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Abstract

Background

Aedes aegypti is a vector mosquito of major public health importance, transmitting arthro-

pod-borne viruses (arboviruses) such as chikungunya, dengue, yellow fever and Zika

viruses. Wild mosquito populations are persistently infected at high prevalence with insect-

specific viruses that do not replicate in vertebrate hosts. In experimental settings, acute

infections with insect-specific viruses have been shown to modulate arbovirus infection and

transmission in Ae. aegypti and other vector mosquitoes. However, the impact of persistent

insect-specific virus infections, which arboviruses encounter more commonly in nature, has

not been investigated extensively. Cell lines are useful models for studying virus-host inter-

actions, however the available Ae. aegypti cell lines are poorly defined and heterogenous

cultures.

Methodology/Principle findings

We generated single cell-derived clonal cell lines from the commonly used Ae. aegypti cell

line Aag2. Two of the fourteen Aag2-derived clonal cell lines generated harboured markedly

and consistently reduced levels of the insect-specific bunyavirus Phasi Charoen-like virus

(PCLV) known to persistently infect Aag2 cells. In contrast to studies with acute insect-spe-

cific virus infections in cell culture and in vivo, we found that pre-existing persistent PCLV

infection had no major impact on the replication of the flaviviruses dengue virus and Zika

virus, the alphavirus Sindbis virus, or the rhabdovirus vesicular stomatitis virus. We also per-

formed a detailed characterisation of the morphology, transfection efficiency and immune

status of our Aag2-derived clonal cell lines, and have made a clone that we term Aag2-AF5
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available to the research community as a well-defined cell culture model for arbovirus-vector

interaction studies.

Conclusions/Significance

Our findings highlight the need for further in vivo studies that more closely recapitulate natu-

ral arbovirus transmission settings in which arboviruses encounter mosquitoes harbouring

persistent rather than acute insect-specific virus infections. Furthermore, we provide the

well-characterised Aag2-derived clonal cell line as a valuable resource to the arbovirus

research community.

Author summary

Mosquito-borne viruses usually only infect humans through the bite of a mosquito that

carries the virus. Viruses transmitted by the ‘yellow fever mosquito’ Aedes aegypti, includ-

ing dengue virus, Zika virus, yellow fever virus and chikungunya virus, are causing an

ever-increasing number of human disease cases globally. Mosquito-borne viruses have to

infect and replicate inside the mosquito before they are transmitted to humans, and the

presence of other infectious agents can change the efficiency of virus transmission. Mos-

quitoes are known to be infected with ‘insect-specific viruses’ that only infect mosquitoes

and cannot cause human disease. We have shown here that in laboratory cell cultures

derived from the Aedes aegyptimosquito, pre-existing infection with an insect-specific

virus called Phasi Charoen-like virus does not affect the infection and growth of the mos-

quito-borne viruses dengue virus, Zika virus, Sindbis virus or vesicular stomatitis virus.

Our research provides important new insights into whether and how insect-specific

viruses may affect mosquito-borne virus replication. Ultimately, this information could

inform ongoing research into whether insect-specific viruses could be used to prevent the

transmission of mosquito-borne viruses to reduce global disease burdens.

Introduction

Arthropod-borne viruses (arboviruses) are a major public health concern worldwide, with

many considered emerging or re-emerging pathogens [1]. Significant taxons to which arbovi-

ruses belong include the positive-sense single-stranded RNA (+ssRNA) families Flaviviridae

(genus Flavivirus) and Togaviridae (genus Alphavirus), and the negative-sense single-stranded

RNA (-ssRNA) order Bunyavirales and family Rhabdoviridae (genus Vesiculovirus). Many

arboviral taxons also include related insect-specific viruses that can infect vector insects but

not vertebrate hosts [2,3]. Arboviruses transmitted by the vector mosquito Aedes aegypti are of

particular concern to human health, as this mosquito species thrives in urban environments

and is highly anthropophilic, feeding primarily on humans [4]. Ae. aegypti is the primary vec-

tor for the emerging and re-emerging flaviviruses dengue virus (DENV), yellow fever virus

(YFV) and Zika virus (ZIKV), and the alphavirus chikungunya virus (CHIKV) [5].

Vector competence is the intrinsic ability of an arthropod to be infected with and transmit

vector-borne pathogens [6]. Vector competence varies between individuals and populations

based on many factors, including the combination of pathogen and vector genotype, co-infec-

tion status of the vector with other microbes, and other environmental factors [4,7–9]. There is
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widespread interest in understanding the underlying mechanisms influencing vector compe-

tence to gain a better understanding of how arboviruses are transmitted and emerge on a

global and local scale, especially because this knowledge could aid the development of mosqui-

toes unable to transmit arboviruses of human public health concern. For example, mosquitoes

harbouring the obligate intracellular bacteriaWolbachia spp. are less able to transmit DENV

and other arboviruses [10–13] and are being released in endemic settings to test their impact

on human disease burdens [14]. Similarly, insect-specific viruses have also been proposed as

potential biocontrol agents to reduce arbovirus transmission [2,15].

Insect-specific viruses are highly prevalent in wild mosquito populations [16–28], with a

number of studies investigating whether insect-specific viruses influence vector competence

[reviewed in 15]. There is no consensus on how insect-specific viruses affect arbovirus replica-

tion in tissue culture or in vivo, with the experimental outcome varying depending on the com-

bination of arbovirus, insect-specific virus and mosquito species (and potentially the specific

mosquito line or cell line used), as well as other variations in the experimental set up [15].

Thus, previous studies have found insect-specific viruses to either increase [29,30], decrease

[19,31–41] or have no effect [31,35,40,42,43] on the replication of various arboviruses across

different mosquito species and cell lines. The majority of these studies were performed in the

context of acute insect-specific virus infection, which may not accurately recapitulate the

effects of the persistent insect-specific virus infections more commonly encountered in nature.

Since any persistent infection must invariably originate from an acute infection, and

because many viruses remain present for the full duration of the mosquito’s remaining life fol-

lowing the initial infection, it is worth defining our interpretation of the term ‘persistence’ in

the context of insect-specific viruses. In vivo, we would consider an insect-specific virus to be

persistent if it were maternally inherited and already present in the embryo, implying some

level of stable maintenance within the population. In cell culture, we would consider an insect-

specific virus to be persistent only if it were already present at the start of any superinfection

experiment in cells seeded from a cell line stock in which the virus had been stably maintained

over multiple passages. Since viral levels might slowly drop to clearance over time, a useful

indicator that persistence has been achieved might be the point at which viral infection is

maintained at similar levels over multiple generations in vivo (% population infected) or cell

passages (% cells infected, or viral RNA and/or titres). Where insect-specific virus loads have

been shown to vary over time in cell culture [44], the point at which viral levels begin to

increase after an initial decrease could be defined as the establishment of persistence.

