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ABSTRACT

Capturing videos anytime and anywhere, and then instantly
sharing them online, has become a very popular activity.
However, many outdoor user-generated videos (UGVs) lack
a certain appeal because their soundtracks consist mostly of
ambient background noise. Aimed at making UGVs more
attractive, we introduce ADVISOR, a personalized video
soundtrack recommendation system. We propose a fast and
effective heuristic ranking approach based on heterogeneous
late fusion by jointly considering three aspects: venue cate-
gories, visual scene, and user listening history. Specifically,
we combine confidence scores, produced by SVM hmm mod-
els constructed from geographic, visual, and audio features,
to obtain different types of video characteristics. Our contri-
butions are threefold. First, we predict scene moods from a
real-world video dataset that was collected from users’ daily
outdoor activities. Second, we perform heuristic rankings to
fuse the predicted confidence scores of multiple models, and
third we customize the video soundtrack recommendation
functionality to make it compatible with mobile devices. A
series of extensive experiments confirm that our approach
performs well and recommends appealing soundtracks for
UGVs to enhance the viewing experience.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Sensor fusion

Keywords

Video soundtrack generation; geographic category; user pref-
erence; scene mood prediction; music retrieval

1. INTRODUCTION
In the era of ubiquitous availability of mobile devices with

wireless connectivity, user-generated videos (UGV) have be-
come popular since they can be easily acquired using most
modern smartphones or tablets and are instantly available
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for sharing on social media web sites (e.g., YouTube, Vimeo,
Dailymotion). In addition, people enjoy listening to music
online. Thus, various user-generated data of online activ-
ities (e.g., sharing videos, listening to music) can be rich
sources containing users’ preferences. It is very interest-
ing to extract activity-related data with a user-centric point
of view. Exploiting such data may be very beneficial to
individual users, especially for preference-aware multime-
dia recommendations [35]. We consider location (e.g., GPS
information) and online listening histories as user-centric
preference-aware activities. We categorize user activity logs
from different data sources, correlate them with user prefer-
ences by using semantic concepts, i.e., moods, and leverage
them to complement recommendations for personal multi-
media events. To enhance the appeal of a UGV for viewing
and sharing, we have designed ADVISOR, which replaces
the ambient background noise of a UGV with a soundtrack
that matches both the video scenes and a user’s preferences.
A generated music video (the UGV with the recommended
soundtrack) enhances the video viewing experience because
it not only provides the visual experience but simultane-
ously renders music that matches the captured scenes and
locations. ADVISOR can be used in many applications such
as to recommend music for a slideshow of sensor-rich Flickr
images or for outdoor UGV live streaming, etc.

In terms of the target environment, this work mainly stud-
ies soundtrack recommendations for outdoor UGVs in places
where different geo-categories such as beach, temple, etc,
would be relevant. Thus, ADVISOR may not work well for
indoor scenes (e.g., parties). The reader may imagine the
following scenario: a mom brings her son outdoors where
she records a video of the little boy playing on a beach and
swimming in the sea. Subsequently they would like to add
music of their own style to this video to make it more ap-
pealing. Since video and audio have quite different low level
features they are linked via a high level semantic concept –
moods – in this work. As shown in Figure 1, the ADVISOR
system consists of two parts: an offline training and an on-
line processing component. Offline a training dataset with
geo-tagged videos is used to train SVM hmm models that
map videos to mood tags. The online processing is further
divided into two modules: a smartphone application and
a server backend system. The smartphone application al-
lows users to capture sensor-annotated videos1. Geographic
contextual information (i.e., geo-categories such as Theme

1We use the terms sensor-annotated videos and UGVs inter-
changeably in this study to refer to the same outdoor videos
acquired by our custom Android application.
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Figure 1: System overview of soundtrack recommen-
dations for UGVs with ADVISOR.

Park, Lake, Plaza and others derived from Foursquare2) cap-
tured by geo-sensors (GPS and compass), can serve as an
important dimension to represent valuable semantic infor-
mation of multimedia data while video frame content is of-
ten used in scene understanding. Hence, scene moods are
embodied in both the geographic context and the video con-
tent. The sensor data streams are mapped to a geo fea-
ture G, and a visual feature F is calculated from the video
content. With the trained models, G and F are mapped
to mood tags. Then, songs matching these mood tags are
recommended. Among them, the songs matching a user’s
listening history are considered as user preference-aware.

In the ADVISOR system, first, we classify the 20 most
frequent mood tags of Last.fm3 into four mood clusters (see
Table 1) and then use these mood tags and mood clus-
ters to generate ground truths for the collected music and
video datasets. Next, in order to effectively exploit multi-
modal (geo, visual and audio) features, we propose late fu-
sion methods to predict moods for a UGV. We construct two
offline learning models (see MGV M and MGV C in Figure 1)
which predict moods for the UGV based on the late fusion of
geo and visual features. Furthermore, we also construct an
offline learning model (Figure 2, MEval) based on the late
fusion of visual and concatenated audio features (MFCC,
mel-spectrum and pitch [33]) to learn from the experience
of experts who create professional soundtracks in Hollywood
movies. We leverage this experience in the automatic selec-
tion of a matching soundtrack for the UGV using MEval

(see Figure 2). We deploy these models (MGV M , MGV C

and MEval) in the backend system. To generate the mu-
sic soundtrack for the UGV, the Android application first
uploads its recorded sensor data and selected key-frames to
the backend system. Next, the backend system computes
geo and visual features for the UGV and forwards these
features to MGV M and MGV C to predict scene mood tags
and mood clusters, respectively, for the UGV. Moreover, we
also construct a novel heuristic method to retrieve a list of
songs from an offline music database based on the predicted
scene moods of the UGV. The soundtrack recommendation
component of the backend system re-ranks a list of songs
retrieved by the heuristic method based on user preferences
and recommends them for the UGV (see Figure 5). Next, the

2www.foursquare.com
3Last.fm is a popular music website.
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Table 1: Four mood clusters.

