
AEON: Synthesizing Scheduling Algorithms
from High-Level Models

Jean-Noël Monette, Yves Deville, and Pascal Van Hentenryck

Abstract This paper describes the AEON system whose aim is to synthesize
scheduling algorithms from high-level models. AEON, which is entirely written
in COMET, receives as input a high-level model for a scheduling application which
is then analyzed to generate a dedicated scheduling algorithm exploiting the struc-
ture of the model. AEON provides a variety of synthesizers for generating complete
or heuristic algorithms. Moreover, synthesizers are compositional, making it pos-
sible to generate complex hybrid algorithms naturally. Preliminary experimental
results indicate that this approach may be competitive with state-of-the-art search
algorithms.

Key words: Scheduling, Constraints, Modelling, Local Search, Job-Shop

1 Introduction

Scheduling problems are ubiquitous in industrial applications and have been the
topic of significant research over several decades. Effective algorithms are now
available for various classes of problems and general systems are available for mod-
eling and solving complex problems. One of the difficulties with existing tools,
however, is that modelers not only need to understand their application domain, but
also need to be well-versed in the algorithmic and combinatorial aspects of solv-
ing the application at hand: Indeed, two applications which look essentially similar
for a modeling standpoint may require fundamentally different approaches to obtain
high-quality solutions.

Jean-Noël Monette, Yves Deville
INGI, UCLouvain, 1348 Louvain-la-Neuve, Belgium, e-mail: jean-noel.monette@uclouvain.be

Pascal Van Hentenryck
Brown University, Box 1910, Providence, RI 02912

J.W. Chinneck et al. (eds.), Operations Research and Cyber-Infrastructure, Operations 43
Research/Computer Science Interfaces Series 47, DOI: 10.1007/978-0-387-88843-9 3,
c© Springer Science+Business Media, LLC 2009



44 J.-N. Monette et al.

This work is a first step to address these limitations and to bridge the gap between
high-level modeling and effective solving of scheduling applications. It presents the
AEON1 system which allows high-level scheduling models to be synthesized into
effective algorithms by exploiting the model structure. Models in AEON are written
with traditional high-level abstractions and their structure is analyzed to synthesize
scheduling algorithms tailored to the applications at hand. Users state the models
and only specify the synthesizer which then generates a scheduling algorithm for a
specific resolution framework (e.g. greedy search, constraint programming, or local
search). Synthesizers in AEON are compositional, which makes it possible to specify
hybrid algorithms naturally.

The system has a number of benefits. From a user standpoint, AEON allows mod-
elers to focus on describing their applications at a high level of abstraction, relieving
them from delving into the algorithmic aspects. Moreover, since models reveal the
structure of the applications, the AEON synthesizers are in a position to exploit the
wealth of scheduling research in order to derive effective algorithms. Finally, be-
cause the model is independent of the solving technology, AEON makes it possible
to apply various paradigms and to develop hybridizations whose potential had been
demonstrated in a variety of practical applications. From an implementation stand-
point, AEON also features several innovations. First, the model analysis is extensi-
ble and allows new classes of scheduling problems to be described using standard
XML formats. Second, novel synthesizers can be added naturally and composition-
ally. Finally, several novel abstractions simplify the tasks of writing synthesizers.
In particular, AEON provides the concepts of model view, which enables access to a
general model and its solution through an interface specialized to the model at hand.