To our knowledge, there are no in vivo studies on the impact of persistent insect-specific

virus infection on arbovirus replication in Aedes spp. Of the in vitro studies that tested arbovi-

rus replication in Aedes spp.-derived cell lines in which persistent insect-specific virus infection

was maintained over multiple cell passages, Burivong et al. found that DENV replication was

reduced in the presence of persistent but not acute co-infection with Aedes albopictus denso-

virus (AalDV; family Parvoviridae) in the Ae. albopictus cell line C6/36 [40]. This highlights

the differential effects persistent and acute insect-specific virus infections can have on arbovi-

rus replication. Meanwhile, Fujita et al. showed that persistent infection with Shinobi tetra-

virus (SHTV; family Permutotetraviridae) and Menghai rhabdovirus (MERV; family

Rhabdoviridae) alone and in combination reduce ZIKV replication in C6/36 cells, with the two

viruses combined also suppressing the replication of the flaviviruses DENV and Japanese

encephalitis virus (JEV) [39]. Both studies may not fully recapitulate the conditions encoun-

tered in nature, since C6/36 cells are immunocompromised [45], and the mosquito immune

system is known to pose a barrier to arboviral infection, within-vector dissemination and

transmission [46–50], and is a known contributor to the observed variability in vector compe-

tence [46,49]. Notably, Parry and Asgari observed only a modest reduction in DENV

Persistent PCLV infection does not alter arbovirus replication
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replication in the Ae. aegypti Aa20 cell line in the presence of Aedes anphevirus (AeAV; order

Mononegavirales) [19]. Therefore, further studies into whether and how persistent infection

with insect-specific viruses might modulate arbovirus replication in vivo or in immunocompe-

tent Aedes spp. cell lines are needed.

The Ae. aegypti-derived cell line Aag2 is one of the most commonly used cell lines for stud-

ies into virus-vector interactions in tissue culture. One of the benefits of Aag2 cells is that they

are immunocompetent [51,52]. A major antiviral immune response in mosquitoes is the RNA

interference (RNAi) pathway, in which viral double-stranded RNAs (dsRNAs) are processed by

Dicer-2 into small interfering RNAs (siRNAs) that are loaded into the RNA-induced silencing

complex (RISC) to target and degrade viral RNAs and thus reduce viral replication and spread

[53]. In addition, innate immune pathways such as the Janus kinase-signal transducer and acti-

vator of transcription (Jak-STAT) pathway and nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-κB)-regulated Toll and immunodeficiency (IMD) pathways regulate the

expression of antimicrobial peptides that are induced upon microbial stimulation [53].

The Aag2 cell line was originally generated in the 1960’s by Peleg from whole homogenised

embryos, and has been referred to as ‘Aag2’ since the 1990’s when Lan and Fallon adapted the

culture for growth in E-5 medium [54]. Cells within the culture exhibit differing morphologies

(Fig 1A), and it has been suggested that the varying morphologies of mosquito cells in culture

may be indicative of the presence of a diversity of embryonic and differentiated cell types

[55,56]. Furthermore, Aag2 cells are known to be persistently infected with a number of

insect-specific viruses. Cell fusing agent virus (CFAV; family Flaviviridae, genus Flavivirus)

was the first insect-specific virus discovered and has long been known to persistently infect

Aag2 cells and other Ae. aegypti cell lines [3,57,58]. In addition, we previously discovered Aag2

cells to be persistently infected with the insect-specific virus Phasi Charoen-like virus (PCLV;

order Bunyavirales, family Phenuiviridae, genus Phasivirus) [59]. CFAV and PCLV both circu-

late in Ae. aegypti in the wild [16,17,25], and may have entered the cell line during its establish-

ment or later on from an infected laboratory mosquito colony or environmental sample.

While some research groups have found their Aag2 cell lines to also be persistently infected

with the insect-specific viruses AeAV [19] or Culex Y virus [44], this is not the case for our

Aag2 cells [59].

Here, we single-cell sorted Aag2 cells to generate clonal Aag2-derived cell lines so as to pro-

vide a better-defined homogeneous Aag2-derived cell line for the research community, and as

a starting point for our own CRISPR experiments [60,61]. Although we initially selected clonal

cell lines exhibiting different morphologies corresponding to those observed within the origi-

nal Aag2 cell line (herein referred to as the ‘parental’ Aag2 cell line), these morphologies were

not stable and all cell lines reverted to the parental Aag2 cell morphology. This suggests that

the various cell morphologies observed in Aag2 cell cultures do not represent fundamentally

different cell types. Furthermore, two of the clones selected for further characterisation were

found to be ‘cured’ of PCLV, or at least harboured markedly and consistently reduced levels of

PCLV. We used these clones to test the effect persistent (rather than acute) insect-specific

virus infection has on superinfection with DENV, ZIKV, Sindbis virus (SINV) and vesicular

stomatitis virus (VSV), and observed no notable reproducible impact on the replication of

these arboviruses. Finally, we characterised a clone we termed ‘Aag2-AF5’ in further detail,

and have provided this to the research community as a more well-defined version of the paren-

tal Aag2 cell line via the European Collection of Authenticated Cell Cultures (ECACC) (phe-

culturecollections.org.uk). Our findings provide important insights into the impact that

insect-specific viruses have on mosquito vector competence for arboviruses. Furthermore, our

single cell-derived clone Aag2-AF5 represents a much needed standardised and well-defined

Ae. aegypti cell line that will benefit the vector research community.

Persistent PCLV infection does not alter arbovirus replication
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Methods

Cells

Aag2 cells were a kind gift from Raul Andino (University of California, San Francisco, CA

USA), and were maintained in Leibovitz’s L-15 medium supplemented with 2 mM glutamine

(Sigma-Aldrich, St. Louis, MO USA), 0.1 mM non-essential amino acids (Sigma-Aldrich),

10% (v/v) tryptose phosphate broth (Sigma-Aldrich), 100 U/ml penicillin, 100 μg/ml strepto-

mycin and 10% (v/v) foetal bovine serum (FBS) at 28˚C in a humidified atmosphere without

Fig 1. Generation of clonal Aag2-derived cell lines originating from single cells. (A) Brightfield microscopy image of heterogeneous Aag2 cell population consisting
of multicellular ‘clusters’ (examples indicated by hashed lines throughout) and large rounded floating cells (arrows) interspersed across a loose monolayer. (B) FACS
gating strategy illustrating selection of live single cells from DAPI-stained Aag2 cell suspension. (C) Resultant Aag2-derived clonal cell line morphologies following
limited expansion; (i) similar appearance to parental Aag2 cells, (ii) highly clustered cells with no monolayer formation (some rounded floating cells present), (iii) only
large rounded floating cells observable (individual cells and large multi-cell floating aggregates). Only those fourteen clones selected for further study are shown. Images
were taken immediately following three-week expansion from single cells into confluent 24-well plate culture. # The Aag2-AF5 cell line was selected for CRISPR gene
editing [60,61] (see main text). (D) Total number of clonal cell lines of each morphology generated. (E) Reversion of ‘clustered’ and ‘rounded’ clonal cell lines back to
parental Aag2-like morphology following extended culture. Scale bar is 200 μm.

https://doi.org/10.1371/journal.pntd.0007346.g001
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CO2. In our hands, the source of FBS is critically important for culturing Aag2 cells and

derived clones, with ThermoFisher Scientific (Waltham, MA USA) product number 16000044

being optimal. C6/36 cells were a kind gift from Jorge Muñoz-Jordán (Centers for Disease

Control and Prevention, San Juan, Puerto Rico), and were maintained in Roswell Park Memo-

rial Institute (RPMI) medium supplemented with 0.15% (w/v) sodium bicarbonate (Sigma-

Aldrich), 0.1 mM non-essential amino acids, 2 mM L-glutamine, 1 mM sodium pyruvate and

10% (v/v) FBS at 33˚C in a humidified atmosphere with 5% CO2. The species identity of all

mosquito cell lines entering our lab was verified by sequencing the cytochrome oxidase I or II

genes using established PCR protocols [25]. We also tested for RNAi deficiency, which is a dis-

tinguishing feature of some mosquito cell lines [45,55,56].

