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Advice Complexity of the Online Coloring Problem

Sebastian Seibert1, Andreas Sprock2, and Walter Unger1

1 Lehrstuhl für Informatik I, RWTH Aachen, Germany,
{seibert, quax}@cs.rwth-aachen.de

2 Department of Computer Science, ETH Zurich, Switzerland,
andreas.sprock@inf.ethz.ch

Abstract. We study online algorithms with advice for the problem of col-
oring graphs which come as input vertex by vertex. We consider the class of
all 3-colorable graphs and its sub-classes of chordal and maximal outerplanar
graphs, respectively.
We show that, in the case of the first two classes, for coloring optimally,
essentially log2 3 advice bits per vertex (bpv) are necessary and sufficient. In
the case of maximal outerplanar graphs, we show a lower bound of 1.0424 bpv
and an upper bound of 1.2932 bpv.
Finally, we develop algorithms for 4-coloring in these graph classes. The al-
gorithm for 3-colorable chordal and outerplanar graphs uses 0.9865 bpv, and
in case of general 3-colorable graphs, we obtain an algorithm using < 1.1583
bpv.

1 Introduction

An online algorithm deals with the natural situation that the input arrives piecemeal.
In contrast to the offline case, the algorithm must compute a part of the solution for
the already given piece of input at every time step. Once a part of the solution is
computed, it must not be changed. The standard way to measure the quality of an
online algorithm is the competitive analysis. Here, the quality of the solution given
by the online algorithm is compared to the quality of the best possible solutions
computable offline, i.e., after knowing the whole input. This concept was introduced
in [16], for a more detailed introduction we refer to the standard literature, e.g., [3,9].
Measuring the quality of an online algorithm by comparing its output to an optimal
offline solution gives a universally applicable yardstick. However, it has the disadvan-
tage, that for many problems, the output of the best possible online algorithms will
still be far from the offline solutions.
In order to better understand and quantify this gap, the idea of online algorithms
with advice was introduced by [4] and has been further investigated, e.g., in [1,2,5,10].
Here, one asks how much additional information (advice) an online algorithm needs
to close this gap, respectively, which progress can be made with limited advice.
Formally, one introduces an advisor (an oracle that knows the whole input) who pro-
vides an unlimited advice bit string to the online algorithm. For any online algorithm
with advice, the advice complexity measures the number of bits read by the online
algorithm. The advice complexity of a problem is defined as the advice complexity of
the best online algorithm (achieving a given competitive ratio).



Coloring vertices of a graph such that no adjacent vertices get the same color is a
very well known and intensively studied problem. For an online version, the most
obvious input order is the following which will be studied here. In every step, a new
vertex gets revealed, together with all edges between this one and previously revealed
vertices. Now, the newly revealed vertex has to be colored immediately.

It turns out that online coloring is hard and no constant competitive ratio is possible
[14]. For the class of k-colorable graphs on n vertices, it has been proven that any
online coloring algorithm needs Ω

(

(logn/(4k))k−1
)

colors in the worst case [17]. For
an overview of classical online coloring see [12, 13].

A first study of online path coloring with advice was done in [6]. In this paper, we
study online coloring with advice on the class of all 3-colorable graphs, and on its
sub-classes of 3- colorable chordal and outerplanar graphs, respectively. We want to
know how much advice is necessary, respectively sufficient, in order to color these
graphs optimally. Also, we investigate how much advice can be saved if we allow the
use of a fourth color. The results mentioned above imply that using only a constant
number of colors is a big improvement over coloring without advice.

For a lower bound, we show that at least 1.0424 ·n advice bits are necessary to color a
maximal outerplanar graph with n vertices optimally. For 3-colorable chordal graphs
(and thus for general 3-colorable graphs), we get the lower bound of (log2 3 − ε) · n
bits (for arbitrarily small ε).

On the other hand, we describe an algorithm to color general 3-colorable graphs
optimally using 1.5863·n bits, and we can color maximal outerplanar graphs optimally
using 1.2932 · n bits (where n again is the number of vertices). Note that, here, the
power of the advisor becomes apparent since 3-coloring is known to be NP-hard [7].

Moreover, we analyze the advice needed for coloring 3-colorable graphs with a com-
petitive ratio of 4/3. In other words, we want to color 3-colorable graphs with four
colors. Note that, this problem is also known to be NP-hard [8, 11]. Here, we show
how to obtain a 4-coloring for any 3- colorable graph with 1.1583 bits per vertex.

Additionally, we develop an algorithm to color 3-colorable chordal graphs with four
colors by using less than one bit (0.9865) per vertex. An overview is shown in Table 1.

number of bits per vertex lower bounds upper bounds

3-coloring 3-coloring 4-coloring

3-colorable graphs log2 3− ε3 1.5863 1.1583

3-colorable chordal graphs log2 3− ε 1.5863 0.9865

maximal outerplanar graphs 1.0424 1.2932 0.9865

Table 1. Overview of the results on the number of bits per vertex for online coloring.

In Section 2, we fix our notation, and we show how the string of advice bits can
efficiently be used for one-out-of-three decisions. Section 3 is dedicated to show our
main results. Due to space restrictions, mainly we have restricted ourselves to de-
scribing the ideas, and we have moved proofs and formal algorithm descriptions to
the appendix (see also [15]). We conclude in Section 4.
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2 Preliminaries

We use the following notation for online algorithms analogous to [2], for coloring
graphs, and for the problem at hand, respectively.

