
ÆGIS: Shielding Vulnerable Smart Contracts Against Attacks
Christof Ferreira Torres

SnT, University of Luxembourg

Luxembourg, Luxembourg

christof.torres@uni.lu

Mathis Baden

SnT, University of Luxembourg

Luxembourg, Luxembourg

mathis.steichen@uni.lu

Robert Norvill

SnT, University of Luxembourg

Luxembourg, Luxembourg

robert.norvill@uni.lu

Beltran Borja Fiz Pontiveros

SnT, University of Luxembourg

Luxembourg, Luxembourg

beltran.fiz@uni.lu

Hugo Jonker

1
Open University of the Netherlands

Heerlen, Netherlands

2
Radboud University

Nijmegen, Netherlands

hugo.jonker@ou.nl

Sjouke Mauw

SnT, University of Luxembourg

Luxembourg, Luxembourg

sjouke.mauw@uni.lu

ABSTRACT

In recent years, smart contracts have suffered major exploits, cost-

ing millions of dollars. Unlike traditional programs, smart contracts

are deployed on a blockchain. As such, they cannot be modified

once deployed. Though various tools have been proposed to detect

vulnerable smart contracts, the majority fails to protect vulnera-

ble contracts that have already been deployed on the blockchain.

Only very few solutions have been proposed so far to tackle the

issue of post-deployment. However, these solutions suffer from low

precision and are not generic enough to prevent any type of attack.

In this work, we introduceÆGIS, a dynamic analysis tool that

protects smart contracts from being exploited during runtime. Its

capability of detecting new vulnerabilities can easily be extended

through so-called attack patterns. These patterns are written in a

domain-specific language that is tailored to the execution model of

Ethereum smart contracts. The language enables the description of

malicious control and data flows. In addition, we propose a novel

mechanism to streamline and speed up the process of managing

attack patterns. Patterns are voted upon and stored via a smart

contract, thus leveraging the benefits of tamper-resistance and

transparency provided by the blockchain. We compare ÆGIS to

current state-of-the-art tools and demonstrate that our solution

achieves higher precision in detecting attacks. Finally, we perform

a large-scale analysis on the first 4.5 million blocks of the Ethereum

blockchain, thereby confirming the occurrences of well reported

and yet unreported attacks in the wild.

KEYWORDS

Ethereum; Smart contracts; Exploit prevention; Security updates

1 INTRODUCTION

Blockchain has evolved greatly since its first introduction in 2009

[25]. A blockchain is essentially a verifiable, append-only list of

records in which all transactions are recorded in batches of so-called

blocks. Each block is linked to a previous block via a cryptographic

hash. This linked list of blocks is maintained by a decentralised

peer-to-peer network. The peers in this network follow a consensus

protocol that dictates which peer is allowed to append the next

block. By introducing the concept of smart contracts, Ethereum [41]

revolutionized the way digital assets are traded. As smart contracts

govern more and more valuable assets, the contracts themselves

have come under attack from hackers.

Smart contracts are programs that are stored and executed across

blockchain peers. They are deployed and invoked via transactions.

Deployed smart contracts are immutable, thus any bugs present

during deployment [2], or as a result of changes to the blockchain

protocol [7], can make a smart contract vulnerable. Moreover, since

contract owners are anonymous, responsible disclosure is usually

infeasible or very hard in practice. Though smart contracts can be

implemented with upgradeability and destroyability in mind, this is

not compulsory. As a matter of fact, Ethereum already faced several

devastating attacks on vulnerable smart contracts.

In 2016, an attacker exploited a reentrancy bug in a crowdfund-

ing smart contract known as the DAO. The attacker exploited the

capability of recursively calling a payout function contained in the

contract. The attacker managed to drain over $150 million [32]

worth of cryptocurrency from the smart contract. The DAO hack

was a poignant demonstration of the impact that insecure smart

contracts can have. The Ethereum market cap value dropped from

over $1.6 billion before the attack, to values below $1 billion after

the attack, in less than a day. Another example happened with the

planned Constantinople hard fork in January 2019. Ethereum was

scheduled to receive an update intended to introduce a cheaper

gas cost for certain smart contract operations. On the eve of the

hard fork, a new reentrancy issue caused by this update was de-

tected. It turned out that the reduction of gas costs also enabled

reentrancy attacks on smart contracts that were previously secure.

This resulted in the update being delayed [7]. A third example is

the Parity wallet hack. In 2017, the Parity wallet smart contract was

attacked twice due to a bug in the access control logic. The bug

allowed anyone to claim ownership of the smart contract and to

take control of all the funds. The first attack resulted in over $30

million being stolen [44], whereas the second attack resulted in

roughly $155 million being locked forever [29].

The manner in which these issues are currently handled is not

ideal. At the moment, whenever a major vulnerability is detected by

the Ethereum community, it can take several days or weeks for the

community to issue a critical update and even longer for all nodes to

adopt this update. Such a delay extends the window for exploitation

and can have dire effects on the trading value of the underlying

cryptocurrency. Moreover, the lack of a standardised procedure to

deal with vulnerable smart contracts, has led to a “Wild West”-like

situation where several self-appointed white hats started attacking

smart contracts in order to protect the funds that are at risk from

other malicious attackers [4]. However, in some cases the effects of

attacks can cause a split in the community so contentious that it

leads to a hard fork, such as in the case of the DAO hack which led

to the birth of the Ethereum classic blockchain [32].

Academia has proposed a plethora of different tools that al-

low users to scan smart contracts for vulnerabilities prior to de-

ploying them on the blockchain or interacting with them (see

e.g. [21, 23, 36, 38]). However, by design these tools cannot protect

vulnerable contracts that have already been deployed. Grossman et

al. [12] are the first to present ECFChecker, a tool that allows to

dynamically check executed transactions for reentrancy. However,

ECFChecker does not prevent reentrancy attacks. In order to pro-

tect already deployed contracts, Rodler et al. [31] propose Sereum,

a modified Ethereum client that detects and reverts
1
transactions

that trigger reentrancy attacks. Sereum leverages the principle that

every exploit is performed via a transaction. Unfortunately, Sereum

has three major drawbacks. First, it requires the client to be modi-

fied whenever a new type of vulnerability is found. Second, not only

the tool itself, but also any updates to it must be manually adopted

by the majority of nodes for its security provisions to become ef-

fective. Third, their detection technique can only detect reentrancy

attacks, despite there being many other types of attacks [2].

In summary, we make the following contributions:

• We introduce a novel domain-specific language, which en-

ables the description of so-called attack patterns. These pat-
terns reflect malicious control and data flows that occur

during execution of malicious transactions.

• We present ÆGIS, a tool that reverts malicious transactions

in real-time using attack patterns, thereby preventing attacks

on deployed smart contracts.

• We propose a novel way to quickly propagate security up-

dates without relying on client-side update mechanisms, by

making use of a smart contract to store and vote upon new

attack patterns. Storing patterns in a smart contract ensures

integrity, decentralizes security updates and provides full

transparency on the proposed patterns.

• We illustrate the effectiveness by providing patterns to pre-

vent the two most prominent hacks in Ethereum, the DAO

and Parity wallet hacks.

• Finally, we provide a detailed comparison to current state-

of-the-art runtime detection tools and perform a large-scale

analysis on 4.5 million blocks. The results demonstrate that

ÆGIS achieves better precision than current state-of-the-art

tools.

2 BACKGROUND

In this section, we provide the necessary background for under-

standing the setting of our work. We describe the Ethereum block-

chain and its capability of executing smart contracts. We focus on

Ethereum since it is currently the most prominent blockchain plat-

form when it comes to smart contract deployment. Finally, we also

1
Consuming gas, without letting the transaction affect the state of the blockchain.

provide background information on the two most prominent smart

contract vulnerabilities, namely, reentrancy and access control.

2.1 Ethereum and Smart Contracts

Ethereum. The Ethereum blockchain is a decentralized public

ledger that is maintained by a network of nodes that distrust one

another. Every node runs one of several existing Ethereum clients.

The clients can operate with different configurations. For instance,

nodes who are configured to mine blocks are called miners. Miners

execute transactions, include them in blocks and append them

to the blockchain. They compete to create a block by solving a

cryptographic puzzle. Once they succeed, the block is proposed to

the network. Other miners verify the new block and either accept

or reject it. A miner whose block is included in the blockchain

is rewarded with a block reward and the execution fees from the

included transactions.

Transactions. Transactions are used to modify state in Ethereum.

As such, they allow users to transfer ether (Ethereum’s cryptocur-

rency), and to create smart contracts or trigger their execution.

Transactions are created using an account. There are two types of

accounts in Ethereum, user accounts and contract accounts. Trans-

actions are given a certain amount of gas to execute, called the gas

limit. Gas is a unit which is used to measure the use of comput-

ing resources. Gas can be converted to ether through the so-called

gas price of a transaction. Gas limit and gas price can be chosen

by the creator of the transaction. Together they determine the fee

that the user is willing to pay for the inclusion of their transaction

into the blockchain. Moreover, transactions also contain a desti-

nation address. It identifies the recipient of the transaction, and it

can be either a user account or a smart contract. Transactions can

also carry value that is transferred to the recipient. Once created,

transactions are broadcast to the network. Miners then execute

the transactions and include them into blocks. Smart contracts (i.e.

contract accounts) are created by leaving the destination address

of a transaction empty. The bytecode that is provided within the

transaction is then copied into the blockchain and it is given a

unique address that identifies the smart contract.