Mood Cluster Mood
Cluster Type Tags

High Stress, Angry, Quirky,
Cluster1 High Energy Aggressive

Low Stress, Fun, Playful, Happy,
Cluster2 High Energy Intense, Gay, Sweet

Low Stress, Calm, Sentimental, Quiet,
Cluster3 Low Energy Dreamy, Sleepy, Soothing

High Stress, Bittersweet, Depressing,
Cluster4 Low Energy Heavy, Melancholy, Sad

backend system determines the most appropriate song from
the recommended list by comparing the characteristics of a
composition of a selected song and the UGV with a sound-
track dataset of Hollywood movies of all movie genres using
the learning model MEval. Finally, the Android application
generates a music video using that song as a soundtrack for
the UGV. The remaining parts of this paper are organized
as follows. In Section 2, we review the related literature,
and we describe the ADVISOR system in Section 3. The
experiments and results are presented in Section 4. Finally,
we conclude the paper with a summary in Section 5.

2. RELATED WORK
Our purpose is to support real-time user preference-aware

video soundtrack recommendations via mobile devices. The
steps of such a process can be described as follows. (1) A
user captures a video on a smartphone. (2) An emotion
cognition model predicts video scene moods based on a het-
erogeneous late fusion of geo and visual features. (3) A
list of songs are automatically recommended for the video
matching with the user’s listening history. (4) The system
sets the most appropriate song from the recommended list
as the soundtrack for the video by leveraging the experi-
ence of professional mood-based associations between music
and movie contents. In this section, we briefly provide some
recent progress on emotion recognition and music recom-
mendation systems and techniques.

Despite significant efforts that have focused on music rec-
ommendation techniques [9, 14, 18, 22] in recent years, little
attention has been paid to music recommendation for sets
of images or UGVs. Kuo et al. [14] investigated the associa-
tion discovery between emotions and music features of film
music and proposed an emotion-based music recommenda-
tion system. As of now, the music recommendation area
for a set of images has been largely unexplored and con-
sists of only a few state-of-the-art approaches such as an
emotion-based impressionism slideshow system from images



of paintings by Li et al. [16]. This method extracts features
such as the dominant color, the color coherence vector, and
the color moment for color and light. It also extracts some
statistical measures from the gray level co-occurrence matrix
for textures, and computes the primitive length of textures.
Furthermore, Wei et al. [30] tried to establish an associa-
tion between color and mood by exploiting the color-related
features using an SVM classifier.

There exist a few approaches [6,27,29] to recognize emo-
tions from videos but the field of video soundtrack recom-
mendation for UGVs [24,34] is largely unexplored. Hanjalic
et al. [6] proposed a computational framework for affective
video content representation and modeling based on the di-
mensional approach to affect. They developed models for
arousal and valance time curves using low-level features ex-
tracted from video content, which map the affective video
content onto a 2D emotion space characterized by arousal
and valence. Soleymani et al. [27] introduced a Bayesian
classification framework for affective video tagging which
takes contextual information into account since emotions
that are elicited in response to a video scene contain valuable
information for multimedia indexing and tagging. Based on
this, they proposed an affective indexing and retrieval sys-
tem which extracts features from different modalities of a
movie, such as video, audio, etc. To understand the affec-
tive content of general Hollywood movies, Wang et al. [29]
formulated a few effective audiovisual cues to help bridge
the affective gap between emotions and low-level features.
They introduced a method to extract affective information
from multifaceted audio streams and classified every scene
of Hollywood domain movies probabilistically into affective
categories. They further processed the visual and audio sig-
nals separately for each scene to find the audio-visual cues
and then concatenated them to form scene vectors which
were sent to a SVM to obtain probabilistic membership vec-
tors. Audio cues at the scene level were obtained using the
SVM and the visual cues were computed for each scene by
using the segmented shots and key-frames.

Cristani et al. [4] introduced a music recommendation pol-
icy for a video sequence taken by a camera mounted on
board a car. They established the association between au-
dio and video features from low-level cross-modal correla-
tions. Yu et al. [34] presented a system to automatically
generate soundtracks for UGVs based on their concurrently
captured contextual sensor information. The proposed sys-
tem correlates viewable scene information from sensors with
geographic contextual tags from OpenStreetMap4 to investi-
gate the relationship between geo-categories and mood tags.
Since the video soundtrack generation system by Yu et al.
does not consider the visual content of the video or the con-
textual information other than geo-categories, soundtracks
recommended by this system are very subjective. Further-
more, the system used a pre-defined mapping between geo-
categories and mood tags, and hence the system is not adap-
tive in nature. In our recent work [24], we recommend sound-
tracks for a UGV based on modeling scene moods using a
SVM hmm model. In particular, first, the SVM hmm model
predicts scene moods based on the sequence of concatenated
geo and visual features. Next, a list of matching songs cor-
responding to the predicted scene moods are retrieved.

Currently, sensor rich media content is receiving increas-

4www.openstreetmap.org

ing attention because sensors provide additional external in-
formation such as location from GPS, viewing direction from
a compass unit, and so on. Sensor-based media can be use-
ful in applications such as life log recording, location-based
queries and recommendations [1]. Kim et al. [11] discussed
the use of textual information such as web documents, so-
cial tags and lyrics to derive an emotion of a music sam-
ple. Rahmani et al. [19] proposed context-aware movie rec-
ommendation techniques based on background information
such as users’ preferences, movie reviews, actors and direc-
tors of movie, etc. Chen et al. [2] proposed an approach
by leveraging a tripartite graph (user, video, query) to rec-
ommend personalized videos. Kaminskas et al. [9] proposed
a location-aware music recommendation system using tags,
which recommends songs that suit a place of interest. Park
et al. [18] proposed a location-based recommendation sys-
tem based on location, time, the mood of a user and other
contextual information in mobile environments. Recently,
Schedl et al. [22] proposed a few hybrid music recommen-
dation algorithms that integrate information of the music
content, the music context, and the user context, to build
a music retrieval system. For the ADVISOR system, these
earlier works inspired us to mainly focus on sensor-annotated
videos that contain additional information provided by sen-
sors and other contextual information such as a user’s lis-
tening history, music genre information, etc.