Baby hamster kidney (BHK) cells were a kind gift from Sujan Shresta (La Jolla Institute for

Allergy and Immunology, La Jolla, CA USA), and were maintained in minimal essential

medium (α-MEM) GlutaMAX supplemented with 10% (v/v) FBS, 100 U/ml penicillin, 100 μg/

ml streptomycin, and 10 mMHEPES at 37˚C in a humidified atmosphere with 5% CO2. Unless

stated, reagents were from ThermoFisher Scientific. Madin Darby Canine Kidney (MDCK)

cells were obtained from the American Type Culture Collection (ATCC) (Manassas, VA USA).

Viruses

DENV serotype 2 (DENV-2) strain 16681 [62] was a kind gift from Richard Kinney (Arbovirus

Disease Branch, Centers for Disease Control and Prevention, Fort Collins, CO USA). ZIKV

strain MR766 [63] was obtained from ATCC. Green fluorescent protein (GFP)-expressing

SINV, based on clone dsTE12Q [64,65], was a kind gift from Christopher Basler (Georgia State

University, Atlanta, GA USA). VSV was the Indiana strain and expresses GFP [66], and was a

kind gift from Adolfo Garcia-Sastre (Icahn School of Medicine at Mount Sinai, New York, NY

USA). GFP-expressing Newcastle disease virus (NDV), based on clone Hitchner B1 [67], was a

kind gift from Christopher Basler. DENV-2 and ZIKV were routinely grown on C6/36 cells at

33˚C, and SINV and VSV were routinely grown on BHK cells at 37˚C, in cell culture medium

supplemented with 2% (v/v) FBS. Briefly, for ZIKV, SINV and VSV, confluent cell monolayers

were infected at multiplicity of infection (MOI) 0.05 one day post-seeding. Culture superna-

tant was harvested seven (ZIKV) or two (SINV, VSV) days post-infection and clarified by cen-

trifugation before storage, titration and use in experiments. For DENV-2, C6/36 cells were

seeded at 1 x 106 cells per 75 cm2 culture flask and infected one day later at MOI 0.5; virus was

harvested seven days post-infection as described above.

For one-step growth curves, Aag2 cells were seeded at 5 x 105 cells/well in 12-well plates

(DENV-2), 3 x 105 cells/well in 24-well plates (SINV, VSV) or 1 x 105 cells/well in 96-well

plates (ZIKV) and infected the next day by replacing culture medium with inoculum in phos-

phate-buffered saline (PBS). Inoculum was removed after 1 h and cells were washed once in

PBS before adding fresh culture medium. To compare virus replication in Aag2-derived clonal

cell lines, cells were seeded at 1 x 105 cells/well in 96-well plates and infections performed as

above. All viruses were titrated on confluent BHK cells one day post-seeding in culture

medium containing 2% (v/v) FBS and 0.5% (w/v) methyl cellulose (Sigma Aldrich). For

DENV-2 titrations, cells were moved to 33˚C during and following infection. Titrations were

fixed six (DENV-2) or three (ZIKV, SINV, VSV) days post-infection in 1% crystal violet solu-

tion in 20% ethanol following removal of the methyl cellulose overlay.

Bacteria

Escherichia coliDH5α (ThermoFisher Scientific) were cultured overnight at 37˚C with shaking

in Luria Bertani (LB) medium (Sigma Aldrich) without antibiotics, and titrated on LB agar in

Persistent PCLV infection does not alter arbovirus replication
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6-well plates overnight at 37˚C. Listeria monocytogenes cultures were a kind gift from Adolfo

Garcia-Sastre and Staphylococcus aureus cultures were a kind gift from Flora Samaroo (Icahn

School of Medicine at Mount Sinai); both were cultured and titrated in brain heart infusion

broth/agar (Sigma Aldrich) as for E. coli. Bacteria were pelleted, washed once in PBS and resus-

pended in PBS before heat-inactivation at 60˚C for 3 h (E. coli, L.monocytogenes) or at 75˚C

for 6 h (S. aureus).

Plasmids

The GFP expression vector pIEx-EGFP [68] was a kind gift from Doug Brackney (The Con-

necticut Agricultural Experiment Station, New Haven, CT USA). The constitutive firefly lucif-

erase expression plasmid pKM19 was generated by amplifying the firefly luciferase gene from

pLUC-MCS (Agilent Technologies, Santa Clara, CA USA) and cloning it into pIEx-EGFP after

the enhanced GFP (EGFP) sequence was removed by digestion with XhoI and NcoI, using In-

Fusion cloning (Takara Biosciences, Mountain View, CA USA). The constitutive Renilla lucif-

erase expression plasmid pKM50 was generated by amplifying the Ae. aegypti ubiquitin UbL40

promoter from pSLfa-UbL40-EGFP [69] (a kind gift from Raul Andino) and cloned by In-

Fusion into pRL-TK-Renilla (Promega, Madison, WI USA) after the TK promoter was

removed by digestion with BglII and BstBI. pKM19 and pKM50 have been made available via

Addgene (addgene.org, Watertown, MA USA) with reference numbers 123655 and 123656

respectively.

Single cell sorting of Aag2 cells

Prior to cell sorting, Aag2 cells were grown in Leibovitz’s L-15 medium with supplements as

described above, including 20% (v/v) FBS. Adherent cells were trypsinised, pelleted by centri-

fugation, washed once in PBS, pelleted again by centrifugation and resuspended at 3–5 x 106

cells/ml in sterile PBS containing 1.25 μg/ml 4’,6-diamidino-2-phenylindole dihydrochloride

(DAPI; ThermoFisher Scientific) and stored on ice until required. Immediately prior to sort-

ing, cells were passed through a 35 μm filter. Single cells were sorted on a FACSAria II (BD

Biosciences, San Jose, CA USA) using a 100 μm nozzle and a sheath pressure of 35 psi into

individual wells of a 96-well plate each containing 200 μl Leibovitz’s L-15 medium with supple-

ments as above including 20% (v/v) FBS. Cells were gated to select DAPIlow (live) single cell

clones (Fig 1B). Fast-growing clonal cell lines confluent after three weeks of growth were

expanded and confirmed to be mycoplasma-negative using the Myco-Alert PLUS kit (Lonza,

Basel, Switzerland) prior to freezing for long-term storage in liquid nitrogen. Clone Aag2-AF5

has been made available via ECACC (phe-culturecollections.org.uk; Public Health England,

London, UK).

Microscopy

Images were captured using an EVOS XL Core (Fig 1) or EVOS FL (Fig 5) Cell Imaging Sys-

tem (ThermoFisher Scientific). To measure transfection efficiency, images were captured 48 h

after transient transfection with 300 ng pIEx-EGFP per well of a 12-well plate, each containing

1 x 106 cells, at the time of cell seeding using TransIT-insect transfection reagent (Cambridge

Biosciences, Cambridge, UK) as per manufacturer’s instructions. Transfection efficiency was

calculated manually using Fiji (ImageJ) software (National Institutes of Health, Bethesda, MA

USA) [70]. At least 900 individual cells were counted across three separate fields of view at 40X

magnification for each experiment.
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PCR and RT-PCR

To analyse the genomic integration of PCLV, total DNA or total RNA was extracted from 1–3

x 106 cells using the Quick-DNA or Quick-RNAMiniprep Kits (Zymo Research, Irvine, CA

USA) respectively, as per manufacturer’s instructions. RNA samples were spiked with NDV

prior to isolation. Nucleic acids were treated with DNase for 40 min at 37˚C using the DNA-

free DNA Removal Kit (ThermoFisher Scientific) or with RNase A (Sigma-Aldrich) for 1 h at

37˚C as per manufacturers’ instructions. Nucleases were removed by re-purifying the nucleic

acids as described above. cDNA was generated from RNA using the iScript cDNA Synthesis

Kit (Bio-Rad, Hercules, CA USA) with random hexamers as per manufacturer’s instructions.