Smart Contracts. Smart contracts are fully-fledged programs that

are stored and executed across the blockchain. They are devel-

oped using a dedicated high-level programming language that com-

piles into low-level bytecode. This bytecode gets interpreted by

the Ethereum Virtual Machine. Smart contracts contain functions

that can be triggered via transactions. The name of the function

as well as the data to be executed is included in the data field of

the transaction. A default function or so-called fallback function is

executed whenever the provided function name is not recognized

by the smart contract. Moreover, smart contracts can initiate calls

to other smart contracts. Thus, a single transaction may interact

with several smart contracts that call one another. By default smart

contracts cannot be destroyed or updated. It is the task of the de-

veloper to implement these capabilities before deploying the smart

contract. Unfortunately, many smart contracts are released without

destroyability or upgradeability in mind. As a result, many con-

tracts remain vulnerable or active on the blockchain even past their

2

1 contract A { // Victim contract

2 ...

3 function withdraw () public {

4 if (credit[msg.sender]) {

5 msg.sender.call.value(credit[msg.sender])();
6 credit[msg.sender] = 0;

7 }

8 }

9

10 contract B { // Exploiting contract

11 ...

12 function () public payable {

13 A.withdraw ();

14 }

15 }

Figure 1: Example of a reentrancy vulnerability.

utility. As mentioned earlier, once deployed, smart contracts are

immutable, they cannot be modified and bugs cannot be fixed. Thus,

it is not possible to update a smart contract in the later run.

EVM. The Ethereum Virtual Machine (EVM) is a purely stack-

based, register-less virtual machine that supports a Turing-complete

instruction set of opcodes. These opcodes allow smart contracts to

perform memory operations and interact with the blockchain, such

as retrieving specific information (e.g., the current block number).

Ethereum makes use of gas to make sure that contracts terminate

and to prevent denial-of-service attacks. It assigns a gas cost to the

execution of an opcode. The execution of a smart contract results in

the modification of its state. The latter is stored on the blockchain

and consists of a balance and a storage. The balance represents the

amount of ether currently owned by the smart contract. The storage

is organized as a key-value store and allows the smart contract to

store values and keep state across executions. During execution,

the EVM holds a machine state µ = (д,pc,m, i, s), where д is the

gas available, pc is the program counter,m represents the memory

contents, i is the active number of words in memory and s is the
content of the stack. In summary, the EVM is a transaction-based

state machine that updates a smart contract based on transaction

input data and the smart contract’s bytecode.

2.2 Smart Contract Vulnerabilities

Although, a number of smart contract vulnerabilities exist [2], in

this work, we primarily focus on two types of vulnerabilities that

have been defined by the NCC Group as the top two vulnerabilities

in their Decentralized Application Security Project [13]: reentrancy
and access control.

Reentrancy Vulnerabilities. Reentrancy occurs whenever a con-

tract calls another contract, which then calls back into the original

contract, thereby creating a reentrant call. This is not an issue as

long as all the state updates that depend on the call from the original

contract are performed before the call. In other words, reentrancy

only becomes problematic when a contract updates its state after

calling another contract. A malicious contract can take advantage of

this by recursively calling a contract until all the funds are drained.

Figure 1 provides an example of a malicious reentrancy. Contract

B contains a fallback function (line 12-14), a default function that

is automatically executed when no other function is called. In this

example, the fallback function of contract B calls the withdraw

function of contract A. Assuming that contract B already deposited

some ether in contractA, contractA now calls contract B to transfer

back its deposited ether. However, the transfer results in calling

the fallback function of contract B once again, which results in

reentering contract A and once more transferring the value of the

deposited ether to contract B. This repeats until the balance of

contract A becomes zero or the execution runs out of gas.

Reentrancy vulnerabilities were extensively studied by Rodler

et al. [31], and can be divided into four distinct categories: same-
function reentrancy, cross-function reentrancy, delegated reentrancy

and create-based reentrancy. Same-function reentrancy occurswhen-

ever an attacker reenters the original contract via the same func-

tion (see Figure 1). Cross-function reentrancy builds on the same-

function reentrancy. However, here the attacker takes advantage

of another function that shares a state with the original func-

tion. Delegated reentrancy and create-based reentrancy are similar

to same-function reentrancy, but use different opcodes to initi-

ate the call. Specifically, delegated reentrancy can occur using ei-

ther the DELEGATECALL or CALLCODE opcodes, while create-based
reentrancy only occurs when using the CREATE opcode. While the

DELEGATECALL and CALLCODE opcodes behave roughly similar to

the CALL opcode, the CREATE opcode causes a new contract to be

created and the contract constructor to be executed. This newly

created contract can then call and reenter the original contract.

Access Control Vulnerabilities.Access control vulnerabilities re-

sult from incorrectly enforced user access control policies in smart

contracts. Such vulnerabilities allow attackers to gain access to

privileged contract functions that would normally not be available

to them. The most famous examples of this type of vulnerability

are the two Parity MultiSig-Wallet hacks [29, 44]. The issue origi-

nates from the fact that the developers of the Parity wallet decided

to split some of the contract logic into a separate smart contract

named WalletLibrary. This had the advantage of reusing parts of

the code for multiple wallets allowing users to save on gas costs

during deployment. A simplified version of the code can be seen in

Figure 2. As can be seen in line 17-20, the initialisation of the wallet

is performed via the initWallet function located in contract L,
which is called by the constructor of contractW . In addition, any

unmatched function calls to contractW are caught by the fallback

function in line 6-8, which redirects the call to contract L by means

of the DELEGATECALL operation. Unfortunately, in the first version

of the Parity MultiSig-Wallet, the developers forgot to write a safety

check for the initWallet function, ensuring that the function can

only be called once. As a result an attacker was able to gain own-

ership of contractW by calling the initWallet function via the

fallback function. Once in control the attacker withdrew all the

funds by invoking the execute function (line 32-34).

After the first Parity hack, a new Parity MultiSig-Wallet Library

contract was deployed addressing the issue above. In the newly

deployed version, the initWallet function was not part of the con-

structor anymore, but had to be called separately after deployment.

However, the developers did not call the initWallet function after

deployment. Hence, contract L remained uninitialised, meaning that

3

1 contract W { // Wallet contract

2 ...

3 function W(address _owner) { // Contructor

4 L.delegatecall("initWallet(address)", _owner);

5 }

6 function () payable {

7 L.delegatecall(msg.data);
8 }

9 }

10

11 contract L { // Library contract

12 ...

13 modifier onlyOwner {

14 if (m_ownerIndex[msg.sender] > 0) _;

15 }

16 ...

17 function initWallet(address [] _owners , uint
_required , uint _daylimit) {

18 initDaylimit(_daylimit);

19 initMultiowned(_owners , _required);

20 }

21 function initMultiowned(address [] _owners , uint
_required) {

22 ...

23 for (uint i = 0; i < _owners.length; ++i) {

24 ...

25 m_ownerIndex[_owners[i]] = 2+i;

26 }

27 ...

28 }

29 function execute(address _to , uint _value , bytes
_data) onlyOwner {

30 _to.call.value(_value)(_data));
31 }

32 function kill(address _to) onlyOwner {

33 suicide(_to);
34 }

35 }

Figure 2: Example of an access control vulnerability.

the library contract itself had no owners. As a result, 3 months after

deployment a user known as devops199 was experimenting with

the previous Parity hack vulnerability and called the initWallet
function directly inside contract L, marking its address as the owner.

The user then called the kill function (line 32-34), which removed

the executable code of contract L from the blockchain
2
and sent the

remaining funds to the new owner. The contract itself contained no

funds, however it was used by multiple Parity wallets which had

the address of contract L defined as a constant in their executable

code. As a result any wallet trying to use contract L as a library

would now receive zero as return value, effectively rendering the

wallet unusable and therefore freezing the funds contained in the

wallets. This led the user to publicly disclose the steps that led to

this tragedy, with the words: “I accidentally killed it.” [9].

3 RELATEDWORK

In this section, we discuss some of the works that are most closely

related to ours.

2
The contract code is technically not removed from the blockchain, however, the

contract’s code can no longer be executed on the blockchain, because the contract has

been marked as killed.

Security Analysis of Smart Contracts. As with any program,

smart contracts may contain bugs and can be vulnerable to ex-

ploitation. As discussed in [2], different types of vulnerabilities

exist, often leading to financial losses. The issue is made worse by

the fact that smart contracts are immutable. Once deployed, they

cannot be altered and vulnerabilities cannot be fixed. In addition to

that, automated tools for launching attacks exist [21].

Several defense mechanisms have been proposed to detect se-

curity vulnerabilities in smart contracts. This includes tools such

as Erays [46], designed to provide smart contract auditors with

a reverse engineered pseudo code of a contract from its bytecode.

The interpretation of the pseudo code however remains a slow

and gruelling task. More automated tools have also been proposed

benefiting from regular expressions [43] and machine learning

techniques [34] to detect vulnerabilities.