Definition 1. [2] Consider an input sequence I = (x1, . . . , xn) for some mini-
mization problem U . An online algorithm A computes the output sequence A(I) =
(y1, . . . , yn), where yi = f(x1, . . . , xi) for some function f . The cost of the solution
is given by cost(A(I)). An algorithm A is c-competitive, for some c ≥ 1, if there exists
a constant α such that, for every input sequence I, cost(A(I)) ≤ c · cost(Opt(I)) + α,
where Opt is an optimal offline solution for the problem. If α = 0, then A is called
strictly c-competitive. Finally, A is optimal if it is strictly 1-competitive.

Definition 2. Given a graph G = (V,E), a coloring function c is a function that
maps every vertex vi ∈ V to one color from {1, . . . , k}, for some k ∈ N, such that
c(vi) 6= c(vj), for all vi, vj with {vi, vj} ∈ E(G). We denote the the minimal number
of colors necessary for a coloring of G with χ(G).
For any vertex v ∈ V, we denote by Neigh(v) = {w ∈ V | {v, w} ∈ E} the set of
neighbor vertices of v in G. If G is directed, E contains ordered pairs, and the set of
predecessors of v is Pred(v) = {w ∈ V | (w, v) ∈ E}.

Definition 3. The Online Coloring Problem with Advice, in Vertex-
Revealing Mode (OColAV) is the following online problem: The input is an
unweighted, undirected graph G = (V,E) with |V (G)| = n and an order ≺ of re-
vealing on the set of vertices. The goal is to find a minimum-cost coloring function
c : V → {1, . . . , n} for the vertices in G.
In each time step i, the next vertex vi ∈ V (in the order ≺) is revealed, together with
all edges {{vi, vj} | j < i}, and the online algorithm has to decide which color c(vi)
the vertex vi gets. To this end, it can ask for certain number of advice bits.

For every instance I = (G,≺), where G = (V,E), we get a directed graph G≺ =
(V,E′) by giving a direction on every edge e ∈ E depending on the order of revealing
the vertices. Every edge e = {vi, vj} ∈ E is directed from vi to vj , i.e., (vi, vj) ∈ E′,
iff vi is revealed before vj . Additionally, for a subset of vertices Vx ⊂ V (G), we denote
by GVx

= G |Vx
the subgraph of G induced by Vx. For developing algorithms to color

a 3-colorable graph optimally, we need a method to read a one-out-of-three decision
from a Boolean advice string. For this we use the following lemma.

Lemma 1. Reading several one-out-of-three decisions from a bit string costs 46/29 <
1.5863 ≈ log2 3 bits on average.

Proof: When the first one-out-of-three decision is necessary, 46 bits get read from
the advice string. By these 46 bits and the corresponding 246 different possible bit
allocations, 29 three-way decisions can be encoded, because 246 ≥ 329. With this,
for the first three-way decision, the algorithm gets the results of the next 28 three-
way decisions at the same time and keeps them in its memory. This leads to an
average of the information needed for a three-way decision of 46/29 < 1.5863 ≈ log2 3
bits. In general, if n one-out-of-three decisions have to be done, this costs at most
1.5863(n− 1) + 46 = 1.5863n+ d bits. �
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3 Algorithms and Lower Bounds

In this section, we first turn to the lower bounds. We will show that more than one
bit of advice per vertex is necessary to color a maximal outerplanar graph optimally,
i.e., by three colors.

Theorem 1. For any k ∈ N, there exists a maximal outerplanar graph Gk on 4k+9
vertices and an ordering ≺ on the vertices of Gk such that every deterministic online
algorithm for OColAV on (G,≺) needs at least 1

2 ·
(

log2 3 +
1
2

)

·n−12 > 1.0424 ·n−12
advice bits to generate an optimal coloring.

The proof is given in Appendix A. Additionally, we want show that log2 3 bits per
vertex are necessary for coloring any 3-colorable graph online optimally. For this, we
prove (in Appendix B) the following lemma.

Theorem 2. For any k ∈ N, there exists a 3-colorable graph G on n = k+3 vertices
and an ordering ≺ such that every deterministic online algorithm for OColAV on
(G,≺) needs at least log2 3 · (k− 1)− 1 = log2 3 · (n− 4)− 1 advice bits to be optimal.

Now we are ready to investigate several algorithms for coloring graphs online with
given advice. Let G be a graph with an order ≺, and let G≺ be the corresponding
directed graph. Depending on the direction of the edges in G≺, we define the function
p : V (G) → {1, 2, 3} for all vertices in G≺, where p(v) = i describes which position v
has in a triangle.
Every vertex vx, that was revealed as isolated, i.e., has outgoing edges only, is the
first vertex of any triangle it belongs to. Such a vertex gets the number one, that is
p(vx) = 1. Every vertex vy that is connected to one or more already revealed vertices,
but not closing a triangle, has p(vy) = 2. (In any triangle, there is at most one ingoing
edge). Finally, every vertex vz which closes one or more triangles (has two ingoing
edges in one triangle) gets p(vz) = 3. That way, we partition the vertices of a given
input instance G≺ into three classes Vi = {v ∈ V (G) | p(v) = i}, for i ∈ {1, 2, 3}. For
an example showing the different types of vertices, see Figure 1.

Vertex of type V1

Vertex of type V2

Vertex of type V3

v1 v2

v3 v5

v4

Fig. 1. Vertices of different types.