Multi-feature late fusion techniques have been advocated
in various applications such as video event detection and ob-
ject recognition [32]. Snoek et al. [25, 26] performed early
and late fusion schemes for semantic video analysis and
found that a late fusion scheme performs better. Ghias et
al. [5] and Lu et al. [17] used heuristic approaches for query-
ing desired songs from a music database by humming a tune.
These earlier works inspired us to build the ADVISOR sys-
tem by performing heterogeneous late fusion to recognize
moods from videos and retrieve a ranked list of songs using
a heuristic approach. To the best of our knowledge, this
is the first work that correlates preference-aware activities
from different behavioral signals of individual users, e.g.,
online listening activities and physical activities.

3. SYSTEM DESCRIPTION
To generate a music video for a UGV, ADVISOR first

predicts scene moods from the UGV using learning mod-
els described next in Section 3.1. The scene moods used in
this study are the 20 most frequent mood tags of Last.fm,
described in detail in Section 4.1.1. Next, the soundtrack
recommendation component in the backend system recom-
mends a list of songs, using a heuristic music retrieval method,
described in Section 3.2. Finally, the soundtrack selection
component selects the most appropriate song from the rec-
ommended list to generate the music video of the UGV,
using a novel method, described in Section 3.3.

3.1 Scene Moods Prediction Models
In our custom Android recording app, a continuous stream

of geo-sensor information is captured together with each
video using GPS sensors. This sensor information is mapped
to geo-categories such as Concert Hall, Racetrack, and oth-
ers using the Foursquare API. Then the geo-categories are
mapped to a geo-feature G using the bag-of-word model.
With the trained SVM hmm model (MG), mood tags CG

with geo-aware likelihood are generated. Furthermore, a vi-



Table 2: SVMhmm models used in this study.

Model Input-1 Input-2 Output
MF F - T
MG G - T
MA A - C
MGV C MG MF C = f1(MG,MF )
MGV M MG MF T = f2(MG,MF )
MEval MA MF C = f3(MA,MF )
MCat G F T = f4(G, F )
G, F, and A represent the geo, visual and audio features,
respectively. T and C denote the set of predicted mood
tags and mood clusters, respectively. MGV C and MGV M

are models constructed by the late fusion of MG and MF .
MEval is constructed by the late fusion of MA and MF .

sual feature such as a color histogram is calculated from the
video content. With the trained SVM hmm model (MF ),
mood tags CF associated with visual-aware likelihood are
generated. In the next step, the mood tags associated with
location information and video content are combined by late
fusion. Finally, mood tags with high likelihoods are regarded
as scene moods of this video.

3.1.1 Geo and Visual Features

Based on the geo-information, a UGV is split into multiple
segments with timestamps, with each segment representing
a video scene. The geo-information (GPS location) for each
video segment is mapped to geo-categories using APIs pro-
vided by Foursquare. The Foursquare API also provides
distances of geo-categories with respect to the queried GPS
location, which describe the typical objects near the video
scene in the video segments. We treat each geo-tag as a word
and exploit the bag-of-words model [12] on a set of 317 dif-
ferent geo-tags in this study. Next, for each video segment, a
geo-feature with 317 dimensions is computed from geo-tags
with their score used as weights.

A color histogram [13,24] with 64 dimensions is computed
from each UGV video frame by dividing each component of
RGB into four bins. Next, the UGV is divided into multiple
continuously correlated parts (CCP), within each of which
color histograms have high correlations. Specifically, start-
ing with an initial frame, each subsequent frame is regarded
as part of the same CCP if its correlation with the initial
frame is above a pre-selected threshold. Next, a frame with
its timestamp, which is most correlated with all the other
frames in the same CCP, is regarded as a key-frame. Color
histograms of key-frames are treated as visual features.

3.1.2 Scene Moods Classification Model

Wang et al. [29] classified emotions for a video using an
SVM-based probabilistic inference machine. To arrange scenes
depicting fear, happiness or sadness, Kang [10] used vi-
sual characteristics and camera motion with hidden Markov
models (HMMs) at both the shot and scene levels. In order
to effectively exploit multi-modal features, late fusion tech-
niques have been advocated in various applications and se-
mantic video analysis [25,26,32]. These approaches inspired
us to use SVM hmm models [8] based on the late fusion of
various features of UGVs to learn the relationships between
UGVs and scene moods. Table 2 shows the summary of all
the SVM hmm learning models used in this study.

To establish the relation between UGVs and their associ-
ated scene moods, we train several offline learning models
with the GeoVid dataset as described later in Section 4.1.2.
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and MGV M SVM
hmm models.

Experimental results in Section 4.2.1 confirm that a model
based on late fusion outperforms other models in scene mood
prediction. Therefore, we construct two learning models
based on the late fusion of geo and visual features and re-
fer to them as emotion prediction models in this study. A
geo feature computed from geo-categories reflects the envi-
ronmental atmosphere associated with moods and a color
histogram computed from key-frames represents moods in
the video content. Next, the sequence of geo-features and
the sequence of visual features are synchronized based on
their respective timestamps to train emotion prediction mod-
els using SVM hmm method. Figure 3 shows the process of
mood recognition from UGVs based on heterogeneous late
fusion of SVM hmm models constructed from geo and visual
features. MGV C and MGV M are emotion prediction models
trained with mood clusters and mood tags, respectively, as
ground truths for the training dataset. Hence, MGV C and
MGV M predict mood clusters and mood tags, respectively,
for a UGV based on heterogeneous late fusion of SVM hmm

models constructed from geographic and visual features.