A wealth of security research has focused on the creation of

static analysis tools to automatically detect vulnerabilities in smart

contracts. Formal verification has been used together with a formal

definition of the EVM [1, 16], or by first converting smart con-

tracts into the formal language F* [5, 11]. Other works focused

on analysing the higher level solidity code [10, 35], which limits

the scope to those contracts with available source code. Another

approach is to apply static analysis on the smart contract bytecode

[38]. A technique commonly used for this purpose is symbolic exe-

cution, designed to thoroughly explore the state space of a smart

contract utilising constraint solving. It has been used to detect con-

tracts with vulnerabilities [23, 28], to find misbehaving contracts

[20, 26, 37], or detect integer bugs [19, 36]. Fuzzing techniques have

also been applied [15, 18]. In [42] the authors propose Harvey,

a greybox fuzzer that selects appropriate inputs and transaction

sequences to increase code coverage. Fuzzing techniques however

involve a trade-off between the number of discovered paths and

the efficiency in input generation.

While all the listed tools help identify vulnerabilities, they can-

not protect already deployed smart contracts from being exploited.

Therefore, to deal with the issue of vulnerabilities in deployed smart

contracts, [12, 31] propose a modification to the Ethereum client,

that would allow detection and prevent exploitation of reentrancy

vulnerabilities at runtime. However, these approaches only deal

with reentrancy and require all the clients in the network to be mod-

ified. This is an issue for the following reasons. On one hand, every

update of the vulnerability detection software requires an update of

the different Ethereum client implementations. This is true for both

bug fixes and functionality upgrades, for example the detection of

new vulnerabilities. On the other hand, every modification of the

clients needs to be adopted by all the nodes participating in the

Ethereum blockchain. This requires time and breaks compatibility

between updated and non-updated clients. In this work, we propose

a generic solution that protects contracts and users from existing

and future vulnerabilities, without requiring client modifications

and forks every time a new vulnerable smart contract is found.

Wang et al. [40] propose an approach to detect vulnerabilities

at runtime based on two invariants that follow the intuition that

most vulnerabilities are due to a mismatch between the transferred

amount and the amount reflected by the contract’s internal book-

keeping logic. However, this approach has three main drawbacks.

4

First, it requires the automated and correct identification of book-

keeping variables, which besides being a non-trivial task also does

not hold for every contract, since there can be contracts that do

not use internal bookkeeping logic but are nevertheless vulnerable.

Second, their approach does not model environmental information

such as timestamps or block numbers, which does not allow them to

detect vulnerabilities such as timestamp dependence or transaction

order dependency, whereas our approach models environmental

information and allows for the detection of these vulnerabilities.

Finally, Wang et al.’s approach can only detect violations of safety

properties and not violations of liveness properties such as the

Parity Wallet Hack 2. In this work, we demonstrate that our ap-

proach is capable of detecting both Parity wallet hacks and therefore

violations to safety as well as liveness properties.

Blockchain-Based Voting. Since blockchains provide the means

for transparency and decentralization, multiple blockchain-based

solutions have been proposed for performing electronic voting [3,

17, 27]. Interestingly, with the recent developments in quantum

computers, recent work also has started to focus on the development

of quantum-resistant blockchain-based voting schemes [33]. These

solutions can all be categorised into two categories: cryptocurrency-

based and smart-contract-based.

Cryptocurrency-based solutions focus on using payments as

a proxy for votes in an election. When a voter wishes to cast a

vote, he or she makes a payment to the address of the candidate.

Lee et al. [22] proposed such a system in the Bitcoin network.

However, their system requires a trusted third party to perform the

ballot counting. Zao et al. [45] were the first to propose a voting

scheme using the public Bitcoin network while preserving the

privacy of the votes. Another well-known cryptocurrency-based

solution is CarbonVote [8]. It was introduced in the aftermath of

the DAO hack to allow the Ethereum Foundation to determine if

the Ethereum community wanted a hard fork or not. The tallying

was performed by counting the amount of ether that each address

received. Needless to say, such a system gives a tremendous amount

of voting power to users with a large amount of funds.

Smart-contract-based voting relies on a decentralized application

to assist the voting process – there is no central entity. McCorry et

al. [24] propose a practical implementation of the Open Vote Net-

work [14] in the form of a smart contract deployed on the Ethereum

blockchain for boardroom voting. Their implementation is self-

tallying and provides, in addition to vote privacy, also transparency.

Voting proceeds in several rounds, where the voters first broadcast

their voting key, followed by a proof that their vote is binary (a

“yes” or “no” vote). A final tally round allows anyone to calculate

the total sum of votes, without revealing individual ballots. The

voting mechanism described in this paper is inspired by McCorry

et al.’s proposed solution and implementation. The limitations of

their proposed solution, namely having a binary voting system

and limiting the number of voters to less than 50 participants, are

acceptable for our purposes.

4 METHODOLOGY

In this section, we present the details of our solution towards

a generic and decentralized way to prevent any type of attacks

on already deployed smart contracts. Our idea is to bundle every

Ethereum client with a runtime analysis tool, that interacts with the

EVM and is capable of interpreting so-called attack patterns, and
reverting transactions that match these patterns. Attack patterns

are described using our domain-specific language (DSL), which

is tailored to the execution model of the EVM and which allows

to easily describe malicious control and data flows. The fact that

we shift the capability of detecting attacks from the client-side im-

plementation to the DSL, gives us the advantage of being able to

quickly propose mitigations against new vulnerabilities, without

having to modify the Ethereum client. Existing approaches, such

as Sereum for example, require the client-side implementation to

be modified whenever a new vulnerability is found.

4.1 Generic Attack Detection

Attacks are detected in our system through the use of patterns,

which are described using our DSL. The DSL allows for the defini-

tion of malicious events that occur during the execution of EVM

instructions. The syntax of our DSL is defined by the following BNF

grammar:

⟨instr⟩ ::= CALL | CALLDATALOAD | SSTORE | JUMPI | . . .

⟨exec⟩ ::= depth | pc | address | stack(int) | stack.result |

| memory(int, int) | transaction.⟨trans⟩
| block.⟨block⟩

⟨trans⟩ ::= hash | value | from | to | . . .

⟨block⟩ ::= number | gasUsed | gasLimit | . . .

⟨comp⟩ ::= < | > | ≤ | ≥ | = | , | + | - | · | /

⟨expr⟩ ::= (src.⟨exec⟩ ⟨comp⟩ ⟨expr⟩) [∧ ⟨expr⟩]
| (⟨expr⟩ ⟨comp⟩ dst.⟨exec⟩) [∧ ⟨expr⟩]
| (src.⟨exec⟩ ⟨comp⟩ src.⟨exec⟩) [∧ ⟨expr⟩]
| (src.⟨exec⟩ ⟨comp⟩ dst.⟨exec⟩) [∧ ⟨expr⟩]
| (dst.⟨exec⟩ ⟨comp⟩ dst.⟨exec⟩) [∧ ⟨expr⟩]
| (src.⟨exec⟩ ⟨comp⟩ int) | (dst.⟨exec⟩ ⟨comp⟩ int)

⟨rel⟩ ::= ⇒ |{ | →

⟨pattern⟩ ::= (opcode = ⟨instr⟩) ⟨rel⟩ (opcode = ⟨instr⟩) [where

⟨expr⟩]
| ⟨pattern⟩ ⟨rel⟩ (opcode = ⟨instr⟩) [where ⟨expr⟩]
| (opcode = ⟨instr⟩) ⟨rel⟩ ⟨pattern⟩ [where ⟨expr⟩]

Figure 3: DSL for describing attack patterns.

A pattern is a sequence of relations between EVM instructions

that may occur at runtime. We distinguish between three types of

relations, a “control flow” relation (⇒), a “data flow” relation ({),

and a “follows” relation (→). A control flow relation means that an

instruction is control dependent on another instruction. A data-flow

relation means that an instruction is data dependent on another

instruction. A follows relation means that an instruction is executed

after another instruction, without necessarily being control or data

dependent on the other instruction. A relation is always between

two EVM opcodes: a source opcode (src) and a destination opcode

5

CALL

CALL…

…
A.withdraw()

msg.sender.call.
value(…)()

CALL

CALL…

…
A.withdraw()

SSTORE …
credit[msg.sender] = 0

…

⟹

msg.sender.call.
value(…)()

…

…

SSTORE

⟹

…

credit[msg.sender] = 0

…

…
address = B
depth = 1

⟹

address = A
depth = 2

address = B
depth = 3

address = A
depth = 4

address = …
depth = n

⟹

⟹

⟹
⟹

⟹

pc = 272
stack = [𝑔, 𝑡, 𝑎, …]

pc = 937
stack = [𝑔, 𝑡, 𝑎, …]

pc = 272
stack = [𝑔, 𝑡, 𝑎, …]

pc = 937
stack = [𝑔, 𝑡, 𝑎, …]

pc = 8555
stack = [𝑖, 𝑣, …]

pc = 8555
stack = [𝑖, 𝑣, …]

Figure 4: Execution example of a reentrancy attack, where the stack values д (gas), t (to), a (amount), i (index) and v (value)

represent the respective parameters passed to the instructions during execution. A control flow relation is depicted using ⇒,

while→ depicts a follows relation.