In every step of the coloring algorithm, when a new vertex v occurs, there exists a
set of colors by which v may be colored. We denote, for every vertex v, the set of
allowed colors by Cv = {1, . . . , 3} \ {c(w) | w ∈ Neigh(v)}. Note that, since we use
an ordered set of colors, we may speak of a ’smallest’ color in Cv.
We start with Algorithm 1 (see Appendix E), which colors an arbitrary 3-colorable
graph G online, with 3 colors, where G is revealed according to an order ≺. For this,
we need 1.5863 bits per vertex on average.
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The idea of the first algorithm is quite simple. For every isolated vertex v ∈ V1, the
algorithm asks for the optimal color (one out of three). For every vertex w ∈ V2

connected to an already colored vertex, the algorithm asks for the correct color from
the the remaining colors Cw (at most one out of two), and every vertex x ∈ V3 gets
colored by the only remaining color. This leads to the following lemma.

Lemma 2. Let G be a graph with χ(G) = 3, and let G≺ be an input instance for
the OColAV. Algorithm 1 colors G optimally with at most (n − 3) one-out-of-three
decisions and at most one one-out-of-two decision. With this, Algorithm 1 uses less
than 1.5863 · (n− 3) + 1 + 45 = 1.5863 · n+ d advice bits4.

Proof: Let G≺ be an input instance of an graph G with χ(G) = 3 with |V (G)| = n
vertices. In the worst case, G≺ contains n− 2 vertices in V1. Otherwise, G could not
contain a cycle, and it would be a forest and thus two-colorable. Algorithm 1 does
not use information for the first vertex, because here the coloring can be arbitrary.
For the second revealed vertex, even if it is revealed as isolated, only one bit of
advice is necessary for knowing whether it gets the same color as the first vertex
or a different one. For all further vertices, except the last one, a one-out-of-three
decision might be necessary. Summing up, Algorithm 1 needs at most (n − 3) one-
out-of-three and one one-out-of two decisions. We know from Lemma 1 that a one-
out-of-three decision needs less than 1.5863 bits in the average. This leads to less
than 1.5863 · (n− 3) + 1 + 45 = 1.5863 · n+ d bits at all. �

Now, we observe that, since vertices in V1 have outgoing edges only, no two of them
can be connected.

Observation 1 Let G≺ be the directed graph resulting from G and the order ≺ of
revealing. Then the set V1 is an independent set in G≺, respectively in G.

This leads us to the following lemma, which holds for general chordal graphs.

Lemma 3. Let G be a chordal graph, (G,≺) be an input instance for OColAV, and
let G≺ be the corresponding directed graph. For the set A = V1 ∪V2, the subgraph G≺

A

is a forest.

Proof: If G≺
A is not a forest, it contains at least one cycle. This cycle has to be

extended by edges to triangles because G is chordal. Hence, such a cycle contains at
least three vertices from A which build a triangle. The vertex vl from this triangle,
which is revealed last, has two incoming edges in G≺

A and is consequently an element
of V3 (see Figure 2(a),(b)), which is a contradiction to the assumption. �

In the following, we analyze OColAV on the class of outerplanar graphs. Therefore, we
need some observations and lemma for this class of graphs. The following observations
holds for input instances for OColAV in general.

4 The constant 45 is a result of the method to encode the one-out-of-three decisions in the
advice.
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(a) A hypothetical
cycle in G≺

Vertex from V1

Vertex from V2

Vertex from V3

(b) Types of the vertices when
all edges are included

Fig. 2. Example of a cycle in a chordal graph

Lemma 4. Let G be an outerplanar graph with χ(G) = 3 on n vertices and let G≺ be
an input instance for OColAV. For the set V1 of vertices that are revealed as isolated,
|V1| ≤ 1/2 · n.

Proof: Let G be an outerplanar graph and G≺ a corresponding input instance. This
implies that all vertices in G lie on an outer cycle. We know from Lemma 1 that
all vertices of type V1 are independent in G. This implies that, between two vertices
v, w ∈ V1, there has to be at least one vertex x ∈ V2 to connect them. This yields
|V2| ≥ |V1| − 1. Additionally, at least at the end one vertex y ∈ V3 is necessary to
close the cycle, otherwise G would be two- colorable. �

Using Lemma 4, we can analyze Algorithm 1 with the following result.

Lemma 5. Let G be a maximal outerplanar graph with V (G) = n, and G≺ a corre-
sponding input instance for the OColAV. Then Algorithm 1 colors G optimally, using
less than 1.29315 · n+ 45 advice bits.

Proof: Let G be a maximal outerplanar graph with V (G) = n, and G≺ a corre-
sponding input instance for the OColAV. Let V1, V2, and V3 be the corresponding
sets of vertices. According to Lemma 4, |V1| ≤ |V2|+ |V3|. This leads to the following

inequalities: |V1|
n

≤ 0.5 and |V1|
n

+ |V2|
n

< 1.
For the number of advice bits per vertex ABpV for Algorithm 1, we have

ABpV ≤
|V1|

n
· 1.5863 +

|V2|

n
. (1)

We maximize the right hand side of Equation 1 by letting |V1|
n

= 0.5. This implies
|V2|
n

≤ 0.5, and thus ABpV ≤ 0.5 · 1.5863 + 0.5 = 1.2931.
For the upper bound on the number of advice bits used by Algorithm 1, this means:
Ab ≤ 1.29315 · n + d where d ≤ 45 is the number of bits needed to encode the last
≤ 28 one-out-of-three decisions. �

In addition to the results for an optimal coloring, we now give an alternative online
algorithm, which colors an arbitrary 3-colorable graph G with 4 colors. The idea is to
color all vertices of V1, which are revealed as isolated, with an additional color 4 and
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to ask for every revealed vertex from V2 and V3 for advice according to an optimal
coloring of G using the colors {1, 2, 3} (see Algorithm 2 in Appendix E).
Following this strategy, advice is only necessary for vertices of V2 (1.5863 bits) and
for vertices of V3 (1 bit). So this strategy is efficient for instances with a high number
of isolated vertices.
This leads us to Algorithm 3 (see Appendix E), which combines the strategies of
Algorithm 1 and Algorithm 2. With it, we can color all 3-colorable graphs with at
most four colors. To know what to do, the algorithm reads at the beginning the
first bit of the advice tape and, depending on this bit, it decides which of the two
strategies it follows.
The following lemma shows that Algorithm 3 colors G optimally if, for the vertices
of G≺, |V1|/n · 1.5863 + |V3|/n ≤ 1.15822. Otherwise it colors G with four colors. In
both cases, it needs at most 1.1582196 · n+ d advice bits.

Lemma 6. Let G be a graph with V (G) = n and χ(G) = 3, and let G≺ be a cor-
responding input instance for the OColAV. There exists an advice tape with which
Algorithm 3 colors G with four colors, using at most 1.1582196 · n+ 45 bits.

Proof: There exists a 4-coloring for G, where all vertices revealed as isolated have
the same color, because χ(G) = 3 and the vertices from set V1 are independent (see
Lemma 1). In such a coloring, the algorithm needs a one-out-of-three decision for
every vertex from V2 and a one-out-of-two decision for every vertex from V3, because
it is already connected to at least one already colored vertex from V2.
Now, we compute the maximum of advice bits used, by combining both algorithms.
Algorithm 1 uses ≤ |V1| ·1.5863+ |V2| bits, and Algorithm 2 uses ≤ |V2| ·1.5863+ |V3|

many bits. This leads to a maximal number of advice bits per vertex at |V1|
n

= 0.26986,
|V2|
n

= 0.73014 and thus to at most 1.1582196 bits per vertex. This leads to an upper
bound of 1.1582196 · n+ d bits overall, for every 3-colorable graph of n vertices. �

For giving the idea of the next algorithm, we analyze, for a chordal graphG, the graph
G′ which is obtained from G by edge contraction. This leads to some observations
and lemmata.

Lemma 7. Let G be a chordal graph with χ(G) = c. For every graph G′, which is
obtained by contracting an edge of G, G′ is chordal and χ(G′) ≤ c.

The proof is given in Appendix C. Now, we present the Algorithm 4 for coloring 3-
colorable chordal graphs with 4 colors. For this, we separate the vertices V (G) into
two sets A := V1 ∪ V2 and B := V3. We know that, for every chordal graph G, the
graph GA restricted to the vertices in A is a forest (see Lemma 3).
The idea is to color each tree of GA by a pair of colors (i, 4), for some i ∈ {1, 2, 3}.
The remaining vertices in V3 will be colored using only colors {1, 2, 3}. We will show
later that such a coloring always exists.
Before we can describe Algorithm 4, we have to move a few vertices inside A. It might
happen that a vertex v from V2 is revealed as the first one of a tree in GA. This can
occur when all its predecessors in G≺ are in V3 (see v7, v8 in Figure 3). However, in
this case, we note that v cannot have a neighbor in V1. Such a neighbor w would be
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Vertex of type V1

Vertex of type V2

Vertex of type V21

Vertex of type V3

v1 v2

v3

v4 v5

v6

v7

v8v9

v10

Fig. 3. Vertices of types V21.

revealed after v, and consequently the edge orientation would be (v, w), an ingoing
edge for w, thus w 6∈ V1. Therefore, we can define

V21 = {v ∈ V2|Pred(v) ⊆ V3},

and move V21 to V1, more precisely V ′
1 = V1 ∪ V21 and V ′

2 = V2 \ V21, while still
preserving independence of V ′

1 .

Remark 1. V ′
1 is an independent set in G, respectively in G≺.

Looking again at Algorithm 2, we observe that all it needs from V1 is that it is an
independent set since all vertices from V1, and only those, are colored by color 4.
Consequently, the algorithm works the same when using V ′

1 instead of V1. Let us call
this variant Algorithm 2′.
Back to the new Algorithm 4. Here, V ′

1 contains exactly those vertices from A which
are revealed without a predecessor from A, while for all vertices in V ′

2 such a pre-
decessor exists. Consequently, the Algorithm 4 asks for every vertex x ∈ V1 for two
pieces of advice. First, it wants to know which pair of colors (i, 4) shall be used to
color the tree x belongs to. Secondly, it asks which of the two colors x gets itself.
There are three possible pairs of colors. This leads to a combination of a one-out-of-
three and a one-out-of-two decision. Thus, at most 2.5863 bits are needed for every
vertex from V1.
With this information, obviously the algorithm is able to color all vertices x ∈ V ′

1 .
Also, all vertices from V ′

2 , can be colored, because at the moment a vertex v from
V ′
2 is revealed, it has a predecessor w in A, and for w the color pair of the tree both

belong to is known as well as the color w gets. Hence, v is colored by the other
color from that pair without further advice. Inside the trees of GA, such a coloring
is clearly possible, but we still have to show later that this way a correct coloring of
the whole graph develops.
Finally, for every vertex z ∈ V3, which closes one or more triangles, the algorithm
asks for a one-out-of-two decision, because such vertices have to be connected to at
least two already colored and connected vertices (x, y), with different colors and so, in
the worst case, there remain two possible colors for z (|Cz | ≤ 2). The new algorithm
needs at most |V ′