3.1.3 Scene Moods Recognition

UGVs acquired by our Android application are enhanced
with geo-information by using sensors such as GPS and com-
pass. When a user requests soundtracks for a UGV then
the Android application determines timestamps for multiple
video segments of the UGVwith each segment representing a
video scene based on geo-information of the UGV. Further-
more, the Android application extracts key-frames of the
UGV based on timestamps of video segments and uploads
them to the backend system along with the geo-information
of video segments. The backend system computes geo and
visual features of the UGV from the uploaded sensor in-
formation and key-frames. The SVM hmm models, MGV C ,
MGV M and MCat read the sequence of geo and visual fea-
tures and recognize moods for the UGV. For example, MCat

is trained with the concatenation of geo and visual features
as described in the following sequence (see Figure 4).

〈V,G1, F1,m1〉, 〈V,G1, F1,m2〉, 〈V,G2, F1,m2〉, . . .

In this specific example, in the emotion recognition step,
when MCat is fed with geo features G and visual features F
using f4(G,F ), then it automatically predicts a set of scene
mood tags m = {m1,m2, m2,m2,m3} for the UGV.

3.2 Music Retrieval Techniques
We prepared an offline music dataset of candidate songs

in all main music genres, with details described later in Sec-
tion 4.1.3. We refer to this dataset as the soundtrack dataset.
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Figure 4: The concatenation model MCat from [24].

The next step in the ADVISOR system is to find music from
the soundtrack dataset that matches with both the predicted
mood tags and the user preferences. With the given mood
tags, the soundtrack retrieval stage returns an initial song
list L1. For this task we propose a novel music retrieval
method. Many state-of-the-art methods for music retrieval
use heuristic approaches [5,17]. This inspired us to propose
a heuristic method which retrieves a list of songs based on
the predicted scene moods by MGV M and MGV C . We take
the user’s listening history as user preferences, and calculate
the correlation between audio features of songs in the initial
list L1 and in the listening history. From the initial list,
songs with high correlations are regarded as user specific
songs L2, and recommended to users as video soundtracks.

3.2.1 Heuristic Method for Soundtrack Retrieval

An improvement in mood tag prediction accuracy for a
UGV is also an improvement in matching music retrieval
because songs in the soundtrack dataset are organized in
a hash table with mood tags as keys. However, retrieving
songs based on only one mood tag suffers from subjectiv-
ity because the mood clusters prediction accuracy of MGV C

is much better than the mood tags prediction accuracy of
MGV M for an UGV (see Table 5). Since a song may have
multiple mood tags, when the emotion prediction models
predict multiple mood tags, a song may be matched with
several tags. Therefore, we calculate the total score of each
song to reduce this subjectivity issue and propose a heuris-
tics based on a music retrieval method to rank all the pre-
dicted mood tags for the UGV and then normalize them as
the likelihood to retrieve the final ranked list L1 of N songs.
Algorithm 1 describes this retrieval process and its compo-
sition operation ∗ is defined such that it outputs only those
most frequent mood tags T from the list of mood tags pre-
dicted by f2(MG,MF ) which belong to the most frequent
mood clusters predicted by f1(MG,MF ). Thus, the compo-
sition operation ∗ is defined by the following equation:

T = f1(MG,MF ) ∗ f2(MG,MF )

where T , G, F , f1 and f2 have the usual meaning, with
details described in Table 2.

3.2.2 Post-filtering with User Preferences

A new paradigm shift in music information retrieval (MIR)
is currently creating a move from a system-centric perspec-
tive towards user-centric approaches. Therefore, addressing
user-specific demands in music recommendation is receiv-
ing increased attention. User preference-aware music recom-
mendations based on users’ preferences observed from their
listening history is very common. Music genres of the user’s
frequently listened to songs are treated as his/her listening
preference and later used for the re-ranking of a list of songs

Algorithm 1 Heuristic based song retrieval procedure

1: procedure HeuristicSongsRetrieval(H)
2: INPUT: geo and visual features (G, F ) of the UGV
3: OUTPUT: A ranked list of songs L1 for the UGV
4: T = f1(MG,MF ) * f2(MG,MF )
5: L = [] ⊲ Initialize with empty list.
6: for each mood tag i in T do
7: p(i) = likelihood(i) ⊲ Likelihood of mood tag i.
8: Lt(i) = songList(i) ⊲ Song list for mood tag i.
9: L = L ∪ Lt(i) ⊲ L has all unique songs.
10: end for
11: ⊲ isPrsnt returns 1 if s is present in Lt(i) else 0.
12: ⊲ scr(s, i) is the score of song s with mood tag i.
13: for each song s in L do
14: Score(s) = 0 ⊲ Initialize song score.
15: for each mood tag i in T do
16: Score(s)+ = p(i) ∗ scr(s, i) ∗ isP rsnt(s,Lt(i))
17: end for
18: end for
19: L1 = sortSongScore(L) ⊲ Sort songs.
20: Return L1 ⊲ A ranked list of N songs.
21: end procedure

L1 recommended by the heuristics method. Our system ex-
tracts audio features including MFCC [21] and pitch from
audio tracks of the user’s frequently listened to songs. These
features help in re-ranking the list of recommended songs L1

by comparing the correlation coefficients of songs matching
the genres preferred by the user, and then recommending a
list of user preference-aware songs L2 (see Figure 5). Next,
the soundtrack selection component automatically chooses
the most appropriately matching song from L2 and attaches
it as the soundtrack to the UGV.
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Figure 5: Matching songs with a user’s preferences.

3.3 AutomaticMusic Video GenerationModel
Wang et al. [29] concatenated audio and visual cues to

form scene vectors which were sent to a SVM method to
obtain high-level audio cues at the scene level. We propose
a novel method to automatically select the most appropri-
ate soundtrack from the list of songs L2 recommended by
our music retrieval system as described in the previous Sec-
tion 3.2, to generate a music video from the UGV.