(dst). The source marks the beginning of the relation, whereas

the destination defines the end of the relation. Moreover, the DSL

allows to create conjunctions of expressions that allow to compare

the execution environment between source and destination. The

execution environment includes the current depth of the call stack

(depth), the current value of the program counter (pc), the address
of the contract that is currently being executed (address), the
current values on the stack (stack) as well as the result of an

operation that is pushed onto the stack (stack.result), the current
values stored in memory (memory), and finally, properties of the

current transaction that is being executed (e.g. hash) as well as
properties of the current block that is being executed (e.g. number).
The stack is addressable via an integer, where 0 defines the top

element on the stack. The memory is addressable via two integers:

an offset and a size. In the following, we explain the semantics of our

DSL via two concrete examples of attack patterns: same-function
reentrancy and the parity wallet hack 1.

Same-Function Reentrancy. Reconsider the reentrancy example

that was described in Section 2.2. Figure 4, illustrates the control

flow as well as the follows relations that occur during the execution

of that example. The execution starts with contract address B and

a call stack depth of 1. Eventually, contract B calls the withdraw

function of contract A, which results in executing the CALL instruc-

tion and increasing the depth of the call stack to 2, and switching

the address of the contract that is being executed to contract A.
Next, contract A sends some funds to contract B, which also results

in executing the CALL instruction and increasing the depth of the

call stack to 3, and switching the address of the contract that is

being executed back to contract B. As a result, the fallback func-

tion of contract B is called, which in turn calls again the withdraw

function of contract A. This sequence of calls repeats until the bal-
ance of contract A is either empty or the execution runs out of

gas. Eventually, the state in contract A is updated by executing the

SSTORE instruction. Given these observations, we can now create

the following attack pattern in order to detect and thereby prevent

same-function reentrancy:

(opcode = CALL) ⇒ (opcode = CALL) where

(s r c . s t a c k (1) = d s t . s t a c k (1)) ∧

(s r c . a dd r e s s = d s t . a dd r e s s) ∧

(s r c . pc = d s t . pc) →

(opcode = SSTORE) → (opcode = SSTORE) where

(s r c . s t a c k (0) = d s t . s t a c k (0)) ∧

(s r c . a dd r e s s = d s t . a dd r e s s) ∧

(s r c . depth > d s t . depth)

This attack pattern evaluates to true if a transaction meets the

following two conditions:

(1) there is a control flow relation between two CALL instruc-

tions, where both instructions share the same call destination

(i.e. src. stack(1) = dst.stack(1)), are executed by the

same contract (i.e. src.address = dst.address) and share
the same program counter (i.e. src.pc = dst.pc);

(2) two SSTORE instructions follow the previous control flow

relation, where both instructions write to the same storage

location (i.e. src.stack(0) = dst.stack(0)), are executed
by the same contract (i.e. src.address = dst.address) and
where the first instruction has a higher call stack depth than

the second instruction (i.e. src.depth > dst.depth).

It is worth mentioning that we compare the program counter values

of the two CALL instructions in order to make sure that it is the

same function that is being called, as our goal is to detect only

same-function reentrancy.

Parity Wallet Hack 1. Reconsider the access control example de-

scribed in Section 2.2. Figure 5 illustrates the relevant control flow,

data flow and follows relations that occur during the execution

of that example. We note that the execution example is divided

into two separate transactions. In the first transaction, the attacker

sets itself as the owner, whereas in the second transaction the

attacker transfers all the funds to itself. Although in reality an at-

tacker performs two separate transactions, in our methodology, the

two transactions are represented as a single sequence of execution

events. For both transactions, the execution starts with contract

addressW eventually making a delegate call to contract address L,

6

DELEGATECALL

CALLDATACOPY…

…
L.delegatecall(msg.data)

m_ownerIndex[_owners[i]] = 2+i;⟹

…
address = W
depth = 1

address = L
depth = 2 ⟹⤳ SSTORE ⤳ JUMPI CALLDATALOAD CALL

if (m_ownerIndex
[msg.sender] > 0)

⤳
_to.call.value(_value)(_data));

… … … … … … … …

pc = 284
stack = […]

pc = 1072
stack = […]

pc = 4046
stack = […]

pc = 2701
stack = […]

pc = 725
stack = […]

pc = 2868
stack = [𝑔, 𝑡, 𝑎, …]

transaction hash = 0x9dbf03…ef75ec transaction hash = 0xeef10f…a7be7c

Figure 5: Execution example of an attack on an access control vulnerability. A data flow relation is depicted with {. The

variables g, t and a are as discussed in Figure 4.

as part of the attacker calling the fallback function of contractW . In

the first transaction, we see that at a certain point contract L copies

data from the transaction using the CALLDATACOPY instruction and

stores it into storage via the SSTORE instruction. An interesting

observation here is that state is shared across transactions through

storage. In the second transaction, the data that has previously been

stored is now loaded onto the stack and used by a comparison. A

comparison is ultimately reflected via the JUMPI instruction. Finally,
we see that the comparison follows a CALLDATALOAD instruction

whose data is used by a call CALL instruction. Given these obser-

vations, we are now able to create the following attack pattern in

order to detect and thereby prevent the first Parity wallet hack:

(opcode = DELEGATECALL) ⇒ (opcode = CALLDATACOPY) {

(opcode = SSTORE) { (opcode = JUMPI) where

(s r c . t r a n s a c t i o n . hash , d s t . t r a n s a c t i o n . hash) →

((opcode = CALLDATALOAD) { (opcode = CALL)) where

(d s t . s t a c k (2) > 0)

The above attack pattern evaluates to true if the following two

conditions are met:

(1) there is a transaction with a control flow relation between a

DELEGATECALL instruction and a CALLDATACOPY instruction,

where the data of the CALLDATACOPY instruction flows into

an SSTORE instruction;
(2) there is another transaction (i.e. src.transaction.hash ,

dst.transaction.hash) where the data that has been previ-

ously stored via the SSTORE instruction flows into a JUMPI
instruction and is followed by a CALLDATALOAD instruction
whose data flows into a CALL instruction that sends out funds
(i.e. dst.stack(2) > 0).

It is worth noting that the Paritywallet attack is amulti-transactional

attack and that it is therefore significantly different from a reen-

trancy attack, that is solely based on a single transaction. For more

examples of attack patterns, please refer to Table 5 in Appendix A.

4.2 Decentralized Security Updates

While our approach of using a DSL allows us to have a generic

solution for detecting attacks, it still leaves two open questions:

(1) How do we distribute and enforce the same patterns across

all the clients?

Figure 6: An illustrative example of ÆGIS’s workflow: step

1) A benign user detects a vulnerability and proposes a pat-

tern (written using our DSL) to the smart contract. Step 2)

Eligible voters vote to either accept or reject the pattern. If

the majority votes to accept the pattern, then all the clients

are updated and the pattern is activated. Step 3) An attacker

tries but fails to exploit a vulnerable smart contract due to

the voted pattern matching the malicious transaction.

(2) How do we decentralize the governance of patterns in order

to prevent a single entity from deciding which patterns are

added or removed?

The answer to these questions is to use a smart contract that is

deployed on the blockchain itself. This solves the problem of dis-

tributing and enforcing that the same patterns are always used

across all clients. Specifically, patterns are stored inside the smart

contract and the blockchain protocol itself guarantees that every

client knows about the exact same state and therefore has access

to exactly the same patterns. The second problem of decentralizing

the governance of patterns, is solved by allowing the proposal and

voting of patterns via the smart contract as depicted in Figure 6.

The contract maintains a list of eligible voters that vote for either

accepting or rejecting a new pattern. If the majority has voted with

“yes”, i.e. to accept the pattern, then it is added to the list of active

patterns. In that case, every client is automatically notified through

the mechanism of smart contract events, and retrieves the updated

list of patterns from the blockchain. In other words, if a pattern

is accepted by the voting mechanism, it is updated across all the

7

EVM Interpreter Data Flow
Extractor

Pattern
Parser

Execution trace

Revert

ÆGIS
Ethereum Client

ÆGIS
Smart Contract

Control Flow
Extractor

Figure 7: Architecture of ÆGIS. The dark gray boxes repre-

sentÆGIS’s main components.

clients through the existing consensus mechanism of the Ethereum

blockchain. However, solving the second problem using a voting

mechanism opens up a new problem concerning the requirements

needed for governing the votes. In voting literature, verifiability

and privacy are typically seen as key requirements. Verifiability
concerns linking the output to the input in a verifiable way. Privacy
concerns whether a vote can be linked back to a voter. In addition,

we argue that the situation here is more akin to boardroom voting

than to general elections, because it should be possible to hold vot-

ers accountable. This means that privacy must be maintained only

until the election is over. Finally, the voting system must not be

favorable to any voters – e.g., it should not confer an advantage to

voters that cast their vote late. This final property is called fairness.
It is worth noting that fairness requires privacy during the voting

phase. This leads to the following three requirements:

(1) Verifiability: The outcome of the vote must be verifiably

related to the votes as cast by the voters;

(2) Accountability: Voters can be held accountable for how

they voted;

(3) Fairness: No intermediate information must be leaked.