1 | · 2.5863 + |V3|+ const many bits.
To prove that such a coloring exists for every 3-colorable chordal graph, we give a
further algorithm, which describes how an oracle can find the related coloring and
with this the right advice tape. Again, we use A = V1 ∪ V2 and B = V3. We build
the graph G′ by subsuming every connected component of GA in one vertex. When
G is a 3-colorable chordal graph, the graph G′ is 3-colorable as well (see Lemma 7).
Thus, we use a 3-coloring c′ of G′.
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The 4-coloring c for G can be derived from c′ in the following way. For a vertex
v′ ∈ V (G′), we distinguish two cases. If v′ was constructed by an edge contraction,
we color the contracted tree in G with the colors {c′(v′), 4}, and if v′ corresponds
directly to a vertex v ∈ V (G) we define c(v) := c(v′). With this procedure, we get an
coloring which satisfies the needed properties for Algorithm 4 in the appendix. With

the corresponding advice tape, Algorithm 4 needs |V1|
n

· 2.5863 + |V3|
n

bits of advice
per vertex. This leads us to the following lemma.

Lemma 8. Let G = (V,E) be a 3-colorable chordal graph and let G≺ be the corre-
sponding input instance for OColAV. There exists a coloring c : V (G) → {1, 2, 3, 4}
and with this an advice tape such that Algorithm 4 can color G≺ with the coloring
function c.

The proof is given in Appendix D. Putting everything together, we can combine the
previous algorithms into a final one, Algorithm 5, formally stated in the appendix.
This algorithm uses the first two advice bits to decide which of the Algorithms 1, 2’, 4
it shall use. Consequently, it always makes use of the best possible advice-per-vertex
ratio among those three. This results in the following analysis.

Theorem 3. Let G = (V,E) be a 3-colorable chordal graph with |V (G)| = n and let
G≺ be the corresponding input instance for OColAV. Algorithm 5 colors G≺ with 4
colors using at most 0, 9865 · n+ 47 advice bits.

Proof: We have seen before that there exists an advice tape for any of the three
Algorithms 1, 2’, 4. Now, we show that, in any case, there is one of the three strategies

that colors G using 0, 9865 · n + 47 advice bits. Let z1 = |V1|
n

, z′1 =
|V ′

1 |
n

, z2 = |V2|
n

,

z′2 =
|V ′

2 |
n

and z3 = |V3|
n

.
For the needed advice bits A1 for Algorithm 1, A2 for Algorithm 2’, and A4 for
Algorithm 4, we have (with z1 + z2 = z′1 + z′2, z1 ≤ z′1)

A1 ≤ 1.5863 · z1 + z2 ≤ 1.5863 · z′1 + z′2

A2 ≤ 1.5863 · z′2 + z3

A4 ≤ 2.5863 · z′1 + z3

Additionally, z′1 + z′2 + z3 = 1. The corresponding convex space has its maximum at
z′1 = 0.30667, z′2 = 0.5, and z3 = 0.19333, and there it needs Ag = 0.98647 · n bits.
The additive constant 47 consists of the two bits read at the beginning and the usual
45 bits that can remain in each of the sub-algorithms from the block of bits read for
three-way decisions. �

4 Conclusion

We introduced first research results for online coloring algorithms with advice for
3-colorable graphs. For planar, chordal and general 3-colorable graphs we presented
nearly matching lower and upper bounds on the number of advice bits for the 3-
coloring. We also gave 4-coloring online algorithms with advice for those graph classes
(see Table 1). It remains to extend the lower bounds to the 4-coloring. The extension
to other graph classes, k-coloring, and general coloring is also very interesting.
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6. M. Forisek, L. Keller, and M. Steinová. Advice complexity of online coloring for paths.
In LATA, pages 228–239, 2012.

7. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and
Co., San Francisco, Calif., 1979.

8. V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. In
Computational Complexity 2000. Proc. 15th Annual IEEE Conf., pages 188 –197, 2000.
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A Proof of Theorem 1

Proof: We prove the claim by constructing a class Ghard of hard input instances.
For every 6-tuple of numbers (u, v, w, x, y, z) ∈ N

6, we construct a graph G with
4 · (u+ v + w + x+ y + z) + 9 vertices (see Figure 4).

For an easier notation, we use t = u + v + w + x + y + z. At first, we describe the
graph G for a given tuple (u, v, w, x, y, z). The graph G of an input instance in Ghard

contains three paths P1, P2, P3. The path P1 = v(1,1), v(1,2), . . . , v(1,4u), v(1,4u+1), . . . ,
v(1,4u+4v) contains 4 · (u + v) vertices, the path P2 = v(2,1), . . . , v(2,4w+4x) contains
4 · (w + x) vertices and P3 = v(3,1), . . . , v(3,4y+4z) contains 4 · (y + z) many vertices.

Every path Pi, for i ∈ {1, 2, 3}, is, at the beginning, extended by one vertex vDi

(see Figure 4). The three vertices vD1
, vD2

and vD3
are connected to each other and

form a triangle. Additionally, every vertex in a path Pi is connected to one of the
two vertices v(i,a), v(i,b). The vertex v(1,4u) (resp. v(2,4w), v(3,4y)) is connected to both
vertices v(1,a) and v(1,b) (resp. v(2,a) and v(2,b), v(3,a) and v(3,b)).