We use soundtracks of Hollywood movies in our system to
select appropriate UGV soundtracks since music in Holly-
wood movies is designed to be emotional and hence is easier
to associate with mood tags. Moreover, music used by Hol-
lywood movies is generated by professionals, which ensures a
good harmony with the movie contents. Therefore, we learn
from the experience of such experts using their professional
soundtracks of Hollywood movies through a SVM hmm learn-
ing model. We refer to the collection of such soundtracks as



the evaluation dataset, with details described later in Sec-
tion 4.1.4. We construct a music video generation model
(MEval) using the training dataset of the evaluation dataset,
which can predict mood clusters for any music video. We
leverage this model to select the most appropriate sound-
track for the UGV. We construct MEval based on hetero-
geneous late fusion of SVM hmm models constructed from
visual features such as a color histogram and audio features
such as MFCC, mel-spectrum and pitch. Similar to our find-
ings with the learning model to predict scene moods based
on the late fusion of geo and visual features of UGVs, we
find that the learning model MEval based on the late fusion
of visual features and concatenated 〈MFCC, mel-spectrum
and pitch〉 audio features also performs well.

Figure 2 shows the process of soundtrack selection for a
UGV. It consists of two components, first, music video gen-
eration model (MEval), and second, a soundtrack selection
component. MEval maps visual features F and audio fea-
tures A of the UGV with a soundtrack to mood clusters C2,
i.e., f3(F,A) corresponds to mood clusters C2 based on the
late fusion of F and A. The soundtrack selection compo-
nent compares moods (C2 and C1) of the UGV predicted by
MEval and, MGV C and MGV M .

Algorithm 2 describes the process of the most appropri-
ate soundtrack selection from the list of songs recommended
by the heuristic method to generate the music video of the
UGV. To automatically select the most appropriate sound-
track, we compute audio features of a selected song and
visual features of the UGV and refer to this combination as
the prospective music video. We compare the characteristics
of the prospective music video with video songs of the eval-
uation dataset of many famous Hollywood movies. Next we
predict mood clusters (C) for the prospective music video
using MEval. We treat the predicted mood clusters (C1) of
the UGV by MGV C as ground truth for the UGV, since the
mood clusters prediction accuracy of MGV C is very good
(see Section 4.2.1). Finally, if the most frequent mood clus-
ter C2 from C for the prospective music video is similar to
the ground truth (C1) of the UGV, then the selected song
(St) is treated as the soundtrack and the music video of the
UGV is generated. If both mood clusters are different then
we repeat the same process with the next song in the rec-
ommended list L2. In the worst case, if none of the songs
in the recommended list L2 satisfies the above criteria then
we repeat the same process with the second most frequent
mood cluster from C, and so on.

4. EXPERIMENTS AND RESULTS

4.1 Dataset and Experimental Settings
The input dataset in our study consists of sensor-annotated

videos acquired from a custom Android (or iOS) applica-
tion running on smartphones. As described in Section 3,
we train several learning models to generate a music video
from a UGV. To train effective models for the ADVISOR
system, it is important to have good ground truths for the
training and the testing dataset. However, due to the dif-
ference in age, occupation, gender, environment, cultural
background and personality, music perception is highly sub-
jective among users. Hence generating ground truths for the
evaluation of various music mood classification algorithms
are very challenging [11]. Furthermore, there is no standard
music dataset with associated mood tags (ground truths)

Algorithm 2 Music video generation for a UGV

1: procedure MusicVideoGeneration(MV )
2: INPUT: A UGV V by the Android application
3: OUTPUT: A music video MV for V
4: m = moodTags(V ) ⊲ MGV M predicts mood tags.
5: C1 = moodClusters(V ) ⊲ MGV C predicts clusters.
6: L2 = HeuristicSongsRetrieval(m,C1)
7: F = visualFeatures(V ) ⊲ Compute visual features.
8: for rank = 1 to numMoodCluster do
9: for each song St in L2 do
10: a1 = calcMFCC(St) ⊲ MFCC feat.
11: a2 = calcMelSpec(St) ⊲ Mel-spec feat.
12: a3 = calcP itch(St) ⊲ Pitch feat.
13: ⊲ Concatenate all audio features.
14: A = concatenate(a1, a2, a3)
15: C = findMoodCluster(F,A) ⊲ using MEval.
16: C2 = mostFreqMoodCluster(rank,C)
17: ⊲ Check for similar mood clusters
18: ⊲ predicted by MGV C and MEval.
19: if C2 == C1 then
20: ⊲ Android app generates music video.
21: MV = generateMusicV ideo(St, V )
22: Return MV ⊲ Music video for V .
23: end if
24: end for
25: end for
26: end procedure

available due to the lack of an authoritative taxonomy of
music moods and an associated audio dataset. Therefore,
we prepare our own datasets in Sections 4.1.1, 4.1.2, 4.1.3
and 4.1.4 to address the above issues.

4.1.1 Emotion Tag Space

Mood tags are important keywords in digital audio li-
braries and online music repositories for effective music re-
trieval. Furthermore, oftentimes, music experts refer to mu-
sic as the finest language of emotion. Therefore it is very
important to learn the relationship between music and emo-
tions (mood tags) to build a robust ADVISOR. A number of
prior methods [11,15] have described state-of-the-art classifi-
cations of mood tags into different emotion classes. The first
type of approach is the categorical approach which classifies
mood tags into emotion clusters such as happy, sad, fear,
anger and tender. Hevner [7] categorized 67 mood tags into
eight mood clusters with similar emotions based on musical
characteristics such as pitch, mode, rhythm, tempo, melody
and harmony. Thayer [28] proposed an energy-stress model,
where the mood space is divided into four clusters such as
low energy / low stress, high energy / low stress, high energy
/ high stress, and low energy / high stress (see Figure 6).
The second type of method is based on the dimensional
approach to affect, which represents music samples along
a two-dimensional emotion space (characterized by arousal
and valence) as a set of points.