This paper extends and generalizes the research initiated in Van Hentenryck and
Michel (2007) which demonstrated how to synthesize local-search algorithms from
COMET models. The synthesizers proposed herein apply to the scheduling domain,
consider various paradigms to solve scheduling applications (greedy algorithms, lo-
cal search, and constraint programming), and are extensible and compositional. The
models are similar in style to those used in ILOG Scheduler, OPL, and COMET, and
earlier systems in constraint-based scheduling. ILOG Concert also provides a mod-
eling layer that can be extracted by various solvers, but there is no attempt to syn-
thesize search algorithms or their hybridizations. It is also useful to contrast the
research to recent work in constraint programming concerning the design of default
search procedures: See, for instance, Laborie and Godard (2007) which describes a
Self-Adapting Large Neighborhood Search for scheduling applications, and Refalo
(2004) for the use of impacts in directing the search. While their goal is to find a
search procedure robust across a variety of models, our objective is to exploit the
model structure to derive an effective search procedure for the model at hand and the
chosen methodology. We view these approaches as orthogonal since robust search
procedures must also be available for various classes of problems. However, reveal-
ing and exploiting the model structure is one of the main contributions of constraint
programming and the search algorithm may significantly benefit from a structural
synthesis.

1 Aeon is another name for the Greek god of time Chronos. It means forever, eternity.



AEON: Synthesizing Scheduling Algorithms from High-Level Models 45

The rest of this paper presents an overview of the different parts of the system.
Section 2 covers the use of the system and the available abstractions and solvers. In
Section 3, the architecture is presented and some characteristics of the system are
highlighted. Section 4 then shows how the system can be extended to deal with other
families of problems or solvers. Section 5 presents and analyzes the experimental
results.

2 Modelling and Solving Scheduling Problems

Figure 1 presents an AEON model for a Job-Shop Problem (JSP) and an associ-
ated synthesizer. The initialization of the input data in lines 1–6 is not shown. The
model itself is given in lines 8–16. First, a schedule object is created. Then, the ob-
jects populating this schedule are created (lines 9–11), including activities, jobs, and
machines. Next the constraints are stated: Machine requirements (lines 12–13) and
precedences inside jobs (lines 14–15). Finally, the objective in line 16 minimizes
the makespan.

The three last lines deal with the resolution of the model. Line 18 defines
the synthesizer, which, in this case, synthesizes the hybridization of a greedy
heuristic followed by a tabu search. It is easy to change the synthesizer: Sim-
ply replace GreedyTabuSynthesizer by CPSynthesizer to obtain a
constraint-programming search. Line 19 applies the synthesizer to solve the model.
This induces the analysis and classification of the model, the generation of the

1 range jobs = 1..nbjobs;
2 range machines = 0..nbmachines-1;
3 range tasks = 1..nbjobs*nbmachines;
4 int proc[tasks];
5 int mach[tasks];
6 int job[jobs,machines];
7
8 Schedule<Mod> s();
9 Job<Mod> J[i in jobs](s,IntToString(i));

10 Machine<Mod> M[i in machines](s,IntToString(i));
11 Activity<Mod> A[i in tasks](s,proc[i],IntToString(i));
12 forall(i in tasks)
13 A[i].requires(M[mach[i]]);
14 forall(i in jobs)
15 J[i].containsInSequence(all(j in machines)A[job[i,j]]);
16 s.minimizeObj(makespanOf(s));
17
18 GreedyTabuSynthesizer synth();
19 Solution<Mod> sol = synth.solve(s);
20 sol.printSolution();

Fig. 1 A Job-Shop Model and Its Synthesizer.



46 J.-N. Monette et al.

appropriate variables, constraints, and objectives for the solvers, and the execution
of a search algorithm dedicated to the model. The synthesizer application produces
a solution which can be queried and used in various ways. Line 19 simply prints the
obtained solution.

As shown in Fig. 1, the modelling and solving parts are clearly separated. AEON
features a rich set of abstractions to model a broad range of scheduling problems and
constraints and objectives are stated using functions and methods. The remainder of
this section reviews the set of abstractions that are available to model problems and
to solve them.

The modelling classes end with “<Mod>” to denote that they are used for mod-
elling2. Inside the system, other classes with names post-fixed with “<CP>” or
“<LS>” are used for the actual search algorithms. For instance, the purpose of the
class Activity<Mod> is completely different from the class Activity<CP>.
Although they are associated with the same concept (an activity), the first modeling
version provides methods to perform the analysis of the problem, while the CP ver-
sion encapsulates variables to represent the starting and finishing dates of an activity
and a constraint linking them. To simplify reading, the post-fix “<Mod>” is omitted
in this section when it is clear that we refer to modelling classes.