PCR amplification was performed using the HOT FIREPol EvaGreen qPCR Supermix Plus

(no ROX) (Solis BioDyne, Tartu, Estonia) at 95˚C for 10 min followed by 26 cycles of 95˚C for

15 s and 60˚C for 30 s, as per manufacturer’s instructions. Primers (Sigma-Aldrich) were as

follows; Rps7, prKM27F CCACGATCCCGCACTCTGA, prKM27R TACGCTTGCCGACGA

CTTCA; NDV, forward GACAATGCTTGATGGTGAAC, reverse CAATGCTGAGAGACA

ATAGGTC; PCLV L, prKM110F CACTGCTACACCGCCTAGAG, prKM110R TGACCTGT

TGGCCTGTTGTT, prKM111F GCACCTTTAACAGGAGATGCAA, prKM111R ACTACG

CCACAATGCGATGA, prKM112F GACTCCCCGATTGAGTAAAGAAC, prKM112R

TCCAAGGAATCACTTTCTGATGC, prKM113F GTCGATTTCGAAGAAGTAGGTGC,

prKM113R TCTATCGGTGATGTGCGTTCC, prKM231F AGGAGGCACAAATCAAGG

TAGT, prKM231R GCGAGCTCACTTTGATGAATGG, prKM232F AGCCAGAGAAAGCAA

ACCAGA, prKM232R TCCATGTCATCAGTGTTGGTGT; PCLVM, prKM233F AGGCATGA

AGACCTGGACTC, prKM233R GCATGCATCTGCTCTATGGG, prKM234F TTGCAGAGGA

AGATCTCTGAGG, prKM234R TTCGCTTATCAGCCTGCAGTT, prKM235F GCCTGTCCC

ATCTGCGAAT, prKM235R AACCTGTGACTCGTGTGCAA, prKM236F AGCTGTTCTGGT

AATGTTGTGGA, prKM236R TCTTCCAAGCAGGTTGGTTTG; PCLV S, prKM237F AGCA

ATAGATACGACTGCTAGTGA, prKM237R GCATTCATCTCCATACGCACA, prKM238F

GCGTCATTCGTTTCGAGCAT, prKM238R TCAGCAGACGGAAATCGTTGT.

To test Aag2-derived clonal cell lines for the presence of insect-specific viruses, RNA was

extracted from 1–3 x 106 cells using the Quick-RNAMiniprep Kit (Zymo Research) as per

manufacturer’s instructions. cDNA was synthesised using the Maxima HMinus First Strand

cDNA Synthesis Kit (ThermoFisher Scientific) with random hexamers or gene-specific prim-

ers. PCR amplification was performed using the AccuPrime TaqHigh Fidelity DNA Polymer-

ase (ThermoFisher Scientific) at 94˚C for 2 min, followed by 35 cycles of 94˚C for 30 s, 58˚C

for 30 s and 68˚C for 1 min, followed by a final extension at 68˚C for 5 min, as per manufactur-

er’s instructions. Primers were as follows; Rps7, prKM259F TGCTTTCGAGGGACAAATC

GG, prKM259R AATTCGAACGTAACGTCACGTCC; CFAV, prKM258F TCATCTTATGT

TGCACATGGACGC, prKM258R CACCCTCCGGAAATCCGATTG; PCLV L, prKM254F

CATCAATTGATGAAGCCAGAGAAAG, prKM254R GTCTTTATGTTTTCTGTACAGCC

ATAAT; PCLVM, prKM256F AATGCAAACTGTTCTTGCAGATTCTG, prKM256R GTAG

CTTAAAATCTGCGTCGTTAGT; PCLV S, prKM257F ATTATAAATATTCAAACACCCC

AGTTATAAG, prKM257R TTCTGATCATTTAACATTCTCAGAGCTA.

RT-qPCR

To measure PCLV and CFAV RNA levels, RNA was extracted from 1 x 106 cells using 1 ml

TRIzol reagent (ThermoFisher Scientific) and treated with DNase for 40 min at 37˚C using the

DNA-free DNA Removal Kit, as per manufacturers’ instructions. To measure immune gene

induction, cells were seeded at 1 x 105 cells/well in 96-well plates and stimulated one day later

by replacing the culture medium with culture medium containing 1,000 colony-forming units
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(CFU)/cell heat-inactivated bacteria. RNA was isolated 24 h later using the Quick-RNAMini-

prep Kit (Zymo Research) as per manufacturer’s instructions. RNA was reverse transcribed

using the iScript cDNA Synthesis Kit with random hexamers as per manufacturer’s instructions.

PCR amplification was performed using the HOT FIREPol EvaGreen qPCR Supermix Plus (no

ROX) at 95˚C for 10 min followed by 40 cycles of 95˚C for 15 s and 60˚C for 30 s, as per manu-

facturer’s instructions. Primers were as follows; PCLV L, prKM110F/R (see above); CFAV,

prKM34F CGGGTTCTATGGCTTTGGGT, prKM34R ACCACCTGCTACTGTTGAGC; Rps7

(Genbank accession number XM_001660119), prKM27F CCACGATCCCGCACTCTGA,

prKM27R TACGCTTGCCGACGACTTCA; Defensin D (XM_001657239), prKM14F TGCAC

CGGGGCCATTAC, prKM14R CAGGTGGCCCGTTTCAGG; Cecropin B (XM_001648640),

prKM17F GAAGCTGGTCGGCTGAAGAA, prKM17R CAACGGGTAGTCCCTTCTGG;

Cecropin D (XM_001649131), prKM16F AGCTGTTCGCAATTGTGCTGT, prKM16R TACA

ACAACCGGGAGAGCCTT. PCLV L segment RNA levels were measured by RT-qPCR in clones

Aag2-AF10 and Aag2-AF12 in at least four independent experiments (N = 4, n = 3; Fig 2D), plus

at four separate passages for three independent cultures of each cell line (N = 3, n = 1; Fig 2Ei).

For absolute quantification of PCLV and CFAV viral RNA, RNA standards for RT-qPCR

were prepared. Amplicons of ~1,000 bp were amplified from RNA extracted from parental

Aag2 cells as described above; annealing temperatures were 59˚C (PCLV) and 55˚C (CFAV).

Primers were as follows; PCLV L segment, prKM133F CCGCTTGAATTCCCACAGCC,

prKM133R TAATACGACTCACTATAGGGAGGCAAGCATGGCAATGAGAAG; CFAV,

prKM40F TCGATTGCTAATACGACTCACTATAGGGTGAAGCTCATTGCTAACAAC,

prKM40R CGCTTATTGCATAATTCGAG. The forward (CFAV) or reverse (PCLV) primer

contains a T7 promoter sequence used to generate ssRNA positive-sense (CFAV) or negative-

sense (PCLV) RNA from the gel purified cDNA template by in vitro transcription using the

MEGAscript T7 High Yield Transcription Kit (ThermoFisher Scientific). Transcripts were

DNase treated (see above) and gel purified before quantifying the RNA concentration on a

Nanodrop spectrophotometer (ThermoFisher Scientific).