5 IMPLEMENTATION

In this section, we provide the implementation details of our solu-

tion calledÆGIS. The code is publicly available
3
. Figure 7, provides

an overview of the architecture of ÆGIS and highlights its main

components.ÆGIS is implemented on top of Trinity
4
, an Ethereum

client implemented in Python.

5.1 Ethereum Client

EVM. We modified the EVM of Trinity such that it keeps track

of all the executed instructions and their states at runtime, in the

form of an ordered list. We refer to this list as the execution trace.

Each record in this list contains the executed opcode, the value

of the program counter, the depth of the call stack, the address of

the contract that is being executed, and finally, all the values that

were stored on the stack and in memory. This list is passed to the

interpreter component of ÆGIS.

3
https://github.com/christoftorres/Aegis

4
https://trinity.ethereum.org/

Interpreter. The interpreter loops through the list of executed

instructions and passes the relevant instructions to the control flow

and data flow extractor components. It is also responsible for sig-

nalling the EVM a revert in case the execution trace matches an

attack pattern.

Control Flow Extractor. The control flow extractor is responsible

for inferring control flow information. We do so by dynamically

building a call tree from the instructions received by the interpreter.

A control flow relation is reported if there exists a path along the

call tree, from the source instruction to the destination instruction

defined in a given pattern. Thus, control flow relations represent

call dependencies between two instructions.

Data Flow Extractor. The data flow extractor is responsible for

collecting data flow information. We track the flow of data be-

tween instructions by using dynamic taint analysis. Taint is intro-

duced whenever we come across a source instruction and checked

whenever we come across a destination instruction. Source and

destination instructions are defined by a given pattern. Taint propa-

gation follows the semantics of the EVM [41] across stack, memory

and storage. We perform byte-level precision tainting. Taint that

is stored across stack and memory is volatile, meaning that it is

cleared across transactions. Taint that is stored across storage is

persistent, meaning that it remains in storage across transactions.

This allows us to perform inter-transactional taint analysis. A data

flow relation is given if taint flows from a source instruction into a

destination instruction.

Pattern Parser. The pattern parser is responsible for extracting

and parsing the patterns from the voting smart contract. We imple-

mented our pattern language using textX
5
, a Python framework

providing a meta-language for building DSLs.

5.2 ÆGIS Smart Contract

The ÆGIS smart contract ensures proper curation of the list of

active patterns. We implemented our smart contract in Solidity.

As previously mentioned, patterns are accepted or removed via

a voting mechanism. The contract holds all proposed additions

and removals of patterns and allows a vote on them within a set

time window. The duration can be configured and updated by the

contract owner. Proposals are open to the public and anyone can

propose an addition to or removal from the list of patterns.

Fairness. Votes should remain secret until all eligible voters have

had sufficient opportunity to vote. Therefore, two time windows

are employed. The first window is for sending a commitment that

includes a deposit. The second window is for revealing a vote in-

cluding the return of the committed deposits. The two windows

are illustrated in Figure 8. In the figure, tp represents the point in

time when a pattern is proposed and marks the start of the commit

window. tc marks the end of the commit window and the start of

the reveal window. Lastly, tr marks the end of the reveal window

and the time when the pattern list is updated in case of a positive

vote outcome. A commitment is a hash of the vote ID, the voter’s

5
https://github.com/textX/textX

8

https://github.com/christoftorres/Aegis
https://trinity.ethereum.org/
https://github.com/textX/textX

vote and a nonce. The vote ID is a hash of the proposed pattern

and identifies the pattern that is being voted on. The voter’s vote is

encoded as a boolean. The nonce ensures that commitments cannot

be replayed. The smart contract records these commitments, which

must be sent with the predefined deposit and within the predefined

time window. During the commitment phase no one knows how

anyone else has voted on a given pattern, and so cannot be swayed

by the decisions of others. However, the process should ultimately

be transparent to both voters and non-voters to foster trust in the

system. As such, during the second window, the reveal window, all

voters reveal how they have voted. They must reveal their vote in

order to get their deposit back. No commits may be made once the

reveal period has started.

timetrtctp

commit window reveal window

Figure 8: Timeline of the two voting stages.

Tallying. The voting ends either when more than 50% (50%+1 vote)

of the total number of votes reaches either accept or reject, or when

the time window for revealing expires with less than 50% having

been reached. In case the voting has ended but the reveal window

has not yet passed, any remaining voters are still eligible to reveal

their vote, such that their deposit can be returned. The reveal period

is bounded so that patterns are accepted or rejected in a practical

amount of time. In the event of a successful vote, the pattern to

which the vote pertains is added to or removed from the record held

by the contract, according to the proposal. If a vote is unsuccessful,

i.e. no majority voted for the proposal, the record of patterns is not

changed.

Actors. There are three types of actors: the proposers that submit

proposals to add or remove patterns, the voters that vote on pro-

posals, and the admins that govern the list of eligible voters as well

as the parameters of the smart contract (e.g. deposit, commit and

reveal windows, etc.). TheÆGIS smart contract allows every user

on the blockchain to become a proposer by submitting a proposal.

Voters then vote on the proposals by first committing their vote

and at a later stage revealing it. Not every user is an eligible voter.

Voters are only those users whose account address is stored in the

list of eligible voters maintained by the smart contract. Admins

may update the list of eligible voters. They oversee the proper cu-

ration of the smart contract and act as a governing body. Admins

are agreed upon off-chain and are represented by a multi-signature

wallet. A multi-signature wallet is an account address which only

performs actions if a group of users give their consent in form of a

signature.

Data Structures. The smart contract consists of several functions

and data structures that allow for the voting process to take place.

We make use of a number of modifiers, which act as checks carried

out before specific functions are executed. We use these to check

that: 1) a voter is eligible, 2) a vote is in progress, 3) a reveal is

in progress and 4) the associated vote has ended. We use a struct

to hold the details of each vote, these include the patternID, the
proposed pattern and the startBlock. These values enable us to
record the details needed to check when a vote ends, check that

the same pattern has not already been proposed, and count the

number of votes. The struct is used in conjunction with a mapping,

which maps a 32 bytes value to the details of each vote. The 32

bytes value represents the voteID of each vote, created by hashing

unique vote information. A constructor is used to define, at contract

launch, the value of the necessary deposit and the time windows

during which voters can commit or reveal. The former is given in

ether, while the latter are given in number of blocks. The deposit is

used to ensure that those who committed a vote also reveal their

vote. These values can be changed later using the contract’s admin

functions.

Functionality. The public functions for the voting process are:

addProposal, removeProposal, commitToVote and revealVote.
Both proposal functions first check if a vote with the same ID

already exists, and if not create a new instance of voting details via

the mapping. Next, the commitToVote function can be used inside

the defined number of blocks to submit a unique hash of an eligible

voter’s vote. This function makes use of the canVote modifier to

protect access. The voter’s commitment and vote hash are stored

only if the correct deposit amount was sent to the function. Once the

vote stage has ended the reveal stage begins. During this window the

revealVote function, protected by the canVotemodifier, processes

vote revelations and returns deposits. The function checks that

the stored hash matches the hash calculated from the parameters

passed to it, and if so, returns the voter’s deposit and records the

vote. Lastly, it calls an internal function which tallies the votes and

adds or removes the pattern if either the for or against vote has

reached over 50%. In this way the vote is self tallying. The patterns

are ultimately stored in an array that can be iterated over to ensure

each node has the full set. Finally, the contract also has two admin

functions: transferOwnership, changeVotingWindows. Both of

these are protected by the isOwnermodifier. The former allows the

current owning address to transfer control of the contract to a new

address. The latter allows the commit and reveal windows to be

changed as well as the amount required as a voting deposit.

6 EVALUATION

In this section, we evaluate the effectiveness and correctness of

ÆGIS, by conducting two experiments. In the first experiment we

compare the effectiveness of ÆGIS to two state-of-the-art reen-

trancy detection tools: ECFChecker [12] and Sereum [31]. In the

second experiment we perform a large-scale analysis and measure

the correctness as well as the performance of ÆGIS across the first

4.5 million blocks of the Ethereum blockchain.

6.1 Comparison to Reentrancy Detection Tools

By analyzing transactions sent to contracts, Rodler et al.’s tool

Sereum flagged 16 contracts as victims of reentrancy attacks. How-

ever, after manual investigation the authors found that only 2 out of

the 16 contracts have actually become victims to reentrancy attacks.

We decided to analyze these 16 contracts and see if we face the same

9

C
C
R
B

D
A
O

0
x
7
4
8
4
a
1

p
r
o
x
y
C
C

D
A
C

D
S
E
t
h
T
o
k
e
n

0
x
6
9
5
d
7
3

E
Z
C

0
x
9
8
D
8
A
6

W
E
I

0
x
b
D
7
C
e
C

0
x
F
4
e
e
9
3

A
l
a
r
m

0
x
7
7
1
5
0
0

K
i
s
s
B
T
C

L
o
t
t
e
r
y
G
a
m
e
L
o
g
i
c

Sereum FP TP FP FP FP TP FP FP FP FP FP FP FP FP FP FP

ÆGIS TN TP TN TN TN TP TN TN TN TN TN TN TN TN TN TN

Table 1: Comparison between Sereum andÆGIS on the effectiveness of detecting reentrancy attacks.

