729 -0.506***(0.002) 0.603 -0.700***(0.002) 0.497

-Entertainment 0.166***(0.006) 1.181 0.386***(0.006) 1.471 -0.344***(0.002) 0.709 -0.001(0.002) 0.999

-Organization 0.365***(0.006) 1.441 0.307***(0.006) 1.359 -0.026***(0.002) 0.974 0.039***(0.002) 1.040

-PlaceBusiness 0.563***(0.014) 1.756 0.275***(0.014) 1.317 -0.703***(0.007) 0.495 -0.967***(0.007) 0.380

-Websites 0.164***(0.008) 1.178 0.224***(0.007) 1.251 0.214***(0.002) 1.239 0.336***(0.002) 1.399

McFadden R-sq. 0.244 0.198 0.262 0.16

Nagelkerke R-sq. 0.244 0.198 0.262 0.161

Log-likelihood -315945.323 -449901.889 -1808652.064 -3333155.941

Deviance 586061.615 853991.131 3524714.113 6573726.255

AIC 631988.646 899901.778 3617402.127 6666409.881

N 38706 38706 38706 38706

Significance ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Table 12: Aggregate Logistic Regression Results For Comments and Likes (5000 Messages):
This table presents the aggregate logistic regression on comments and Likes for both EdgeRank-corrected
(ER) and uncorrected (NO ER) for 5000 messages data tagged by Turkers. OR means Odds ratio and shows
the odds ratio for the estimates left of the column.
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Variable Intercept only Controls Friendlikely Persuasive Informative All

Constant -7.052***(0.001) -6.906***(0.003) -6.952***(0.004) -6.975***(0.004) -6.861***(0.004) -6.889***(0.004)

SMOG -0.065***(0.000) -0.065***(0.000) -0.065***(0.000) -0.067***(0.000) -0.068***(0.000)

MSGLEN -0.000***(0.000) -0.000***(0.000) -0.000***(0.000) -0.000***(0.000) -0.000***(0.000)

HTTP -0.406***(0.001) -0.400***(0.001) -0.393***(0.001) -0.390***(0.002) -0.355***(0.002)

QUESTION 0.543***(0.001) 0.546***(0.001) 0.557***(0.001) 0.541***(0.001) 0.564***(0.001)

BLANK 1.172***(0.003) 1.168***(0.003) 1.187***(0.003) 1.144***(0.003) 1.146***(0.003)

ASKLIKE 0.222***(0.010) 0.229***(0.010) 0.220***(0.010) 0.223***(0.010) 0.221***(0.010)

ASKCOMMENT 0.508***(0.021) 0.529***(0.021) 0.465***(0.021) 0.506***(0.021) 0.469***(0.021)

Message Type - App is the base

-Link -0.388***(0.003) -0.389***(0.003) -0.394***(0.003) -0.376***(0.003) -0.370***(0.003)

-Photo 0.376***(0.003) 0.371***(0.003) 0.365***(0.003) 0.372***(0.003) 0.373***(0.003)

-Status Update 0.656***(0.003) 0.654***(0.003) 0.644***(0.003) 0.645***(0.003) 0.641***(0.003)

-Video 0.406***(0.009) 0.406***(0.009) 0.410***(0.009) 0.395***(0.009) 0.398***(0.009)

Industry Category - Celebrity is the base

-ConsumerProduct -0.402***(0.002) -0.392***(0.002) -0.371***(0.002) -0.374***(0.002) -0.347***(0.002)

-Entertainment 0.514***(0.002) 0.519***(0.002) 0.537***(0.002) 0.514***(0.002) 0.529***(0.002)

-Organization 0.391***(0.002) 0.393***(0.002) 0.409***(0.002) 0.400***(0.002) 0.408***(0.002)

-PlaceBusiness -0.087***(0.005) -0.082***(0.005) -0.052***(0.005) -0.065***(0.005) -0.021***(0.005)

-Websites 0.123***(0.002) 0.134***(0.002) 0.150***(0.003) 0.136***(0.003) 0.182***(0.003)

FRIENDLIKELY 0.064***(0.001) -0.051***(0.002) -0.006***(0.002)

REMFACT -0.065***(0.002) 0.014***(0.002)

EMOTION 0.217***(0.002) 0.256***(0.002)

EMOTICON 0.109***(0.004) 0.121***(0.004)

HOLIDAYMENTION -0.391***(0.014) -0.388***(0.014)

HUMOR 0.022***(0.001) 0.072***(0.002)

PHILANTHROPIC 0.054***(0.002) 0.174***(0.002)

SMALLTALK -0.055***(0.002) -0.086***(0.002)

BRANDMENTION 0.071***(0.002) 0.081***(0.002)

DEAL -0.124***(0.002) -0.172***(0.002)

PRICECOMPARE 0.043***(0.001) -0.006***(0.001)

PRICE -0.368***(0.005) -0.317***(0.005)

TARGET 0.049***(0.002) -0.071***(0.002)

PRODAVAIL 0.028***(0.002) -0.064***(0.002)

PRODLOCATION 0.023***(0.002) 0.011***(0.002)