RNAi assay

Cells were seeded at 1 x 105 cells/well in 96-well plates and concurrently transiently transfected

with 10 ng/well pKM50 (Renilla), 50 ng/well pKM19 (firefly luciferase) and 1 nM dsRNA

directed against EGFP or firefly luciferase using TransIT-insect transfection reagent as per

manufacturer’s instructions. Cells were harvested and luciferase activity measured two days

post-transfection. Transfections for measuring transfection efficiency by firefly luciferase

expression were set up in the same way, without the addition of dsRNA.

dsRNAs were generated by PCR amplification from plasmid templates pIEx-EGFP (EGFP

dsRNA; primers prKM57F TAATACGACTCACTATAGGGCGTAAACGGCCACAAGTTC

A, prKM57R TAATACGACTCACTATAGGGGGCGGACTTGAAGAAGTCGT) or pKM19

(firefly luciferase dsRNA; primers prKM168F TAATACGACTCACTATAGGGCAATCCGG

AAGCGACCAACG, prKM168R TAATACGACTCACTATAGGGTTCCGCCCTTCTTGG

CCTTT). Primers contain a 5’ T7 polymerase promoter used for in vitro transcription from gel

purified amplicons using the MEGAshortscript in vitro transcription kit (ThermoFisher Scien-

tific). dsRNA was gel purified prior to use.

Bioinformatic analysis of PCLV insertions in Aag2 genome

Our previously published full-length PCLV genome sequences from Aag2 cells (Genbank

accession numbers KU936055, KU936056 and KU936057) [59] were searched against the

Aag2 cell reference genome [71] using the BLAST function at vectorbase.org [72].
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Statistics

Heteroscedastic Student’s t test (assuming unequal variance) was performed in Microsoft

Excel (Microsoft Corporation, Redmund, WA USA).

Images

Graphs were plotted in Microsoft Excel. FACS images were generated in FlowJo (FlowJo LLC,

Ashland, OR USA). Figures were prepared in Adobe Illustrator (Adobe Systems, San Jose, CA

USA). Images were cropped, annotated and modified to optimise brightness and contrast

only.

Results

Establishment of clonal cell lines derived from Aag2 cells

The Ae. aegypti Aag2 cell line forms a discontinuous monolayer of cells interspersed with

three-dimensional cell clusters attached to the substrate and large rounded cells floating in iso-

lation through the culture medium (Fig 1A). It is in principle possible that these morphological

differences reflect underlying functional differences [55,56]. We therefore derived clonal cell

lines from Aag2 cells to provide a more homogeneous and better-defined experimental back-

ground, for example for the generation of our previously reported CRISPR-edited cell lines

[60,61]. Parental Aag2 cells were individually sorted into three 96-well plates using flow cytom-

etry, with a stringent double gating scheme for single cells (Fig 1B). Of the 288 single cells

plated, 90 clones expanded into multi-cell cultures in 24-well plates within three weeks. Fifteen

of these clones were selected for further study and assigned reference numbers preceded by the

prefix ‘AF’ (Aag2-AF1, Aag2-AF2 etc.). Clone Aag2-AF13 succumbed to fungal infection and

is not discussed further. The set of clones was selected to be representative of the different mor-

phologies observed across the population of clonal cell lines generated. Some clones resembled

the parental Aag2 cell line (Fig 1Ci) while others did not form monolayers and instead either

grew in large clusters attached to the substrate (Fig 1Cii) or grew floating individually and in

aggregates in the culture medium (Fig 1Ciii). These clustered and floating morphologies are

also observed in parental Aag2 cells (Fig 1A). Across all single-cell clones generated, these

three morphologies (‘parental Aag2-like’, ‘clustered’, ‘rounded’) were represented at similar

levels, with slightly more ‘clustered’ cell lines observed (Fig 1D). However, all of the clonal cell

lines reverted back to the parental Aag2 morphology over time (Fig 1E), with this parental

Aag2 morphology being stably maintained over many passages. This suggests that the different

cell morphologies observed in the parental Aag2 cell line are not indicative of the presence of

different cell types within the heterogeneous Aag2 cell culture.

We observed no gross differences in the growth kinetics of any of the Aag2-derived single-

cell clones compared to the parental Aag2 cell line during routine culture. Before proceeding,

we also confirmed that all clonal cell lines tested negative for mycoplasma. Note that we have

used clone Aag2-AF5 as a well-defined single cell-derived starting point for the generation of

Aag2 mutants using CRISPR [60,61].

Parental Aag2 cells do not contain PCLV-Derived DNA sequences
integrated into their genome

In mosquitoes and their derived cell lines, fragments of RNA virus genomes, including insect-

specific virus genomes, can be reverse transcribed into DNA by endogenous reverse transcrip-

tases [73,74], following which these fragments can become integrated into the cellular genome

[75–78]. DNA sequences derived from members of the Flaviviridae, Rhabdoviridae and other
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viral families are known to be integrated within the Aag2 genome [56,76]. We were ultimately

interested in studying the potential impact of persistent PCLV infection on acute superinfec-

tion with arboviruses in our Aag2-derived clonal cell lines, and therefore first investigated

whether sequences derived from PCLV specifically are also integrated into the parental Aag2

cell genome. We performed a BLASTn search against the Aag2 reference genome [71] using

our previously published full-length genome sequences for the PCLV known to infect the

parental Aag2 cell line [59]. We did not identify any statistically significant (E-value<10−5)

PCLV-derived sequences from any of the three viral genome segments (L, M, S) in the Aag2

reference genome sequence.

To rule out the possibility that fragments derived from persistent PCLV infection are inte-

grated into the specific version of the parental Aag2 cell line growing in our lab, we designed

primers to amplify short (50-150-nt) fragments covering each genome segment in 1,000-nt inter-

vals. As a positive control we used RNA purified from parental Aag2 cells that had been subjected

to a reverse transcription reaction (Fig 2A). To control for template that was only present in RNA

form, we spiked the samples with the RNA virus Newcastle disease virus (NDV). To confirm that

the RNA samples were not contaminated with residual DNA, we treated RNA with RNase or

DNase prior to performing RT-PCR. Here, the mosquito genomic ribosomal subunit 7 (Rps7)

served as a control, as this sequence is present in both RNA and DNA forms within the cell. For

each PCLV-specific primer pair, and the NDV and Rps7 controls, RNase treatment eliminated

the PCR signal, while DNase treatment did not (Fig 2A). This confirms the purity of the RNA

samples. No PCLV signal was detected when PCR was performed on RNA that had not been sub-

jected to reverse transcription, or on RNA isolated from the mammalian Madin-Darby canine

kidney (MDCK) cell line, which should not contain genomic integrations of insect-specific virus

sequences (Fig 2A). We then repeated the experiment using genomic DNA isolated from parental

Aag2 cells, and detected no evidence of DNA sequences derived from PCLV (Fig 2A). Impor-

tantly, Rps7 was amplified when genomic DNA was treated with RNase, but not DNase, confirm-

ing the purity of the DNA samples (Fig 2A). Although we cannot exclude the possibility that the

primers we designed missed smaller fragments of integrated PCLV sequence, our data suggest

that PCLV fragments are not integrated into the genome of parental Aag2 cells, which is in agree-

ment with data from other research groups [58].

Identification of Aag2-derived clonal cell lines harbouring consistently low
levels of persistent insect-specific bunyavirus infection

We next tested whether all of our Aag2-derived clonal cell lines still contained both of the insect-

specific viruses known to persistently infect parental Aag2 cells. We detected CFAV RNA by

RT-PCR in parental Aag2 cells and in all of our clonal cell lines, with cellular Rps7 RNA serving

as a template control (Fig 2B). In contrast, clones Aag2-AF10 and Aag2-AF12 did not contain

detectable levels of the PCLV S segment in this assay, while PCLV RNAwas clearly detectable to

varying degrees in parental Aag2 cells and in the other clones (Fig 2B). To verify this result, we

performed strand-specific RT-PCR to amplify genome and antigenome sequences from each of

the three PCLV genome segments, with Rps7 serving as a template control. In this experiment we

did detect PCLVM segment RNA in the Aag2-AF10 clone (Fig 2C). Although any amplification

of the L and S segments were below the limit of detection, the presence of both genome and anti-

genome sequences for the M segment indicates that the virus must be replicating its RNA and

therefore the L (RdRp) and S (nucleocapsid) segments, which are both required for genome repli-

cation, must also be present. No PCLV RNAwas detected in the Aag2-AF12 clone in this assay.