Smart Contract Reentrancy Type E
C
F
C
h
e
c
k
e
r

S
e
r
e
u
m

Æ
G
I
S

VulnBankNoLock
Same-Function TP TP TP

Cross-Function FN TP TP

VulnBankBuggyLock
Same-Function TN FP TN

Cross-Function FN TP TP

VulnBankSecureLock
Same-Function TN FP TN

Cross-Function TN FP TN

Table 2: Comparison between ECFChecker, Sereum and

ÆGIS on the effectiveness of detecting same-function and

cross-function reentrancy attacks with manually intro-

duced locks.

challenges in classifying these contracts correctly. We contacted

the authors of Sereum and obtained the list of contract addresses.

Afterwards, we ran ÆGIS on all transactions related to the con-

tract addresses, up to block number 4,500,000
6
. Table 1 summarizes

our results and provides a comparison to the results obtained by

Sereum. From Table 1, we can observe thatÆGIS successfully de-

tects transactions related to the DAO contract and the DSEthToken

contract, as reentrancy attacks. Moreover, ÆGIS correctly flags the

remaining 14 contracts as not vulnerable. Hence, in contrast to

Sereum, ÆGIS produces no false positives on these 16 contracts.

After analyzing the false positives produced by Sereum, we con-

clude that ÆGIS does not produce the same false positives because

first, ÆGIS does not use taint analysis in its pattern and therefore

does not face issues of over-tainting, and secondly, it does not make

use of dynamic write locks to detect reentrancy.

6.1.1 Reentrancy with Locks. Besides evaluating Sereum on the

set of 16 real-world smart contracts, Rodler et al. also compared

Sereum to ECFChecker, using self-crafted smart contracts as a

benchmark [30]. The goal of this benchmark is to provide means

to investigate the quality of reentrancy detection tools. The bench-

mark consists of three functionally equivalent contracts, except

that the first contract does not employ any locking mechanism

6
This is the maximum block number analyzed by the authors of Sereum.

to guard the reentry of functions (VulnBankNoLock), the second
contract employs partial implementation of a locking mechanism

(VulnBankBuggyLock), and the third contract employs a full im-

plementation of a locking mechanism (VulnBankSecureLock). As a
result, the first contract is vulnerable to same-function reentrancy

as well as cross-function reentrancy. The second contract is vulner-

able to cross-function reentrancy, but not to same-function reen-

trancy. Finally, the third contract is safe regarding both types of

reentrancy. We deployed these three contracts on the Ethereum test

network called Ropsten and ran the three contracts against ÆGIS.

Table 2 contains our results and comparesÆGIS to ECFChecker

and Sereum. We can see that ECFChecker has difficulties in detect-

ing cross-function reentrancy, whereas Sereum has difficulties in

distinguishing between reentrancy and manually introduced locks.

This is probably due to the locking mechanism exhibiting exactly

the same pattern as a reentrancy attack and Sereum being unable

to differentiate between these two. We found thatÆGIS correctly

classifies every contract as either vulnerable or not vulnerable in

all the test cases.

6.1.2 Unconditional Reentrancy. Calls that send ether are usually

protected by a check in the form of an if, require, or assert.
Reentrancy attacks typically try to bypass these checks. However,

it is possible to write a contract, which does not perform any check

before sending ether. Rodler et al. present an example of such a vul-

nerability and name it unconditional reentrancy (see Appendix B).

Moreover, they also find an example of such a contract deployed on

the Ethereum blockchain
7
. When Sereumwas published, it was not

able to detect this type of reentrancy since the authors assumed that

every call that may lead to a reentrancy is guarded by a condition.

However, the authors claim to have fixed this issue by extending

Sereum to tracking data flows from storage to the parameters of

calls. We cannot verify this since the source code of Sereum is not

publicly available. We runÆGIS on both examples, the manually

crafted example by Rodler et al. and the contract deployed on the

Ethereum blockchain. ÆGIS correctly identifies the unconditional

reentrancy contained in both examples without modifying the ex-

isting patterns. This is as expected, since in contrast to Sereum’s

initial way to detect reentrancy,ÆGIS’s reentrancy patterns do not

rely on the detection of conditions (i.e. JUMPI) to detect reentrancy.

7
https://etherscan.io/address/0xb7c5c5aa4d42967efe906e1b66cb8df9cebf04f7

10

https://etherscan.io/address/0xb7c5c5aa4d42967efe906e1b66cb8df9cebf04f7

Vulnerability Contracts Transactions

Same-Function Reentrancy 7 822

Cross-Function Reentrancy 5 695

Delegated Reentrancy 0 0

Create-Based Reentrancy 0 0

Parity Wallet Hack 1 3 80

Parity Wallet Hack 2 236 236

Total Unique 248 1118

Table 3: Number of vulnerable contracts detected byÆGIS.

6.2 Large-Scale Blockchain Analysis

In this experiment we analyse the first 4.5 million blocks of the

Ethereum blockchain and compare our findings to those of Rodler

et al. We started by scanning the Ethereum blockchain for smart

contracts that have been deployed until block 4,500,000. We found

675,444 successfully deployed contracts. The deployment times-

tamps of the found contracts range from August 7, 2015 to Novem-

ber 6, 2017. Next, we replayed the execution history of these 675,444

contracts. As part of the scanning we found that only 12 contracts

in our dataset have more than 10.000 transactions. Therefore, to

reduce the execution time, we decided to limit our analysis to the

first 10.000 transactions of each contract. In addition, similar to

Rodler et al., we tried our best to skip those transactions which

were involved in denial-of-service attacks as they would result in

high execution times
8
.

We ranÆGIS on our set of 675,444 contracts using a 6-core Intel

Core i7-8700 CPU @ 3.20GHz and 64 GB RAM. Our tool took on

average 108 milliseconds to analyse a transaction, with a median of

24 milliseconds per transaction. All in all, we re-executed 4,960,424

transactions with an average of 8 transactions per contract. Table 3

summarizes our results. ÆGIS found a total of 1,118 malicious

transactions and 248 unique contacts that have been exploited

through either a reentrancy or an access control vulnerability. More

specifically, ÆGIS found that 7 contracts have become victim to

same-function reentrancy, 5 contracts to cross-function reentrancy,

3 contracts to the first Parity wallet hack and 236 contracts to the

second Parity wallet hack. Similar to the results of Rodler et al.,

we did not find any contracts to have become victim to delegated

reentrancy or create-based reentrancy. We validated all our results

by manually analyzing the source code (whenever it was publicly

available) and/or the execution traces of the flagged contracts. Our

validation did not reveal any false positives.

Table 4 lists all the contract addresses thatÆGIS detected to have

become victim of a same-function reentrancy attack. The block

range defines the block heights whereÆGIS detected the malicious

transactions. The first and second contract addresses contained

in Table 4 are the same as reported by Sereum, and belong to the

DSEthToken and DAO contract, respectively. The rows highlighted

in gray mark 5 contracts that have been flagged byÆGIS but not by

Sereum. After investigating the transactions of these 5 contracts, we

find that the contract addresses 0x26b8af052895080148dabbc1007

8
https://tinyurl.com/rvlvues

b3045f023916e and 0xbf78025535c98f4c605fbe9eaf672999abf
19dc1 became victim to same-function reentrancy, but seem to be

contracts that have been deployed with the purpose of studying

the DAO hack. However, the three other contract addresses seem

to be true victims of reentrancy attacks.

7 DISCUSSION

In this section we discuss alternatives to determine eligible voters,

highlight some of the current limitations as well as future research

directions for this work.

7.1 Determining Eligible Voters

The introduction of new patterns inÆGIS depends on achieving

consensus in a predetermined group of voters. Although it may

intuitively make sense to let miners vote, they are not necessarily

a good fit. Their interests may differ from those of smart contract

users. For example, depending on a pattern’s complexity, it might

introduce an overhead in terms of execution time. Miners are then

incentivized to prefer simpler patterns that are evaluated quicker,

while smart contract users would prefer more secure patterns.

Alternatively, a group of trusted security experts could act as

eligible voters
9
. Security experts are (by definition) able to properly

evaluate patterns and have the interest in doing so. The voting

contract is then controlled by a group of trusted experts who are

decided upon off-chain by a group of admins. For transparency,

the identity of admins and experts would be exposed to the public

by mapping every identity to an Ethereum account. Changes to

the list of voters, the deposit, or the commit and reveal windows

are then visible to anyone via the blockchain. Through this setup,

security experts would be able to organise themselves with the voter

list being comprised of a curated group of knowledgeable people.

Such groups already exist in reality, for example, the members

of the Smart Contract Weakness Classification registry (SWC)
10
,

and would be a good fit for our system. Moreover, misbehaving

or unresponsive experts could be easily removed by the group of

admins. Although this approach allows for scalability and control,

it has the disadvantage of introducing managing third-parties. That

runs counter to the decentralised concept of Ethereum.