PRODMENTION -0.186***(0.002) -0.151***(0.002)

McFadden R-sq. 0.161 0.161 0.165 0.164 0.171

Nagelkerke R-sq. 0.161 0.162 0.165 0.165 0.172

Log-likelihood -4267283.759 -3612205.117 -3610817.72 -3597891.814 -3598824.088 -3570184.37

Deviance 8130598.643 6820441.36 6817666.566 6791814.753 6793679.301 6736399.867

AIC 8534569.517 7224474.234 7221701.44 7195863.627 7197730.175 7140466.74

N 665916 665916 665916 665916 665916 665916

Significance ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Table 13: Logistic Regression EdgeRank-Corrected Estimates Model Comparison (Comments)
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Variable Intercept only Controls Friendlikely Persuasive Informative All

Constant -4.662***(0.000) -3.929***(0.001) -3.979***(0.001) -3.931***(0.001) -3.921***(0.001) -3.892***(0.001)

SMOG -0.057***(0.000) -0.057***(0.000) -0.057***(0.000) -0.060***(0.000) -0.061***(0.000)

MSGLEN -0.001***(0.000) -0.000***(0.000) -0.001***(0.000) -0.000***(0.000) -0.000***(0.000)

HTTP -0.214***(0.000) -0.207***(0.000) -0.205***(0.000) -0.205***(0.000) -0.189***(0.000)

QUESTION -0.198***(0.000) -0.195***(0.000) -0.181***(0.000) -0.198***(0.000) -0.175***(0.000)

BLANK -0.603***(0.002) -0.612***(0.002) -0.592***(0.002) -0.602***(0.002) -0.596***(0.002)

ASKLIKE 0.576***(0.003) 0.583***(0.003) 0.576***(0.003) 0.564***(0.003) 0.565***(0.003)

ASKCOMMENT -0.379***(0.011) -0.359***(0.011) -0.444***(0.011) -0.404***(0.011) -0.465***(0.011)

Message Type - App is the base

-Link -0.517***(0.001) -0.519***(0.001) -0.518***(0.001) -0.511***(0.001) -0.505***(0.001)

-Photo 0.572***(0.001) 0.567***(0.001) 0.561***(0.001) 0.566***(0.001) 0.561***(0.001)

-Status Update -0.062***(0.001) -0.067***(0.001) -0.083***(0.001) -0.067***(0.001) -0.083***(0.001)

-Video 0.244***(0.003) 0.245***(0.003) 0.252***(0.003) 0.225***(0.003) 0.231***(0.003)

Industry Category - Celebrity is the base

-ConsumerProduct -0.948***(0.001) -0.937***(0.001) -0.941***(0.001) -0.939***(0.001) -0.932***(0.001)

-Entertainment -0.172***(0.001) -0.168***(0.001) -0.174***(0.001) -0.189***(0.001) -0.193***(0.001)

-Organization -0.165***(0.001) -0.164***(0.001) -0.160***(0.001) -0.171***(0.001) -0.171***(0.001)

-PlaceBusiness -1.305***(0.002) -1.301***(0.002) -1.292***(0.002) -1.294***(0.002) -1.275***(0.002)

-Websites 0.028***(0.001) 0.038***(0.001) 0.019***(0.001) 0.042***(0.001) 0.041***(0.001)

FRIENDLIKELY 0.072***(0.000) 0.051***(0.001) 0.080***(0.001)

REMFACT -0.065***(0.001) -0.021***(0.001)

EMOTION 0.250***(0.001) 0.260***(0.001)

EMOTICON -0.049***(0.001) -0.020***(0.001)

HOLIDAYMENTION -0.187***(0.004) -0.183***(0.004)

HUMOR -0.009***(0.000) 0.009***(0.000)

PHILANTHROPIC -0.072***(0.001) 0.002*(0.001)

SMALLTALK -0.112***(0.001) -0.146***(0.001)

BRANDMENTION 0.012***(0.000) 0.021***(0.000)

DEAL -0.166***(0.001) -0.207***(0.001)

PRICECOMPARE -0.036***(0.000) -0.047***(0.000)

PRICE -0.504***(0.001) -0.471***(0.001)

TARGET 0.050***(0.001) -0.019***(0.001)

PRODAVAIL -0.027***(0.001) -0.073***(0.001)

PRODLOCATION 0.134***(0.001) 0.138***(0.001)

PRODMENTION -0.004***(0.001) 0.012***(0.001)

McFadden R-sq. 0.191 0.191 0.195 0.196 0.201

Nagelkerke R-sq. 0.192 0.193 0.197 0.197 0.203

Log-likelihood -33968732.078 -27584573.527 -27566219.315 -27424516.699 -27419099.696 -27221231.997

Deviance 66990021.316 54221704.214 54184995.789 53901590.557 53890756.552 53495021.154

AIC 67937466.156 55169211.054 55132504.629 54849113.398 54838281.393 54442561.994

N 665916 665916 665916 665916 665916 665916

Significance ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Table 14: Logistic Regression EdgeRank-Corrected Estimates Model Comparison (Likes)
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