Finally, we measured PCLV L segment RNA by RT-qPCR and detected low levels of PCLV

RNA in the Aag2-AF10 clone, with PCLV RNA consistently maintained at lower levels relative

Persistent PCLV infection does not alter arbovirus replication

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007346 November 6, 2019 11 / 25

https://doi.org/10.1371/journal.pntd.0007346


Persistent PCLV infection does not alter arbovirus replication

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007346 November 6, 2019 12 / 25

https://doi.org/10.1371/journal.pntd.0007346


to the parental Aag2 cell line over multiple cell passages (Fig 2D and 2E). We did not detect

PCLV RNA at early passages in the Aag2-AF12 clone, though very low levels of PCLV were

detected at later passages (Fig 2D and 2E). Reduced levels of PCLV RNA were maintained in

clones Aag2-AF10 and Aag2-AF12 over multiple independent passages (Fig 2Ei). PCLV RNA

levels in clones Aag2-AF10 and Aag2-AF12 were generally maintained at levels at least 2–3

logs lower than in the parental cell line, with PCLV RNAmostly undetectable in clone

Aag2-AF12. In contrast, the levels of CFAV RNA were comparable in clones Aag2-AF5,

Aag2-AF10, Aag2-AF12 and the parental cell line (Fig 2Eii). Overall, our data indicate that

clones Aag2-AF10 and Aag2-AF12 harbour markedly reduced levels of PCLV infection that

are maintained at consistently low levels over multiple cell passages.

All Aag2-Derived clonal cell lines have a functional RNAi pathway

Derived cell lines can have markedly different characteristics compared to their parental cell

lines, and several mosquito cell lines in particular are known to be immunodeficient compared

to the cell lines they were derived from [45,55,56]. Before proceeding, we therefore tested our

Aag2-derived clonal cell lines for RNAi functionality, since this immune pathway is defective

in several mosquito cell lines, such as C6/36 and C7/10 [45,55,56]. In parental Aag2 cells, tran-

sient co-transfection of a constitutively active firefly luciferase reporter plasmid with a dsRNA

directed against firefly luciferase significantly reduced luciferase expression compared to a

non-specific dsRNA directed against GFP, confirming that RNAi is active in the parental Aag2

cell line (Fig 3). In contrast, the luciferase dsRNA did not significantly reduce reporter activity

in RNAi-defective C6/36 cells (Fig 3). The luciferase-specific dsRNA significantly reduced fire-

fly luciferase activity in all of the Aag2-derived clonal cell lines, confirming that all of the clones

have a functional RNAi pathway (Fig 3). Furthermore, the clonal cell line Aag2-AF5 was previ-

ously shown to have a functional RNAi pathway as measured by the production of 21-nt siR-

NAs during viral infection [60,61].

Pre-existing persistent infectionWith PCLV Does Not modulate acute
superinfection with flaviviruses

The isolation of the clonal cell lines Aag2-AF10 and Aag2-AF12 provided an opportunity to

test whether a pre-existing persistent infection with an insect-specific virus (in this case PCLV)

modulates the replication of arboviruses in cell culture by comparing these PCLV-low clones

to clones harbouring higher levels of PCLV. We started by testing the flavivirus DENV sero-

type 2 (DENV-2), which replicated with a peak in titres six days post-infection in a one-step

growth curve at high multiplicity of infection (MOI 2) in the parental Aag2 cell line (Fig 4A).

Fig 2. Aag2-AF10 and Aag2-AF12 cell lines harbour barely detectable levels of phasi charoen-like virus. (A) Short
PCR amplicons spanning the three PCLV genome segments (L, M, S) amplified from RNA or genomic DNA isolated
from parental Aag2 cells, either with or without a reverse transcription step (RT). Purified nucleic acids were treated
with RNase or DNase prior to PCR. MDCK cell RNA, the cellular Rps7 gene/mRNA and the RNA virus NDV, which
was spiked into cells immediately prior to RNA extraction, serve as controls. (B) Detection of the PCLV S segment and
CFAV by RT-PCR in Aag2-derived clonal cell lines. Cellular Rps7 mRNA serves as a loading control. (C) Detection of
the PCLV L, M and S genome (-ssRNA) and antigenome (+ssRNA) segments in select Aag2-derived clonal cell lines by
sense-specific RT-PCR. Rps7 mRNA serves as a loading control. (D) PCLV L segment RT-qPCR ΔΔCt (normalised to
Rps7 mRNA) for select Aag2-derived clonal cell lines expressed relative to parental Aag2 cell line at (i) early passages
(Aag2-AF10, passage 2; Aag2-AF12, passage 3) and (ii) later (‘medium’) passages (Aag2-AF10, passage 8; Aag2-AF12,
passage 12). (E) RT-qPCR quantification of viral RNA copies for PCLV L segment (i) and CFAV (ii) at late passages in
Aag2 (parental), Aag2-AF5, Aag2-AF10 and Aag2-AF10 cells. Starting passages (“~P15”) were passage 15 (parental
Aag2), 12 (Aag2-AF5), 14 (Aag2-AF10) and 13 (Aag2-AF12). Data points represent three independently passaged
lines. Error bars represent standard deviation. �� P< 0.01; ��� P< 0.001; ns, not significant (one-tailed Student’s t
test). UD, undetected. # Aag2-AF5 cell line used for CRISPR gene editing [60,61].

https://doi.org/10.1371/journal.pntd.0007346.g002
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DENV-2 replicated with similar kinetics (1, 2, 3 days post-infection) and to a similar level three

days post-infection in clones Aag2-AF10 and Aag2-AF12 relative to the parental Aag2 cell line

at MOI 2 (Fig 4B). This indicates that the markedly suppressed PCLV infection in clones

Aag2-AF10 and Aag2-AF12 had very little impact on DENV-2 replication. Although DENV-2

exhibited somewhat different growth kinetics across the Aag2-derived clonal cell lines, titres

three days post-infection did not deviate from the parental Aag2 cell line by more than one log,

and were close to within half a log of the parental Aag2 cell line for all clones (Fig 4B).

We next tested the flavivirus ZIKV, which replicated with a peak in titres three days post-

infection in the parental Aag2 cell line at MOI 2 (Fig 4C). While ZIKV replicated with faster

Fig 3. All Aag2-derived clonal cell lines have a functional RNAi pathway. C6/36 cells, the parental Aag2 cell line and its derived clonal cell lines were
transiently transfected with plasmids constitutively expressing firefly luciferase and Renilla luciferase (transfection control) in the presence of dsRNA
directed against GFP (dsGFP) or firefly luciferase (dsLuc). Mean Renilla-normalised firefly luciferase (FFluc) expression is expressed relative to the dsGFP
negative control. � P< 0.05; �� P< 0.01; ��� P< 0.001; ns, not significant (one-tailed Student’s t test). Error bars represent standard deviation. # Aag2-AF5
cell line used for CRISPR gene editing [60,61] is highlighted in orange. PCLV-low clones Aag2-AF10 and Aag2-AF12 are highlighted in green; parental Aag2
cells and C6/36 cells (negative control) are shown in purple.

https://doi.org/10.1371/journal.pntd.0007346.g003
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kinetics (1, 2, 3 days post-infection) and to a more than one-log higher titre at its peak in clone

Aag2-AF12, the growth kinetics and peak titres were similar to the parental Aag2 cell line in

clone Aag2-AF10 (Fig 4D). Therefore, although clone Aag2-AF12 appears to be more permis-

sive to ZIKV replication, this is not linked to PCLV levels, which are also reduced in clone

Aag2-AF10. Again, ZIKV replication kinetics varied somewhat across the other clones, but fell

close to within half a log from the parental Aag2 cell line at their peak.