We consider the categorical approach of music mood clas-
sification to classify the mood tags used in this work. We
extracted the 20 most frequent mood tags of Last.fm from
the crawled dataset of 575,149 tracks with 6,814,068 tag an-
notations in all main music genres by Laurier et al. [15].
Last.fm is a music website with more than 30 million users,
who have created a site-wide folksonomy of music through
end-user tagging. We classified these 20 mood tags into
four mood clusters based on mood tag clustering introduced
in earlier work [7,20,24]. Four mood clusters represent four
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Figure 6: Thayer’s [28] model of moods.

quadrants of a 2-dimensional emotion plane with energy and
stress characterized as its two dimensions (see Table 1).

However, emotion recognition is a very challenging task
due to its cross-disciplinary nature and high subjectivity.
Therefore experts have suggested the need for the use of
multi-label emotion classification. Since the recommenda-
tion of music based on low-level mood tags can be very sub-
jective, many earlier approaches [11, 31] on emotion classi-
fication and music recommendation are based on high-level
mood clusters. Therefore, in order to calculate the anno-
tator consistency, accuracy and inter-annotator agreement,
we compare annotations at four high-level mood clusters in-
stead of the 20 low-level mood tags in this study. Moreover,
we leverage the mood tags and mood clusters together to
improve the scene mood prediction accuracy of ADVISOR.

4.1.2 GeoVid Dataset

To create an offline training model for the proposed frame-
work of scene mood prediction of a UGV we utilized 1,213
UGVs which were captured during eight months (4 March
2013 to 8 November 2013) using the GeoVid5 application.
These videos were captured with iPhone 4S and iPad 3 de-
vices. The video resolution of all videos was 720×480 pixels,
and their frame rate 24 frames per second. The minimum
sampling rate for the location and orientation information
was 5 samples per second (i.e., a 200 millisecond sampling
rate). In our case, we mainly focus on videos that con-
tain additional information provided by sensors and we re-
fer to these videos as sensor-annotated videos. The captured
videos cover a diverse range of rich scenes across Singapore
and we refer to this video collection as the GeoVid dataset.

Since emotion classification is highly subjective and can
vary from person to person [11], generating ground truths
for the evaluation of the various emotion classifications from
video techniques are difficult. It is necessary to use some fil-
tering mechanism to discard bad annotations. In the E6K
music dataset for MIREX6, IMIRSEL assigns each music
sample to three different evaluators for mood annotations.
They then evaluate the quality of ground truths by the de-
gree of agreement on the music samples. Only those anno-
tations are considered as ground truths where the majority
of evaluators selected the same mood cluster. The ground
truth of music samples for which all annotators select differ-
ent mood clusters are resolved by music experts.

For the GeoVid dataset we recruited 30 volunteers to an-
notate emotions (the mood tags listed in Table 1). First,
we identified annotators who are consistent with their an-
notations by introducing redundancy. We repeated one of
the videos in the initial sets of the annotation task with

5The GeoVid app and portal at http://www.geovid.org pro-
vide recorded videos annotated with location meta-data.
6The MIR Evaluation eXchange is an annual evaluation
campaign for various MIR algorithms hosted by IMIRSEL
(International MIR System Evaluation Lab) at the Univer-
sity of Illinois at Urbana-Champaign.

Table 3: Ground truth annotation statistics with
three annotators per video segment.

All Different Two The Same All The Same
298 1293 710

ten videos given to each of the evaluators. If any annotated
mood tag belonged to a different mood cluster for a repeated
video then this annotator’s tags were discarded. Annotators
passing this criteria were selected for mood annotation of
the GeoVid dataset. Furthermore, all videos of the GeoVid
dataset were split into multiple segments with each segment
representing a video scene, based on its geo-information and
timestamps. For each video segment, we asked three ran-
domly chosen evaluators to annotate one mood tag each af-
ter watching the UGV carefully. In order to reduce subjec-
tivity and check the inter-annotator agreement of the three
human evaluators for any video, we inspected whether the
majority (at least two) of the evaluators chose mood tags
that belonged to the same mood cluster. If the majority of
evaluators annotated mood tags from the same mood clus-
ter then that particular cluster and its associated mood tags
were considered as ground truth for the UGV. Otherwise the
decision was resolved by music experts. Due to the subjec-
tivity of music moods, we found that all three evaluators
annotated different mood clusters for 298 segments during
annotation for theGeoVid dataset, hence their ground truths
were resolved by music experts (see Table 3).

4.1.3 Soundtrack Dataset

We prepared an offline music dataset of candidate songs
(729 songs altogether) in all main music genres such as clas-
sical, electronic, jazz, metal, pop, punk, rock and world from
the ISMIR‘04 genre classification dataset7. We refer to this
dataset as the soundtrack dataset and we divided it into 15
emotion annotation tasks (EAT). We recruited 30 annota-
tors and assigned each EAT (with 48–50 songs) to two ran-
domly chosen annotators and asked them to annotate one
mood tag for each song. Each EAT had two randomly se-
lected repetitive songs to check the annotation consistency
of each human evaluator, i.e., if the evaluator-chosen mood
tags belonged to the same mood cluster for redundant songs
then the evaluator was consistent, otherwise the evaluator’s
annotations were discarded. Since the same set of EATs was
assigned to two different annotators, their inter-annotator
agreement is calculated by Cohen’s kappa coefficient (κ) [3].
This coefficient is considered to be a robust statistical mea-
sure of inter-annotator agreement and defined as follows:

κ =
Pr(a)− Pr(e)

1− Pr(e)

where Pr(a) is the relative observed agreement among eval-
uators, and Pr(e) is the hypothetical probability of chance
agreement, using the observed data to calculate the proba-
bilities of each annotator randomly indicating each category.
If κ = 1 then both annotators for an EAT are in complete
agreement while there is no agreement when κ = 0. Ac-
cording to Schuller et al. [23], an agreement level with a κ

value of 0.40 and 0.44, respectively, for the music mood as-
sessment with regard to valence and arousal, are considered
to be moderate to good. Table 4 shows the summary of the
mood annotation tasks for the soundtrack dataset with a

7ismir2004.ismir.net/genre contest/index.htm



Table 4: Summary of the emotion annotation tasks.