9
Somewhat similar to how CVEs are handled.

10
https://smartcontractsecurity.github.io/SWC-registry/

Contract Address Block Range

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 1680024 - 1680238

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 1718497 - 2106624

0xf01fe1a15673a5209c94121c45e2121fe2903416 1743596 - 1743673

0x304a554a310c7e546dfe434669c62820b7d83490 1881284 - 1881284

0x59752433dbe28f5aa59b479958689d353b3dee08 3160801 - 3160801

0xbf78025535c98f4c605fbe9eaf672999abf19dc1 3694969 - 3695510

0x26b8af052895080148dabbc1007b3045f023916e 4108700 - 4108700

Table 4: Same-function reentrancy vulnerable contracts de-

tected by ÆGIS. Contracts highlighted in gray have only

been detected by ÆGIS and not by Sereum.

11

https://tinyurl.com/rvlvues
https://etherscan.io/address/0xd654bdd32fc99471455e86c2e7f7d7b6437e9179
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xf01fe1a15673a5209c94121c45e2121fe2903416
https://etherscan.io/address/0x304a554a310c7e546dfe434669c62820b7d83490
https://etherscan.io/address/0x59752433dbe28f5aa59b479958689d353b3dee08
https://etherscan.io/address/0xbf78025535c98f4c605fbe9eaf672999abf19dc1
https://etherscan.io/address/0x26b8af052895080148dabbc1007b3045f023916e

Alternatively, there is also an option to select voters, while pre-

serving the decentralised concept of Ethereum. This is to remove

the role of admins altogether, and instead follow a self-organizing

strategy, similar to Proof-of-Stake. In this case, everyone is allowed

to become a voter through the purchase of (not prohibitively priced)

voting power. This could be achieved by depositing a fixed amount

of ether into the voting smart contract as a form of collateral.

7.2 Adoption and Participation Incentives

The deployment of ÆGIS would require a modification of the

Ethereum consensus protocol, which would require existing Ether-

eum clients to be updated. This could be easily achieved though

a major release by including this one-time modification as part

of a scheduled hardfork. Another issue concerns the incentives to

propose and vote on patterns. While prestige or a feeling of con-

tributing to the security of Ethereum may be sufficient for some,

more incentives may be needed to ensure that the protective capa-

bilities of ÆGIS are used to the full extent. A monetary incentive

could address this. That is, ÆGIS could be extended with automat-

ically paid rewards. In other words, ÆGIS could be extended to

enable bug bounties [6]. ÆGIS’s smart contract could be modified

such that, owners of smart contracts can register their contract ad-

dress by sending a transaction toÆGIS’s voting smart contract and

deposit a bounty in the form of ether. Then, proposers of patterns

would be rewarded automatically with the bounty byÆGIS’s voting

smart contract, if their proposed pattern is accepted by the group

of voters. Moreover, owners could simply replenish the bounty for

their contract by making new deposits toÆGIS’s smart contract.

7.3 Limitations and Future Work

A current limitation of our tool is that proposed attack patterns are

submitted in plain text to the smart contract. Potential attackers can

view the patterns and use them to find vulnerable smart contracts.

To mitigate this, we propose to make use of encryption such that

only the voters would be able to view the patterns. However, this

would break the current capability of the smart contract being self-

tallying. Designing an encrypted and practical self-tallying solution

is left for future work. Finally, we intend to make use of parallel

execution inside the extractors and the checking of patterns in

order to improve the time required to analyse transactions.

8 CONCLUSION

Although academia proposed a number of tools to detect vulnera-

bilities in smart contracts, they all fail to protect already deployed

vulnerable smart contracts. One of the proposed solutions is to

modify the Ethereum clients in order to detect and revert transac-

tions that try to exploit vulnerable smart contracts. However, these

solutions require all the Ethereum clients to be modified every time

a new type of vulnerability is discovered. In this work, we intro-

duced ÆGIS, a system that detects and reverts attacks via attack

patterns. These patterns describe malicious control and data flows

through the use of a novel domain-specific language. In addition,

we presented a novel mechanism for security updates that allows

these attack patterns to be updated quickly and transparently via

the blockchain, by using a smart contract as means of storing them.

Finally, we comparedÆGIS to two current state-of-the-art online

reentrancy detection tools. Our results show thatÆGIS not only

detects more attacks, but also has no false positives as compared to

current state-of-the-art.

ACKNOWLEDGMENTS

We would like to thank the Sereum authors, especially Michael

Rodler, for sharing their data with us. We would also like to thank

the reviewers for their valuable comments as well as Daniel Xiapu

Luo for his valuable help. The experiments presented in this paper

were carried out using the HPC facilities of the University of Lux-

embourg [39] – see https://hpc.uni.lu. This work is partly supported

by the Luxembourg National Research Fund (FNR) under grant

13192291.

REFERENCES

[1] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards

verifying ethereum smart contract bytecode in Isabelle/HOL. In Proc. 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP’18). ACM,

66–77. https://doi.org/10.1145/3167084

[2] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks

on Ethereum Smart Contracts (SoK). In Proc. 6th International Conference on
Principles of Security and Trust - Volume 10204. Lecture Notes in Computer Science,

Vol. 10204. Springer-Verlag, 164–186.

[3] Ahmed Ben Ayed. 2017. A conceptual secure blockchain-based electronic voting

system. International Journal of Network Security & Its Applications 9, 3 (2017),
01–09.

[4] Jordi Baylina. 2019. Verification of the balances rescued from the multisig com-

promise. https://github.com/Giveth/WHGBalanceVerification.

[5] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-

lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,

Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. For-

mal Verification of Smart Contracts: Short Paper. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security (PLAS ’16). ACM,

91–96. https://doi.org/10.1145/2993600.2993611

[6] Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. 2018. Enter the Hy-

dra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts. In

Proc. 27th USENIX Security Symposium (USENIX Security’18). USENIX Association,

1335–1352. https://www.usenix.org/conference/usenixsecurity18/presentation/

breindenbach

[7] ChainSecurity. 2019. Constantinople enables new Reentrancy Attack.

https://medium.com/chainsecurity/constantinople-enables-new-reentrancy-

attack-ace4088297d9.

[8] Ashu Daniel Lv. 2016. CarbonVote. https://http://carbonvote.com/.

[9] devops199. 2017. anyone can kill your contract #6995.

https://github.com/paritytech/parity-ethereum/issues/6995.

[10] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[11] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic

Framework for the Security Analysis of Ethereum Smart Contracts. In Proc. 7th
International Conference on Principles of Security and Trust (POST’18) (Lecture Notes
in Computer Science), Lujo Bauer and Ralf Küsters (Eds.), Vol. 10804. Springer,

243–269. https://doi.org/10.1007/978-3-319-89722-6_10

[12] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017. Online detection of effectively

callback free objects with applications to smart contracts. Proceedings of the ACM
on Programming Languages 2, POPL (2017), 48.

[13] NCC Group. 2018. Decentralized Application Security Project (DASP) Top 10.

https://dasp.co/index.html.

[14] Feng Hao, Peter YA Ryan, and Piotr Zieliński. 2010. Anonymous voting by

two-round public discussion. IET Information Security 4, 2 (2010), 62–67.

[15] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, and Martin T.

Vechev. 2019. Learning to Fuzz from Symbolic Execution with Application

to Smart Contracts. In Proc. 26th ACM SIGSAC Conference on Computer and
Communications Security (CCS’19), Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz (Eds.). ACM, 531–548. https://doi.org/10.1145/3319535.

3363230

[16] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip

Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,

et al. 2018. Kevm: A complete formal semantics of the ethereum virtual machine.

In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 204–217.

12

https://hpc.uni.lu
https://doi.org/10.1145/3167084
https://doi.org/10.1145/2993600.2993611
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230

[17] Friðrik Hjálmarsson, Gunnlaugur K Hreioarsson, Mohammad Hamdaqa, and

Gísli Hjálmtỳsson. 2018. Blockchain-based e-voting system. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). IEEE, 983–986.

[18] Bo Jiang, Ye Liu, and WK Chan. 2018. Contractfuzzer: Fuzzing smart contracts

for vulnerability detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 259–269.

[19] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing Safety of Smart Contracts.. In Proc. 25th Network and Distributed
System Security Symposium (NDSS’18). The Internet Society, 1–12.

[20] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena.

2019. Exploiting the laws of order in smart contracts. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,

363–373.

[21] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum

to Automatically Exploit Smart Contracts. In 27th USENIX Security Symposium
(USENIX Security’18), William Enck and Adrienne Porter Felt (Eds.). USENIX

Association, 1317–1333. https://www.usenix.org/conference/usenixsecurity18/

presentation/krupp

[22] Kibin Lee, Joshua I James, Tekachew G Ejeta, and Hyoung J Kim. 2016. Electronic

voting service using block-chain. Journal of Digital Forensics, Security and Law
11, 2 (2016), 8.

[23] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,

NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[24] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. 2017. A Smart Contract

for Boardroom Voting with Maximum Voter Privacy. In Proc. 21st International
Conference on Financial Cryptography and Data Security (FC’17) (Lecture Notes in
Computer Science), Aggelos Kiayias (Ed.), Vol. 10322. Springer, 357–375. https:

//doi.org/10.1007/978-3-319-70972-7_20

[25] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryp-
tography Mailing list at https://metzdowd.com (03 2009).