Replication kinetics of both DENV-2 and ZIKV in clone Aag2-AF5 were comparable to the

parental Aag2 cell line (Fig 4B and 4D).

Pre-existing persistent infection with PCLV does not modulate acute
superinfection with the alphavirus sindbis virus

Alphaviruses, like flaviviruses, are +ssRNA viruses, and we next tested replication of the model

alphavirus SINV in our Aag2-derived clonal cell lines. SINV replication peaked 48 hpi in

parental Aag2 cells infected at MOI 2 (Fig 4E). SINV replication kinetics (6, 12, 24 hpi) and

peak viral titres were similar in clones Aag2-AF10 and Aag2-AF12 compared to parental Aag2

cells (Fig 4F), indicating that persistent PCLV infection does not markedly alter SINV replica-

tion. Again, variability in the replication kinetics and peak titres of SINV were observed across

the other Aag2-derived clonal cell lines. SINV replication kinetics and peak titres in clone

Aag2-AF5 were comparable to the parental Aag2 cell line.

Pre-existing persistent infection with PCLV does not modulate acute
superinfection with the rhabdovirus vesicular stomatitis virus

As a contrast to the +ssRNA arboviruses tested, we next tested the -ssRNA rhabdovirus VSV.

In a one-step growth curve (MOI 2), VSV replication peaked 12 hpi in parental Aag2 cells (Fig

4G). As for the other viruses tested, peak titres of VSV in clones Aag2-AF10 and Aag2-AF12

were within one log compared to the parental Aag2 cell line at 12 hpi, with some variability in

replication kinetics (6, 9, 12 hpi) observed across all Aag2-derived single-cell clones (Fig 4H).

VSV replicated similarly in clone Aag2-AF5 and the parental Aag2 cell line.

Overall, we therefore conclude that pre-existing persistent infection with PCLV does not

notably alter the replication of a diverse range of +ssRNA and -ssRNA arboviruses, since repli-

cation kinetics and peak titres of DENV-2, ZIKV, SINV and VSV were not markedly different

from the parental Aag2 cell line in clones Aag2-AF10 and Aag2-AF12, which harbour drasti-

cally reduced levels of persistent PCLV infection.

Transfection efficiency of clone Aag2-AF5

Next, we further characterised clone Aag2-AF5 with the goal of providing a better-defined

Aag2-derived cell line for the research community. Clone Aag2-AF5 was selected because, of

all the isolated clones, arboviral infectivity in Aag2-AF5 cells was most similar to the parental

Fig 4. Susceptibility of Aag2-derived clonal cell lines to infection with arboviruses. (A, C, E, G) Single-step growth
kinetics of DENV-2 (A), ZIKV (C), SINV (E) and VSV (G) in the parental Aag2 cell line (MOI 2). Grey shading
highlights time points tested in Aag2-derived clonal cell lines. (B, D, F, H) Replication of DENV-2 (B) and ZIKV (D) at
1, 2 and 3 days post-infection, replication of SINV (F) at 6, 12 and 24 hours post-infection (hpi), and replication of
VSV (H) at 6, 9 and 12 hpi in the parental Aag2 cell line and its derived clonal cell lines (all MOI 2). Grey shading
indicates 0.5 Log10 above and 0.5 Log10 below peak extracellular titres detected in parental Aag2 cell line. Error bars
represent standard deviation. # Aag2-AF5 cell line used for CRISPR gene editing [60,61] is highlighted in orange.
PCLV-low clones Aag2-AF10 and Aag2-AF12 are highlighted in green; parental Aag2 cells and C6/36 cells (negative
control) are shown in purple.

https://doi.org/10.1371/journal.pntd.0007346.g004
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Aag2 cells (Fig 4). Furthermore, this clone formed a more uniform monolayer and was more

resilient and easier to handle in culture than parental Aag2 cells.

First, we tested the transfection efficiency of this clone by transient transfection with a con-

stitutive GFP expression plasmid (Fig 5A). A similar proportion of Aag2-AF5 cells (56%) were

detectably GFP-positive compared to the parental Aag2 cell line (47%) (Fig 5B); differences

were not statistically significant. However, the GFP signal was brighter in Aag2-AF5 cells (Fig

5A). This higher level of transgene expression in Aag2-AF5 cells was confirmed by transient

transfection with a constitutively active firefly luciferase reporter plasmid (Fig 5C). Therefore,

while the overall proportion of cells transiently expressing a transgene is comparable for clone

Aag2-AF5 and the parental Aag2 cell line, individual Aag2-AF5 cells express transgenes to

higher levels, making this clone well-suited for molecular experiments including gene editing

using CRISPR [60,61].

Fig 5. Transfection efficiency of clone Aag2-AF5 relative to parental Aag2 cells. (A) Cells were imaged at 10X
magnification 48 h after transient transfection with a constitutively active GFP expression vector (pIEx-EGFP). (B)
Quantification of transfection efficiency; differences are non-significant. (C) Cells were transiently transfected with a
constitutively active firefly luciferase reporter plasmid (pIEx-luc) and luciferase activity was measured four days later. �

P< 0.05 (two-tailed Student’s t test). RLU, relative light units. All error bars represent standard deviation. # Aag2-AF5
cell line used for CRISPR gene editing [60,61].

https://doi.org/10.1371/journal.pntd.0007346.g005
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Antimicrobial peptide induction in clone Aag2-AF5

Clone Aag2-AF5 was already confirmed to have an active antiviral RNAi pathway (Fig 3)

[60,61], and we next tested whether this clone was also competent for antimicrobial peptide

induction via inducible innate immune signalling pathways. When stimulated with heat-inac-

tivated Gram-negative (Escherichia coli) or Gram-positive (Listeria monocytogenes or Staphylo-

coccus aureus) bacteria, which are well-defined stimuli of inducible innate immune signalling

pathways [53], upregulation of the antimicrobial peptides defensin D (DefD), cecropin B

(CecB) and cecropin D (CecD) was detected in both parental Aag2 cells and clone Aag2-AF5

with all stimuli (Fig 6). There was however some variability in the relative levels of antimicro-

bial peptide induction in clone Aag2-AF5 compared to the parental cell line for different gene/

stimulus combinations. Thus, all tested antimicrobial peptide genes were less inducible in

clone Aag2-AF5 with E. coli stimulation (Fig 6A), and CecD was also less inducible in clone

Aag2-AF5 for all stimuli tested (Fig 6Aiii, 6Biii and 6Ciii), though some of these differences

were not significant. In contrast, DefD and CecB were more inducible in clone Aag2-AF5 dur-

ing stimulation with Gram-positive bacteria compared to the parental Aag2 cell line (Fig 6Bi,

6Bii, 6Ci and 6Cii), with some of these differences again being non-significant. Therefore,

while there may be subtle differences in the immune sensitivity of clone Aag2-AF5 in terms of

antimicrobial peptide production compared to parental Aag2 cells, there is no gross defect in

inducible innate immune pathways in response to bacterial stimulation.