Additionally, the vertex v(1,a) (resp. v(2,a), v(3,a)) is also connected to vD1
and vD2

(resp. vD2
, vD3

or vD3
, vD1

).

We can see that such a graph is maximal outerplanar, because the subgraph GV (P+

i
)

which is induced by the vertices V (P+
i ) = V (Pi) ∪ {v(i,a), v(i,b)} is maximal outer-

planar on its own. The triangle vD1
, vD2

, vD3
is maximal outerplanar and the three

extended paths GV (P+

i
) are connected to the triangle twice and planar, hence the

whole graph is maximal outerplanar. In Figure 4, also an optimal coloring of G is
shown. As in every maximal outerplanar graph, the coloring is unique up to permu-
tations of the colors.

For counting the numbers of instances which need a different advice string, we sepa-
rate the input into three phases. In the first phase, every second vertex v(i,2), v(i,4), . . .
of every path Pi is revealed as an isolated vertex. In the second phase, when
all 2t isolated vertices have been revealed, for every pair (v(i,4·c−2), v(i,4·c)) for
c ∈ {1, . . . , u+v} and i ∈ {1, 2, 3}, the vertex v(i,4·c−1) connected to both is revealed.
Overall, there are t such pairs of isolated vertices. In the last step, the remaining
vertices connecting the already revealed subpaths of length 3, as well as the vertices
v(i,a), v(i,b) and vDi

are revealed. Additionally, between the first vertex v(i,2) of each
path and the vertex of the middle triangle vDi

the vertex v(i,1) is revealed to connect
the path and the triangle. In the example in Figure 4, the vertices which are revealed
as isolated vertices are marked by a square, and the vertices revealed in the second
step are marked by a circle.

Now, we count the number of instances which need a different advice string, such
that a deterministic algorithm can be guaranteed to be optimal.

The instance has 2(u + v + w + x + y + z) = 2t isolated vertices. In every optimal
solution, 2(u+ v) many vertices (v(1,2), v(1,4), . . . , v(1,4u+4v)) have to be colored with
the same color, 2(w + x) isolated vertices have to be colored with the same color,
but different to the first color, and 2(y+ z) many isolated vertices have to be colored
with the third color.

This isolated vertices build t pairs (v(1,2), v(1,4)), (v(1,6), v(1,8), . . . ), and each pair gets
connected by a vertex (v(1,3), v(1,5), . . . ). In this situation, there are u + v pairs of
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Vertices, where log2 3 advice bits are necessary

Vertices, where 1 advice bit is necessary

4u 4v

4w

4x

4y4z
v(1,a) v(1,b)

v(1,1) v(1,4u) v(1,4u+41) v(1,4u+4v)

v(2,a)

v(2,b)

v(2,1)

v(2,4w)

v(2,4w+4x)

v(3,a)v(3,b)

v(3,1)v(3,4y)v(3,4y+4z)

vD1

vD2

vD3

                                             















































Fig. 4. Example of a hard instance for the parameters u = v = w = x = y = z = 2.

vertices in one color and u pairs become connected by vertices which have to get the
same color and v pairs get connected by vertices, which have all to be colored in the
other color. This coloring of the vertices in the middle is unique and determined by
the connection to v(i,a) respectively v(i,b), but these two vertices are revealed later.

This means that there are, in any possible input instance, 2t many isolated vertices
and each vertex can be located in any of the three paths and thus requires exactly
one of the three colors. This leads to

32t many possibilities.

The optimal coloring is unique up to permutations of the colors. For the necessary
advice, we have to calculate that 6 optimal colorings can use the same advice due to
the 6 possibilities of renaming colors. Thus, we need 32t · 1

6 different advice strings
for an optimal coloring of the 2t isolated vertices.

The 2t isolated vertices are combined to t pairs (v12 , v14),(v16 , v18),. . . . There exist
t different pairs of isolated vertices, u+ v pairs of vertices with color 1, w + x pairs
with color 2 and y + z pairs of color 3.

In the second step, these t pairs get connected by one vertex in the middle each. For
every vertex in the middle of a pair, there are two possible colors to choose from,
but only one color leads to an optimal coloring of G. So there are u + v pairs with
color one, where, in u pairs, the vertex in the middle has to be colored with 2 and,
in v pairs, the vertex in the middle has to be colored with 3 to obtain an optimal
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coloring. The respective statements hold for the w + x pairs colored with 2 and for
the y + z pairs colored with 3.
We now count the number of possible variations of the order in which the vertices
in the middle of isolated vertices of color 1 are revealed. There are u+ v many pairs
where, in the middle of u pairs, the revealed vertex has to be colored with color 2
and v revealed vertices which have to be colored with color 3. The two values u and
v can be chosen arbitrarily and thus there exist

u+v
∑

i=0

(

u+ v

i

)

= 2u+v

many different continuations for each instance from the first phase. Considering all
groups of pairs, we get

2u+v · 2w+x · 2y+z = 2t

many different continuations for any input string of the first phase, which all need
different advice strings. This leads to

32t · 2t

many different input strings for a graph from the class of graphs with 4t+9 vertices
overall.
For the 32t · 2t many different instances, their are at least 32t · 2t · 1

6 many different
advice strings necessary.
Now we show that, for an instance of n = 4t + 9 vertices, at least
1
2 ·

(

log2 3 +
1
2

)

· n − 12 > 1.0424 · n − 12 many advice bits are needed to be op-
timal. We have

log2

(

32t · 2t ·
1

6

)

= log2
(

32t
)

+ t+ log2
1

6

= 2t · log2 3 + t− log2 6

= t · (2 log2 3 + 1)− log2 3− 1

=
n− 9

4
· (2 log2 3 + 1)− log2 3− 1

=
n

2
·

(

log2 3 +
1

2

)

−
9

2
log2 3−

9

4
− log2 3− 1

=
n

2
·

(

log2 3 +
1

2

)

−

(

11

2
log2 3 +

13

4

)

>
1

2
· n ·

(

log2 3 +
1

2

)

− 11.9673

>
1

2
· n ·

(

log2 3 +
1

2

)

− 12

> 1.0424 · n− 12.