Total number of songs 729
Pairs of annotators 15
Common songs per pair 48–50
κ : Maximum 0.67
κ : Minimum 0.29
κ : Mean 0.47
κ : Standard deviation 0.12

mean κ value of 0.47, which is considered to be moderate to
good in music judgment. For four EATs, annotations were
carried out again since evaluators for these EATs failed to
fulfill the annotation consistency criteria.

For a fair comparison of music excerpts, samples were con-
verted to a uniform format (22,050 Hz, 16 bits, and a mono
channel PCM WAV) and normalized to the same volume
level. Yang et al. [31] suggested to use 25-second music ex-
cerpts from around the segment middle to reduce the burden
on evaluators. Therefore, we manually selected 25-second
music excerpts from near the middle such that the mood was
likely to be constant within the excerpt by avoiding drastic
changes in musical characteristics. Furthermore, songs were
organized in a hash structure with their mood tags as hash
keys, so that ADVISOR was able to retrieve the relevant
songs from the hash table with the predicted mood tags as
keys. We then considered a sequence of the most frequent
mood tags T predicted by the emotion prediction model,
with details described in Section 3.1, for song retrievals.

The soundtrack dataset was stored in a database, indexed
and used for soundtrack recommendation for UGVs. A song
with ID s and k tags is described by a list of tag attributes
and scores from 〈s, tag1, scr1〉 to 〈s, tagk, scrk〉, where tag1
to tagk are mood tags and scr1 to scrk are their correspond-
ing scores. Tag attributes describe the relationship between
mood tags and songs, and are organized in a hash table
where each bucket is associated with a mood tag. With the
aforementioned song s as an example, its k tag attributes
are separately stored in k buckets. Since a tag is common
to all songs in the same bucket, it is sufficient to only store
tuples consisting of song ID and tag score.

4.1.4 Evaluation Dataset

We collected 402 soundtracks from Hollywood movies of
all main movie genres such as action, comedy, romance, war,
horror and others. We refer to this video collection as the
evaluation dataset. We manually selected 1-minute video
segments from around the middle for each clip in the eval-
uation dataset such that the emotion was likely to be con-
stant within that segment by avoiding drastic changes in
scene and musical characteristics. We ignored segments hav-
ing dialogues in a scene while selecting 1-minute excerpts.
Since the segments in the evaluation dataset are profession-
ally produced and their genres, lyrics and context are known,
emotions elicited by these segments are easy to determine.
Mood clusters (listed in Table 1) were manually annotated
for each segment based on its movie genre, lyrics and context
and treated as ground truth for the evaluation dataset.

4.2 Experimental Results

4.2.1 Scene Moods Prediction Accuracy

To investigate the relationship between geo and visual fea-
tures to predict video scene moods for a UGV, we trained

Table 5: Accuracy of emotion prediction models.

SVMhmm Learning Model Accuracy
(Performed 10-fold cross validation.)

Ratio Model Exp-1 Exp-2 Exp-3 Feature
Type (in %) (in %) (in %) Dimens.

70:30

MF 18.87 52.62 64.63 64
MG 25.56 60.12 74.22 317
MCat 24.47 60.79 73.52 381
MGV M 37.18 76.42 - 317
MGV C - - 84.56 317

80:20

MF 17.76 51.65 63.93 64
MG 24.68 60.83 73.06 317
MCat 25.97 61.96 71.97 381
MGV M 34.86 75.95 - 317
MGV C - - 84.08 317

Exp-1: Model trained at mood tags level and predicted
moods accuracy checked at mood tags level.
Exp-2: Model trained at mood tags level and predicted
moods accuracy checked at mood cluster level.
Exp-3: Model trained at mood cluster level and
predicted moods accuracy checked at mood cluster level.

four SVM hmm models and compared their accuracy. First,
the Geo model (MG) was trained with geo features only,
second, the Visual model (MF ) was trained with visual fea-
tures only and third, the Concatenation model (MCat) was
trained with the concatenation of both geo and visual fea-
tures (see Figure 4). Finally, fourth, the Late fusion models
(MGV M ,MGV C) were trained by the late fusion of the first
(MG) and second (MF ) models.

We randomly divided the GeoVid dataset into training
and testing datasets with 80:20 and 70:30 ratios. We per-
formed 10-fold cross validation experiments on various learn-
ing models as described above to compare their scene mood
prediction accuracy for UGVs in the test dataset. We used
three experimental settings. First, we trained all models
from the training dataset with mood tags as ground truth
and compared their scene mood prediction accuracy at the
mood tags level (i.e., whether the predicted mood tags and
ground truth mood tags were the same). Second, we trained
all models from the training dataset withmood tags as ground
truth and compared their scene mood prediction accuracy
at the mood clusters level (i.e., whether the most frequent
mood cluster of predicted mood tags and ground truth mood
tags were the same).

Lastly, we trained all models from the training dataset
with mood clusters as ground truth and compared their
scene mood prediction accuracy at the mood clusters level
(i.e., whether the predicted mood clusters and ground truth
mood clusters were the same). Our experiments confirm that
the model based on late fusion of geo and visual features out-
performs the other three models. We noted that the scene
mood prediction accuracy at the mood tag level does not
perform well because the accuracy of the SVM classifier de-
grades as the number of classes increases. A comparison of
the scene mood prediction accuracies for all four models is
listed in Table 5.

4.2.2 Soundtrack Selection Accuracy

We randomly divided the evaluation dataset into a train-
ing and a testing dataset with a 80:20 ratio, and performed
5-fold cross validation experiments to calculate the scene



Table 6: MEval emotion classification accuracy.