Discussion

In this study, we generated clonal cell lines from the widely used Aag2 cell line. While the dif-

ferent morphologies within the parental Aag2 cell line could have been indicative of the pres-

ence of different embryo-derived cell types, this appears not to be the case as all of the clonal

cell lines reverted back to the parental Aag2 cell morphology, with cell clusters and floating

cells above the monolayer. In our hands, the Aag2 morphology is highly susceptible to culture

conditions, and therefore the different cell morphologies may instead reflect cellular responses

to growth phase, cell density or nutrient status.

Across all of the clonal Aag2-derived cell lines, there was minor variability in the replication

kinetics and peak titres for all of the viruses tested. These effects were not consistent across

viruses or cell lines and did not overall correlate consistently with the presence or level of

insect-specific viruses in the culture. Neither are these effects likely to be linked to variability

in immune responses because all clonal cell lines had a functional RNAi pathway, considered

to be the major antiviral immune pathway in insects [51,52]. However, we did not extensively

test inducible immune pathways such as Toll, IMD or Jak-STAT signalling in all clones. The

clonal cell lines may exhibit variability in the expression of pro- or anti-viral factors, and could

therefore be useful for identifying viral restriction factors or host proteins required for viral

replication in mosquito cells.

Clone Aag2-AF5 as a defined cell line for the arbovirus research
community

There has been a drive to improve data reproducibility, with the standardisation of experimen-

tal methods and tools representing one important means of achieving this end [79]. We believe

that our Aag2-derived clone Aag2-AF5 represents a useful standardised Ae. aegypti cell line for

the arbovirus research community, and have made the cell line available via ECACC (phe-cul-

turecollections.org.uk). The parental Aag2 cell line has previously been shown to be a valuable

tool for studying mosquito immune responses to arbovirus infection [51,52], and we
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confirmed that Aag2-AF5 cells are also competent for RNAi and antimicrobial peptide induc-

tion. Furthermore, the viruses tested all replicated with similar kinetics and to similar peak

titres in Aag2-AF5 cells compared to the parental Aag2 cell line, and this clone was therefore

chosen to allow comparison to experiments performed in parental Aag2 cells. Morphologi-

cally, Aag2-AF5 cells are similar to the parental Aag2 cell line, and easier to work with in cul-

ture. Both CFAV and PCLV remain present in Aag2-AF5 cells. Aag2-AF5 cells are readily

transfected and express exogenous proteins to high levels. We have also previously shown that

Aag2-AF5 cells are easily gene edited using CRISPR [60], and Aag2-AF5 cells provide a more

homogeneous background for gene editing experiments compared to the parental Aag2 cell

line.

We have shared Aag2-AF5 cells widely within the research community, and their availabil-

ity via ECACC should further increase their utility in standardising cell culture experiments to

provide more reproducible data on arbovirus-vector interactions in Ae. aegypti cells.

Impact of persistent insect-specific virus infection on arbovirus replication

Two of the clonal Aag2-derived cell lines (Aag2-AF10 and Aag2-AF12) exhibited markedly

reduced levels of persistent PCLV infection. PCLV levels remained consistently low over mul-

tiple passages, and in the case of Aag2-AF12 cells were so low as to be only intermittently

detectable. In the wild, insect-specific viruses primarily cause persistent infection of mosqui-

toes, and comparison of the PCLV-low clones Aag2-AF10 and Aag2-AF12 to parental Aag2

cells allowed us to test the impact of persistent insect-specific virus infection on arbovirus rep-

lication, in comparison to previous studies that tested the impact of acute insect-specific virus

infection on arbovirus replication [31,34–37,41–43]. We observed no consistent impact of

PCLV on the replication of representative flaviviruses (DENV-2, ZIKV), alphaviruses (SINV)

or rhabdoviruses (VSV), representing both +ssRNA and -ssRNA arboviruses. Göertz et al.

recently generated Aag2-derived cell lines that lack CFAV but are still persistently infected

with PCLV [80], and these would be an interesting tool to test whether the persistent infection

of Aag2 cells with CFAV has a more notable effect on arbovirus replication.

To our knowledge, only one previous study tested the impact of persistent insect-specific

virus (AeAV) infection on arbovirus (DENV) replication in immunocompetent Aedes spp. cell

cultures [19], with at most a minor reduction in DENV replication in the presence of AeAV.

Our data agree with this study in that no major impact of persistent insect-specific virus infec-

tion was observed on arbovirus replication, with our study extending this observation to a

broader set of arboviral families. A study by Kuwata et al. also found that persistent insect-spe-

cific virus (CxFV) infection did not reduce, and in fact increased, arbovirus (DENV, JEV) rep-

lication in a Culex tritaeniorhynchus cell line [29]. To our knowledge there are no studies

testing the impact of persistent insect-specific virus infection on arbovirus replication in vivo

in Aedes spp., however our cell line data are also in agreement with an in vivo study in Culex

spp. that found no impact of persistent insect-specific virus (CxFV) infection on arbovirus

(West Nile virus, WNV) transmission [32].

The lack of impact of persistent insect-specific virus infection on arbovirus replication in

Aedes spp. cell culture is noteworthy because a number of studies have reported reduced repli-

cation of arboviruses in the presence of acute insect-specific virus infection in cell lines [31,34–

Fig 6. Antimicrobial peptide induction in clone Aag2-AF5 compared to parental Aag2 cells. Cells were stimulated
with heat-inactivated E. coli (A), L.monocytogenes (B) or S. aureus (C) for 24 h and induction of DefD (i), CecB (ii) or
CecD (iii) was measured by RT-qPCR. Gene induction is relative to the respective unstimulated cell line. � P< 0.05; ��

P< 0.01; ns, not significant (two-tailed Student’s t test). Error bars represent standard error of the mean. # Aag2-AF5
cell line used for CRISPR gene editing [60,61].

https://doi.org/10.1371/journal.pntd.0007346.g006
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37] and in the presence of acute insect-specific virus infection in vivo [31,35–37,41] in both

Aedes spp. and Culex spp. Arboviruses have been shown to be affected differently when enter-

ing cells harbouring acute versus persistent insect-specific virus infection [40], which likely

expose arb oviruses to markedly different cellular environments. For instance, immune

responses likely differ under acute versus persistent infection scenarios, and persistent infec-

tion with at least one insect-specific virus (Culex Y virus) has been shown to modulate RNAi

responses [81]. Therefore, studies linking acute or persistent insect-specific virus infection to

reduced arbovirus replication in the immunocompromised C6/36 cell line [32,33,39,40] may

also not fully reflect the effects of persistent insect-specific virus infection in natural settings.

Our findings and those of others [19,32] suggest that the persistent insect-specific virus

infections encountered by arboviruses in nature and in mosquitoes hypothetically infected for

environmental release may not reduce, and may in fact enhance [29], arbovirus transmission.

However, further studies are required to reconcile the contradictory observations made by dif-

ferent research groups, which may be influenced by insect-specific virus infection status (acute

versus persistent), as well as the tripartite combination of arbovirus, insect-specific virus and

mosquito species. Representative in vivo studies in particular are much needed, since cell cul-

ture experiments do not fully recapitulate all facets of the arbovirus infection process in

mosquitoes.

We therefore provide new insights that may have important implications for the use of

insect-specific viruses as biocontrol agents to reduce the transmission of arboviruses. Further-

more, clone Aag2-AF5 represents a valuable new clonal and better-defined cell line to provide

a more standardised system for studying arbovirus-vector interactions in cell culture.
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