�
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B Proof of Theorem 2

Proof: We prove the claim by constructing a class Ggen of input instances. For every
3-tuple of numbers (u, v, w) ∈ N

3, there is a graph G with u+ v+w+3 vertices (see
Figure 5).
For an easier notation, we use k = u + v + w. At first, we describe the graph G for
a given tuple (u, v, w). The graph G of an input instance in Ggen contains three sets
of vertices Vc1, Vc2, Vc3, with |Vc1| = u, |Vc2| = v, and |Vc3| = w vertices, and three
more vertices v1, v2, and v3, which build a triangle. All vertices of Vc1 are connected
to v2 and v3, the vertices of Vc2 are connected to v1 and v3, and the vertices in Vc3

are connected to v1 and v2 (see Figure 5).

Vertices, where log2 3 bits are necessary

v1 v2

v3 Vc1Vc2

Vc3

Fig. 5. Example of a hard instance for the tuple (u, v, w) = (5, 6, 7).

For every instance G ∈ Ggen, there is only one optimal coloring, except for renaming
of the colors. For the three vertices v1, v2 and v3 the coloring is unique, because they
build a triangle and the color of all vertices in Vci for i ∈ {1, 2, 3} is determined by
this.
For counting the numbers of instances which need a different advice string, we sep-
arate the input in two phases. In the first phase, every vertex from Vc1, Vc2, and Vc3

is revealed as an isolated vertex.
In the last step, the vertex v1 is revealed, connected to all vertices from Vc2 and Vc3,
the vertex v2 is revealed, connected to v1 and all vertices from Vc1 and Vc3, and v3
is revealed, connected to v1, v2 and all vertices from Vc1 and Vc2. In the example in
Figure 5, the vertices which are revealed as isolated vertices are marked by a square.
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Now, we count the number of instances which need a different advice string, such
that a deterministic algorithm can be guaranteed to be optimal.
In the first step, u + v + w = k many isolated vertices are revealed, which can be
colored in one of the possible colors 1, 2, 3. Every isolated vertex has three possibilities
to belong to one of the three sets Vci. The variables u, v, w can get arbitrary values
with the constraint u+ v + w = k. This leads to

3k

many possible input strings. We have k many isolated vertices and there are three
colors possible for every position.
In the second step, there are 6 possibilities for revealing the last three vertices, but
here, no advice is needed, because, for an optimal coloring, the colors of the three
vertices v1, v2 and v3 are determined by the edges given when the vertices are revealed.
On the other hand, we have to calculate that the 6 optimal colorings, coming up by
color renaming, can use the same advice.
Thus, we need 3k · 1

6 different advice strings for an optimal coloring of the k isolated
vertices. We have

log2

(

3k ·
1

6

)

= k · log2 3 + log2

(

1

6

)

= (k − 1) · log2 3− 1

= (n− 4) · log2 3− 1.

�

C Proof of Lemma 7

Proof: Assume that G is a chordal graph with χ(G) = c and G′ is obtained by
contracting the edge {a, b} in G. Assume that G′ contains a vertex-induced cycle
of length > 3 containing x, where x is the vertex contracted from edge {a, b}. Let
be x, v, w, · · · , z, x this cycle, then either a, v, w, · · · , z, a is also a cycle of length
> 3 in G or a, v, w, · · · , z, b, a is a cycle of length > 4 in G. Both alternatives are a
contradiction to our assumption. It follows that G′ is chordal as well.
Now we show that χ(G′) ≤ χ(G). Assume χ(G′) > χ(G). We have that x is in a
clique C = {x, vi, v2, · · · , vc} of size > χ(G). But the clique size of {a, vi, v2, · · · , vc}
and {b, vi, v2, · · · , vc} is at most χ(G). Thus there exists i, j with {a, vi} 6∈ E(G) and
{b, vj} 6∈ E(G). If i = j hold, then C would not be a clique of size > χ(G). Thus
a, vi, vj , b is a vertex-induced cycle of length 4 in G, which is a contradiction. �

D Proof of Lemma 8

For proving the claim, we give the algorithm to find such a coloring and prove that,
for every 3-colorable chordal graph, such a coloring will be found.
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Proof: Let G≺ be the given input instance. From the order of the vertices, we can
build three sets of vertices V1, V2 and V3. We build from this two sets A = V1 ∪ V2

