Advice Complexity of Online Coloring for Paths

Michal Forišek ${ }^{1}$, Lucia Keller ${ }^{2}$, and Monika Steinová ${ }^{2}$
${ }^{1}$ Comenius University, Bratislava, Slovakia
${ }^{2}$ ETH Zürich, Switzerland

LATA 2012, A Coruña, Spain

Definition

Online Problem

- Sequence of requests
- Satisfy each request before the next one arrives
- Minimize costs
- Examples: Ski rental, Paging, k-Server, various scheduling

Costs of an optimal solution for $/$
$\operatorname{comp}(A)=\max \{\operatorname{comp}(A(I)) \mid$ all possible $I\}$

Definition

Online Problem

- Sequence of requests
- Satisfy each request before the next one arrives
- Minimize costs
- Examples: Ski rental, Paging, k-Server, various scheduling

Competitive Ratio

$$
\operatorname{comp}(\mathrm{A}(I))=\frac{\text { Costs computed by online algorithm A on I }}{\text { Costs of an optimal solution for } I}
$$

$$
\operatorname{comp}(\mathrm{A})=\max \{\operatorname{comp}(\mathrm{A}(I)) \mid \text { all possible } I\}
$$

Advice Complexity

How much information are we missing. . .

- ... to be optimal?
- ... to achieve some competitive ratio?

Motivation

- Theoretical interest: Measuring information loss
- Comparing with randomization
- Designing better approximation algorithms

Advice Complexity

How much information are we missing. . .

- ... to be optimal?
- ... to achieve some competitive ratio?

A trivial example: Ski Rental

- No information about future \leftrightarrows 2-competitive
- One bit of advice \leftrightarrows optimal (1-competitive)
- Theoretical interest: Measuring information loss
- Comnaring with randomization
- Designing better approximation algorithms

Advice Complexity

How much information are we missing. . .

- ... to be optimal?
- ...to achieve some competitive ratio?

A trivial example: Ski Rental

- No information about future \leftrightarrows 2-competitive
- One bit of advice \leftrightarrows optimal (1-competitive)

Motivation

- Theoretical interest: Measuring information loss
- Comparing with randomization
- Designing better approximation algorithms

Model: Details

Computation with Advice
Oracle with unlimited power:
(1) Sees all requests
(2) Prepares infinite tape

Algorithm starts:
 © Processes n requests one by one, can use advice tape
 (1) Advice: Total number of advice bits accessed

- Solution: (oracle, algorithm)
- Correctness: the pair works correctly on all inputs
- Advice complexity $s(n)$: Maximal advice over all inputs of length $\leq n$

Model: Details

Computation with Advice
Oracle with unlimited power:
(1) Sees all requests
(2) Prepares infinite tape

Algorithm starts:
(3) Processes n requests one by one, can use advice tape
(9) Advice: Total number of advice bits accessed

- Solution: (oracle, algorithm)
- Correctness: the pair works correctly on all inputs
- Advice complexity $s(n)$ Maximal advice over all inputs of length $\leq n$

Model: Details

Computation with Advice
Oracle with unlimited power:
(1) Sees all requests
(2) Prepares infinite tape

Algorithm starts:
(3) Processes n requests one by one, can use advice tape
(9) Advice: Total number of advice bits accessed

Analysis

- Solution: (oracle, algorithm)
- Correctness: the pair works correctly on all inputs
- Advice complexity $s(n)$: Maximal advice over all inputs of length $\leq n$

A less trivial example

Paging

Input: cache size n, sequence of page requests
Output: for each page fault: which cached page to replace?

A less trivial example

Paging

Input: cache size n, sequence of page requests
Output: for each page fault: which cached page to replace?

Offline solution
 Optimal offline solution (MIN): thrown-away page $=$ next request is most distant

A less trivial example

Paging

Input: cache size n, sequence of page requests
Output: for each page fault: which cached page to replace?

> Online approximation
> Very poor!
> LRU, FIFO: both have competitive ratio n.

A less trivial example

Paging

Input: cache size n, sequence of page requests
Output: for each page fault: which cached page to replace?

Advice complexity

Expected: $\Theta(\log n)$ bits per request $($ advice $=$ page id $)$
Reality: 1 bit per request (will it be used?)

A less trivial example

Paging

Input: cache size n, sequence of page requests
Output: for each page fault: which cached page to replace?

Advice complexity
 Expected: $\Theta(\log n)$ bits per request $($ advice $=$ page id) Reality: 1 bit per request (will it be used?)

Online Graph Coloring

Many practical applications; usually very hard to approximate.

Informal definition

A graph is uncovered one vertex at a time (w/incident edges).
Each time a new vertex appear, assign it a positive integer (color). Requirement: adjacent vertices \rightarrow different integers.
Goal: minimize largest integer used.

- Subclasses of graphs (paths, trees, bipartite, planar, etc.) - Presentation order (dfs, bfs, connected, arbitrary) - Partial coloring (online-offline tradeoff)

Online Graph Coloring

Many practical applications; usually very hard to approximate.

Informal definition

A graph is uncovered one vertex at a time ($w /$ incident edges).
Each time a new vertex appear, assign it a positive integer (color). Requirement: adjacent vertices \rightarrow different integers.
Goal: minimize largest integer used.