[26] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proc. 34th
Annual Computer Security Applications Conference (ACSAC’18). ACM, 653–663.

[27] Ryan Osgood. 2016. The future of democracy: Blockchain voting. COMP116:
Information Security (2016), 1–21.

[28] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and

Martin Vechev. 2020. Verx: Safety verification of smart contracts. In Proc. 41st
IEEE Symposium on Security and Privacy (IEEE SP’20). IEEE, 18–20.

[29] Sergey Petrov. 2017. Another Parity Wallet hack explained.

https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-

847ca46a2e1c.

[30] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Re-

Entrancy Attack Patterns. https://github.com/uni-due-syssec/eth-reentrancy-

attack-patterns.

[31] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:

Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In Proc. 26th
Network and Distributed System Security Symposium (NDSS’19). The Internet

Society.

[32] David Siegel. 2016. Understanding The DAO Attack.

https://www.coindesk.com/understanding-dao-hack-journalists/.

[33] Xin Sun, Quanlong Wang, Piotr Kulicki, and Mirek Sopek. 2019. A simple voting

protocol on quantum blockchain. International Journal of Theoretical Physics 58,
1 (2019), 275–281.

[34] A Tann, Xing Jie Han, Sourav Sen Gupta, and Yew-Soon Ong. 2018. Towards

safer smart contracts: A sequence learning approach to detecting vulnerabilities.

arXiv preprint arXiv:1811.06632 (2018).
[35] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. 2018. SmartCheck: Static Analysis

of Ethereum Smart Contracts. In Proc. 1st IEEE/ACM International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB@ICSE’18).
ACM, 9–16. http://ieeexplore.ieee.org/document/8445052

[36] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting

for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC ’18). ACM, New York, NY,

USA, 664–676. https://doi.org/10.1145/3274694.3274737

[37] Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The Art of The

Scam: Demystifying Honeypots in Ethereum Smart Contracts. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,

1591–1607.

[38] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart

contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 67–82.

[39] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an

Academic HPC Cluster: The UL Experience. In Proc. of the 2014 Intl. Conf. on High
Performance Computing & Simulation (HPCS 2014). IEEE, Bologna, Italy, 959–967.

[40] HaijunWang, Yi Li, Shang-Wei Lin, Lei Ma, and Yang Liu. 2019. Vultron: catching

vulnerable smart contracts once and for all. In Proc. 41st International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE NIER’19), Anita
Sarma and LeonardoMurta (Eds.). IEEE / ACM, 1–4. https://doi.org/10.1109/ICSE-

NIER.2019.00009

[41] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper 151 (2014), 1–32.
[42] Valentin Wüstholz and Maria Christakis. 2019. Harvey: A greybox fuzzer for

smart contracts. arXiv preprint arXiv:1905.06944 (2019).
[43] Pengcheng Zhang, Feng Xiao, and Xiapu Luo. 2019. SolidityCheck: Quickly

Detecting Smart Contract Problems Through Regular Expressions. arXiv preprint
arXiv:1911.09425 (2019).

[44] Wolfie Zhao. 2017. $30 Million: Ether Reported Stolen Due to Parity Wallet

Breach. https://www.coindesk.com/30-million-ether-reported-stolen-parity-

wallet-breach.

[45] Zhichao Zhao and T.-H. Hubert Chan. 2015. How to Vote Privately Using Bitcoin.

In Proc. 17th International Conference on Information and Communications Security
(ICICS’15) (Lecture Notes in Computer Science), Sihan Qing, Eiji Okamoto, Kwangjo

Kim, and Dongmei Liu (Eds.), Vol. 9543. Springer, 82–96. https://doi.org/10.1007/

978-3-319-29814-6_8

[46] Yi Zhou, Deepak Kumar, Surya Bakshi, JoshuaMason, AndrewMiller, andMichael

Bailey. 2018. Erays: reverse engineering ethereum’s opaque smart contracts. In

27th {USENIX} Security Symposium ({USENIX} Security 18). USENIX Association,

1371–1385.

A COMPLETE LIST OFÆGIS’S ATTACK

PATTERNS

Table 5 provides a complete list of vulnerabilities as well as their

respective attack patterns that ÆGIS is currently capable to detect.

B UNCONDITIONAL REENTRANCY

EXAMPLE

Figure 9 shows an example of a smart contract with an uncondi-

tional reentrancy. In this example an attacker first deposits a small

amount of ether and then uses a reentrancy attack in order to drain

all the ether that every single user has deposited.

1 contract VulnBank {

2 mapping (address => uint) public userBalances;

3

4 function deposit () public payable {

5 userBalances[msg.sender] += msg.value;
6 }

7

8 function withdrawAll () public {

9 uint amountToWithdraw = userBalances[msg.sender];
10 msg.sender.call.value(amountToWithdraw)("");
11 userBalances[msg.sender] = 0;

12 }

13 }

Figure 9: Example of a contract that is vulnerable to uncon-

ditional reentrancy [30].

13

https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-319-70972-7_20
https://doi.org/10.1007/978-3-319-70972-7_20
http://ieeexplore.ieee.org/document/8445052
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1109/ICSE-NIER.2019.00009
https://doi.org/10.1109/ICSE-NIER.2019.00009
https://doi.org/10.1007/978-3-319-29814-6_8
https://doi.org/10.1007/978-3-319-29814-6_8

Vulnerability Attack Pattern

Same-Function

Reentrancy

(opcode = CALL) ⇒ (opcode = CALL) where (src.stack (1) = dst.stack (1)) ∧

(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where (src.stack (0) = dst.stack (0)) ∧

(src.address = dst.address) ∧ (src.depth > dst.depth)

Cross-Function

Reentrancy

(opcode = CALL) ⇒ (opcode = CALL) where

(src.stack (1) = dst.stack (1)) ∧ (src.address = dst.address) ∧

(src.memory(src.stack (3), src.stack (4)) , dst.memory(dst.stack (3), dst.stack (4))) →

(opcode = SSTORE) → (opcode = SSTORE) where (src.stack (0) = dst.stack (0)) ∧

(src.address = dst.address) ∧ (src.depth > dst.depth)

Delegated

Reentrancy

(opcode = DELEGATECALL) ⇒ (opcode = DELEGATECALL) where (src.stack (1) = dst.stack (1)) ∧

(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where (src.stack (0) = dst.stack (0)) ∧

(src.address = dst.address) ∧ (src.depth > dst.depth)

(opcode = CALLCODE) ⇒ (opcode = CALLCODE) where (src.stack (1) = dst.stack (1)) ∧

(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where (src.stack (0) = dst.stack (0)) ∧

(src.address = dst.address) ∧ (src.depth > dst.depth)

Create-Based

Reentrancy

(opcode = CREATE) ⇒ (opcode = CREATE) where (src.stack (1) = dst.stack (1)) ∧

(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where (src.stack (0) = dst.stack (0)) ∧

(src.address = dst.address) ∧ (src.depth > dst.depth)

Parity Wallet

Hack 1

(opcode = DELEGATECALL) ⇒ (opcode = CALLDATACOPY) { (opcode = SSTORE) { (opcode = JUMPI) where

(src.transaction.hash , dst.transaction.hash) →

((opcode = CALLDATALOAD) { (opcode = CALL)) where

(dst.stack (2) > 0)

Parity Wallet

Hack 2

(opcode = CALLDATACOPY) { (opcode = SSTORE) { (opcode = JUMPI) where

(src.transaction.hash , dst.transaction.hash) →

((opcode = CALLDATALOAD) { (opcode = SELFDESTRUCT))

Integer Overflow

(Addition)

(opcode = CALLDATALOAD) { (opcode = ADD) where

((dst.stack (0) + dst.stack (1)) , dst.stack.result) { (opcode = CALL)

Integer Overflow

(Multiplication)

(opcode = CALLDATALOAD) { (opcode = MUL) where

((dst.stack (0) * dst.stack (1)) , dst.stack.result) { (opcode = CALL)

Integer Underflow
(opcode = CALLDATALOAD) { (opcode = SUB) where

((dst.stack (0) - dst.stack (1)) , dst.stack.result) { (opcode = CALL)

Timestamp

Dependence
(opcode = TIMESTAMP) { (opcode = JUMPI) → (opcode = CALL) where (dst.stack (2) > 0)

Transaction

Order Dependency

(opcode = SSTORE) { (opcode = SLOAD) where

(src.block.number = dst.block.number) ∧ (src.transaction.from , dst.transaction.from)

Table 5: List of vulnerabilities and their respective attack patterns.

14

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum and Smart Contracts
	2.2 Smart Contract Vulnerabilities

	3 Related Work
	4 Methodology
	4.1 Generic Attack Detection
	4.2 Decentralized Security Updates

	5 Implementation
	5.1 Ethereum Client
	5.2 ÆGIS Smart Contract

	6 Evaluation
	6.1 Comparison to Reentrancy Detection Tools
	6.2 Large-Scale Blockchain Analysis

	7 Discussion
	7.1 Determining Eligible Voters
	7.2 Adoption and Participation Incentives
	7.3 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References
	A Complete List of ÆGIS's Attack Patterns
	B Unconditional Reentrancy Example