and B = V3. We know that the graph GA is a forest (see Lemma 3). Each tree of
GA is two-colorable. In the following, we will color each tree of GA with two colors,
where one of the two colors will be 4 for all trees. To find the corresponding color for
each tree, we have to determine a coloring, which fits with a coloring for the vertices
in B.
For finding such a coloring, we build the graph G′ out of G by contraction of edges
between vertices of A. This leads us to a surjective function m : V (G) → V (G′). If
Ti ⊂ A is a tree in GA, then for all tj, tk ∈ V (Ti), j 6= k, we have m(tj) = m(tk).
We know that G′ is 3-colorable and chordal as well as G (see Lemma 7), so we can
find an optimal coloring c′ for G′ with three colors, because G is a 3-colorable chordal
graph.
We extend the coloring function c′ to c for G by coloring all vertices v ∈ B ⊂ V (G)
which are also vertices in G′ with c(v) := c′(v). For all vertices wi ∈ A ⊂ V (G) which
are represented by one vertex x ∈ V (G′), with m(wi) = x we color the corresponding
tree alternatingly in (c′(x), 4).
It is obvious that the coloring c needs at most 4 colors because c′ was a coloring
with 3 colors and the color 4 is used additionally. The new coloring is proper for G
because no two vertices with color 4 are connected to each other, and each tree Ti

in GA is colored properly with the two colors (c′(x), 4). If the vertex x represents a
tree Tx in GA, it follows that all vertices in G which are connected to the tree Tx

represented by x are connected to x in G′. If c′ is a proper coloring for G′, it follows
that c′(y) 6= c′(x) for all vertices y ∈ NeighG′ (x ). If now the tree which is represented
by x in G′ is colored only with c(x) and 4, it follows that c is a proper coloring. �
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E Algorithms

Algorithm 1 Optimal online 3-coloring

Input: Online input instance G≺.
1: for every revealed vertex v do

2: if v is the first revealed vertex then

3: Define c(v) := 1
4: else if v is the second revealed vertex then

5: if v is connected to v1 then

6: Define c(v) := 2
7: else

8: Read one bit b from the advice tape
9: if b = 0 then

10: Define c(v) := 1
11: else

12: Define c(v) := 2
13: end if

14: end if

15: Decide of which type v is
16: if v ∈ V1 then

17: Ask for a one-out-of-three decision from the advice tape cv ∈ {1, 2, 3} and define
c(v) := cv (< 1.5863 bits)

18: else if v ∈ V2 then

19: Determine the set Pred(v) and the remaining colors Cv

20: if |Cv| = 1 then

21: define c(v) := cv ∈ Cv

22: else {(|Cv | = 2)}
23: Ask for a one-out-of-two decision from the advice tape cv ∈ Cv and define

c(v) := cv (1 bit)
24: end if

25: else {(v ∈ V3)}
26: Determine the remaining color cv ∈ Cv and define c(v) := cv.
27: end if

28: end if

29: end for

Output: The coloring function c
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Algorithm 2 Online 4-coloring

Input: Online input instance G≺, with χ(G) = 3.
1: for every revealed vertex v ∈ V (G) do
2: if v ∈ V1 {isolated vertex} then

3: Define c(v) := 4
4: else if v ∈ V2 {connected to at least one already colored vertex} then

5: Define Cv to be the set of possible colors for v in a 4-coloring
6: if |Cv| = 1 {only one color remains} then

7: Define c(v) := cv ∈ C(V )
8: else if |Cv| = 2 {two of the colors {1, 2, 3} are possible} then

9: Ask for a one-of-two decision from the advice tape cv ∈ Cv and define c(v) := cv
{1 bit}

10: else

11: Ask for a one-of-three decision from the advice tape cv ∈ {1, 2, 3} and define
c(v) := cv {< 1.5863 bits}

12: end if

13: else {v ∈ V3}
14: Define Cv to be the set of possible colors for v in a 4-coloring
15: if |Cv| = 1 then

16: Define c(v) := cv ∈ C(V )
17: else {|Cv | = 2}
18: Ask for an one-of-two decision cv ∈ Cv and define c(v) := cv {1 bit}
19: end if

20: end if

21: end for

Output: The coloring function c

Algorithm 2’ results from Algorithm 2 by substituting V ′
1 and V ′

2 for V1, and V2

respectively.

Algorithm 3 Online graph coloring

Input: Online input instance G≺, with χ(G) = 3.
1: Read the first bit b1 of the advice tape
2: if b1 = 0 then

3: Use Algorithm 1
4: else

5: Use Algorithm 2
6: end if

Output: The coloring function c
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Algorithm 4 Online chordal graph coloring

Input: Online input instance G≺, with χ(G) = 3.
1: for every revealed vertex v ∈ V (G) do
2: if x ∈ V ′

1 {x has only predecessors in V3} then

3: Ask from the advice tape for a one-out-of-three decision, by which pair px ∈
{(1, 4), (2, 4), (3, 4)} the tree containg x gets colored, and for a one-out-of-two deci-
sion, by which color cx ∈ px this vertex gets colored, and define c(x) := cx (2.5863
bits).

4: else if y ∈ V ′

2 {connected to at least one revealed vertex x ∈ V ′

1} then

5: Identify the tree x belongs to and the pair p(x) for this tree from Pred(x).
6: Define Cy ∈ px \ c(x), and define py := px.
7: else {z ∈ V3}
8: Define Cz {Set of possible colors for z in a 4-coloring without color 4.}
9: if |Cz = 2| then
10: Ask for an one-of-two decision cz ∈ Cz and define c(z) := cz {1 bit}
11: else {|Cz = 1}
12: Define c(z) := cz ∈ Cz {0 bit}
13: end if

14: end if

15: end for

Output: The coloring function c

Algorithm 5 Online graph coloring

Input: Online input instance G≺, with χ(G) = 3.
1: Read the first two bits b1, b2 of the advice tape
2: if b1 = 1 then

3: Use Algorithm 1
4: else if b1 = 0, b2 = 1 then

5: Use Algorithm 2
6: else

7: Use Algorithm 4
8: end if

Output: The coloring function c
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