Subproblems and variations

- Subclasses of graphs (paths, trees, bipartite, planar, etc.)
- Presentation order (dfs, bfs, connected, arbitrary)
- Partial coloring (online-offline tradeoff)

Simpler results

> Graph subclass: paths
> Optimal: use 2 colors.
> Trivial online coloring with 3 colors.
> Only open question: optimality.

Result

For arbitrary presentation order:
Exactly $\lceil n / 2\rceil-1$ bits of advice needed in worst case.

Proof sketch

- Only needs advice when given an isolated vertex.
- Hardest instances: most isolated vertices.
- $\lceil n / 2\rceil-1$ bits of advice sufficient:

ask advice for colors of all following ones
- Main idea for even n :

$2^{n / 2}$ such instances, indistinguishable, w/different colorings
- Odd $n:+1$ bit achieved by a careful consideration of algorithm behavior for special instances.

Proof sketch

- Only needs advice when given an isolated vertex.
- Hardest instances: most isolated vertices.
- $\lceil n / 2\rceil-1$ bits of advice sufficient: pick any color for the first isolated vertex ask advice for colors of all following ones
- Main idea for even n :

Proof sketch

- Only needs advice when given an isolated vertex.
- Hardest instances: most isolated vertices.
- $\lceil n / 2\rceil-1$ bits of advice sufficient: pick any color for the first isolated vertex ask advice for colors of all following ones
- Main idea for even n :

$2^{n / 2}$ such instances, indistinguishable, w/different colorings algorithm behavior for special instances.

Proof sketch

- Only needs advice when given an isolated vertex.
- Hardest instances: most isolated vertices.
- $\lceil n / 2\rceil-1$ bits of advice sufficient: pick any color for the first isolated vertex ask advice for colors of all following ones
- Main idea for even n :

$2^{n / 2}$ such instances, indistinguishable, w/different colorings
- Odd $n:+1$ bit achieved by a careful consideration of algorithm behavior for special instances.

Paths, partial coloring, sequential presentation

Informally: Drive along a path, stop in some vertices, color them. At the end, the coloring must be a subset of an optimal coloring.

Trivial bounds
upper bound: $\lceil n / 2\rceil-1$ bits sufficient (as before)
lower bound: $\lfloor n / 3\rfloor-1$ bits necessary

A less redundant set of instances

Distance 2 or 3 between each pair of queries.
Can be visualized as dividing the path into pieces of lengths $2,3$.

Cheap advice:
In $O(\log n)$ bits we can announce \# of queries, \# of 3-vertex steps
Goal: Maximize the number of different instances.
First guess: Same \# of 2-vertex and 3-vertex steps?

A less redundant set of instances

Distance 2 or 3 between each pair of queries.
Can be visualized as dividing the path into pieces of lengths $2,3$.

Above instance: queries $1,3,6,9,12,14$.

Cheap advice:
In $O(\log n)$ bits we can announce \# of queries, \# of 3-vertex steps
Goal: Maximize the number of different instances.
First guess: Same \# of 2-vertex and 3-vertex steps?

A less redundant set of instances

Distance 2 or 3 between each pair of queries.
Can be visualized as dividing the path into pieces of lengths 2,3 .

Above instance: queries $1,3,6,9,12,14$.

Cheap advice:
In $O(\log n)$ bits we can announce \# of queries, \# of 3-vertex steps
Goal: Maximize the number of different instances.
First guess: Same \# of 2-vertex and 3-vertex steps?

Nearly-optimal lower bound

Maximizing $\binom{k+l}{l}$ given that $n=2 k+3 l+1$. Optimum is off-center: slightly larger k is better.

A wild math formula appears! :)

Nearly-optimal lower bound

Maximizing $\binom{k+l}{l}$ given that $n=2 k+3 l+1$.
Optimum is off-center: slightly larger k is better.
A wild math formula appears! :)

$$
\begin{aligned}
& \lg \max _{0<\alpha \leq 1 / 5} f(\alpha) \geq \lg \frac{1}{2 x}-\lg \min _{0<\alpha \leq 1 / 5}(1-3 \alpha) \\
&+x \cdot \lg \max _{0<\alpha \leq 1 / 5} \underbrace{\left(\frac{(1-\alpha)^{(1-\alpha) / 2}}{(1-3 \alpha)^{(1-3 \alpha) / 2} \cdot(2 \alpha)^{\alpha}}\right)}_{g(\alpha)}
\end{aligned}
$$

Results

Lower bound
$\beta n-\lg n+O(1)$ bits of advice necessary.
Upper bound
$\beta n+2 \lg n+\lg \lg n+O(1)$ bits of advice sufficient.

The common value β plastic constant P : the real root of $x^{3}-x-1 ; \quad \beta=\lg P$ closed form: $\beta=\lg (\sqrt[3]{9-\sqrt{69}}+\sqrt[3]{9+\sqrt{69}})-\lg \sqrt[3]{18}$ approximate value: $\beta \approx 0.405685$.

Conclusions and future work

One newer result: online coloring for bipartite graphs (submitted to COCOON '12).

Advice complexity:
Lots of open problems, including much of graph coloring.
A more precise analysis:
tradeoff between advice and competitive ratio.
Lots of room to have fun! :)

Thank you for your attention!