Training # Training Videos Accuracy
MEval Evaluation dataset 322 (in %)

Prediction # Test Videos
(Exp-1) Evaluation dataset 80 68.75
Prediction # UGVs with
(Exp-2) soundtrack

GeoVid dataset 80 70.00
(Performed 5-fold cross validation.)

mood prediction accuracy of MEval for UGVs in the test
dataset. We performed two experiments. First, we trained
MEval from the training set with mood clusters as ground
truth and compared their scene mood prediction accuracy
at the mood clusters level for UGVs in the test dataset of the
evaluation dataset (i.e., whether the predicted mood clusters
and ground truth mood clusters matched). In the second
experiment, we replaced the test dataset of the evaluation
dataset with the same number of music videos generated by
our system for randomly selected UGVs from the GeoVid
dataset. The MEval maps visual features F and audio fea-
tures A of a video V to mood clusters C, i.e., f3(F,A) corre-
sponds to mood clusters C based on the late fusion of F and
A (see Figure 2). An input vector (in time order) for MEval

can be represented by the following sequence (see Figure 7):
〈F1, A1〉, 〈F1, A2〉, 〈F2, A2〉, 〈F2, A3〉, . . .

t1 t2 t6

t4

t5 t7

Video V

Geo feature G1 Geo feature G2

Visual feature F1 Visual feature F2

Mood m1 Mood m2 Mood m3

Cluster C1 Cluster C2 Cluster C3

t3

Concatenated 

audio feature A1

Concatenated 

audio feature A2

Concatenated 

audio feature A3

MA

MG

MF

Figure 7: Features to mood tags/clusters mapping.

MEval reads the above input vector and predicts mood
clusters for it. Table 6 shows that the emotions (mood
clusters) prediction accuracy (68.75%) of MEval for music
videos is comparable to the emotion prediction accuracy at
the scene level in movies by state-of-the-art approaches such
as introduced by Soleymani et al. [27] (63.40%) and Wang
et al. [29] (74.69%). To check the effectiveness of the AD-
VISOR system, we generated music videos for 80 randomly
selected UGVs from the GeoVid dataset and predicted their
mood clusters byMEval with 70.0% accuracy, which is again
comparable to state-of-the-art algorithms for emotion pre-
diction at the scene level in movies. The experimental re-
sults in Table 6 confirm that ADVISOR effectively combines
objective scene moods and music to recommend appealing
soundtracks for UGVs.

4.3 User Study
Based on the techniques introduced earlier, we imple-

mented the ADVISOR system to generate music videos for
UGVs. All UGVs were single-shot clips with sensor meta-
data, acquired by our Android application designed specif-
ically for recording sensor-annotated videos. We randomly

Table 7: User study feedback from 15 volunteers.

Predicted
Video Scene 1 2 3 4 5 Avg.

Location Moods Rating

melancholy, sad,
Cemetery sentimental 0 0 3 4 8 4.3
Clarke fun, sweet,
Quay calm 0 2 5 7 1 3.5

Gardens by soothing,
the Bay fun, calm 0 3 3 9 0 3.4
Marina fun,

Bay Sands playful 0 0 2 6 7 4.3
Siloso happy,
Beach fun, quiet 0 0 1 6 8 4.5

Universal fun, intense,
Studios happy, playful 0 2 5 5 3 3.6

Ratings on a scale from 1 (worst) to 5 (best).

selected five UGVs each for six different sites of Singapore
as listed in Table 7, from a set of acquired videos. To judge
whether the recommended songs capture the scene moods of
videos, we recruited fifteen volunteers to assess the appropri-
ateness and entertainment value of the music videos (UGVs
with recommended songs). We asked every user to select
one video for each site by choosing the most likely candi-
date that they themselves would have captured at that site.
The predicted scene moods listed in Table 7 are the first
three mood tags belonging to the most frequent mood clus-
ter predicted by MGV C for five videos at different sites. A
soundtrack for all selected videos was generated using AD-
VISOR and users were asked to assign a score 1 (worst) to 5
(best) to the generated music videos. Finally, we calculated
the average score of music videos for all sites. Table 7 sum-
marizes the ratings and the most appropriate scene moods
from a list of predicted mood tags for videos from the afore-
mentioned six sites. The feedback from these volunteers was
encouraging, indicating that our technique achieves its goal
of automatic music video generation to enhance the video
viewing experience.

5. CONCLUSIONS
Our work represents one of the first attempts for user

preference-aware video soundtrack generation. We catego-
rize user activity logs from different data sources by using
semantic concepts. This way, the correlation of preference-
aware activities based on categorization of user-generated
heterogeneous data complements video soundtrack recom-
mendations for individual users. The ADVISOR system au-
tomatically generates a matching soundtrack for a UGV in
four steps. More specifically, first, a learning model based
on the late fusion of geo and visual features recognizes scene
moods in the UGV. Second, a novel heuristic method recom-
mends a list of songs based on the predicted scene moods.
Third, the soundtrack recommendation component re-ranks
songs recommended by the heuristics method based on the
user’s listening history. Finally, our Android application
generates a music video from the UGV by automatically
selecting the most appropriate song using a learning model
based on the late fusion of visual and concatenated audio
features. In the future, each one of these steps could be fur-
ther enhanced. The experimental results and our user study
confirm that ADVISOR can effectively combine objective



scene moods and individual music tastes to recommend ap-
pealing soundtracks for UGVs.

Acknowledgments

The authors are very grateful to Dr. Suhua Tang and the
anonymous reviewers for their insightful and constructive
suggestions to improve the quality of this work. The re-
search has been supported by the Singapore National Re-
search Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office through the Centre of Social Me-
dia Innovations for Communities (COSMIC).

6. REFERENCES

[1] K. Aizawa, D. Tancharoen, S. Kawasaki, and T. Yamasaki.
Efficient Retrieval of Life Log based on Context and
Content. In ACM Workshop on Continuous Archival and
Retrieval of Personal Experiences, pages 22–31, 2004.

[2] B. Chen, J. Wang, Q. Huang, and T. Mei. Personalized
Video Recommendation through Tripartite Graph
Propagation. In ACM International Conference on
Multimedia, pages 1133–1136, 2012.

[3] J. Cohen. A Coefficient of Agreement for Nominal Scales.
Educational and Psychological Measurement, 20(1):37–46,
1960.

[4] M. Cristani, A. Pesarin, C. Drioli, V. Murino, A. Rodà,
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