Table 1 presents the modelling classes available in AEON at this stage. They
are explained in the following. The central modelling class is Schedule (i.e.
Schedule<Mod>). It is passed to all the other created objects and is respon-
sible for the internal consistency of the model. To represent activities, there are
two classes. Activity and MultiModeActivity represent single- and multi-
mode activities respectively. At creation time, an activity receives as input a sched-
ule, a processing time and a name. The processing time is either fixed or defined by
lower and upper bounds. A MultiModeActivity is given the Schedule, the
number of modes, and a name. The processing time of the modes are given sepa-
rately for each mode. The methods available on activities (single- and multi-mode)
allow to specify preemption, the membership to a Job, the resource requirements,
and the precedences between activities. The requirements are mode-dependent but
the remaining constraints are common to every modes. Precedence constraints can
involve the start and the end of activities and jobs. They can also define delays. The
aforementioned Job class represents groups of activities logically related. The ac-
tivities are not necessarily ordered but they cannot be executed at the same time.
Jobs share some features with activities: They can be grouped into other jobs and
their ends and starts can be constrained with precedences. Lastly, activities and jobs
can be defined as optional, meaning that their execution is not required.

Resources are represented by four classes, depending on the type of resource
under consideration. The Machine class represents unary resources. Two activi-
ties that require the same machine cannot overlap in time. The Resource class
represents renewable resources. At every moment, the sum of the requests of the
activities being executed cannot exceed the capacity of the resource. On the con-
trary, the Reservoir class is used for non-renewable resources whose capacity

2 In spite of a syntax similar to C++, such classes are not templated classes.



AEON: Synthesizing Scheduling Algorithms from High-Level Models 47

Table 1 Summary of the classes available for modelling.

Description Classes
Schedule Schedule
Activities Activity

MultiModeActivity
Jobs Job
Resources Resource

Machine
Reservoir
StateResource

Objectives ScheduleObjective
TaskObjective

CompletionTime
Lateness
Tardiness
Earliness
UnitCost
PiecewiseLinearFunction
AbsenceCost
AlternativeCost

ModifObjective
MultObjective
ShiftObjective

AgregObjective
SumObjective
MaxObjective

is decreased after the execution of each activity. A minimum capacity can be de-
fined for both the Resource and Reservoir classes. For these two classes and
the Machine class, it is possible to define (periodic) breaks, i.e. time intervals of
unavailability. The last kind of resource is the StateResource that represents a
state of the world. The resource can only be in one state at a time. Two activities that
require different states cannot overlap in time. For all kind of resources, it is possible
to define sequence-dependent setup times and costs. The set of requirements of an
activity (or of a mode of a multi-mode activity) has the form of a tree whose internal
nodes are either conjunctions or disjunctions of simpler requests. External nodes are
the basic requirements: a required machine, some required or provided amount of a
resource, some consumed or produced amount of a reservoir, or a particular state of
a state resource.

Objective functions are subclasses of ScheduleObjective. The subclasses
are either simple or compound functions. Compound functions are obtained by sum-
ming or taking the maximum/minimum of other functions, or multiplying a function
by a constant. Simple functions are the classical lateness, tardiness, earliness, and,
more generally piecewise-defined linear functions based on the completion time of
activities and jobs. The set of simple functions includes also cost functions associ-
ated with the modes of multi-mode activities, with the absence of optional activities
or with the sequence-dependent setup of resources. The global objective function is
passed to the Schedule object with a method that specifies if the function must be



48 J.-N. Monette et al.

Table 2 Summary of the classes available to solve.

Description Classes
Synthesizers ScheduleSynthesizer

CPSynthesizer
TSSynthesizer
SASynthesizer
GreedySynthesizer
SequenceSynthesizer
ScheduleAnimator

Solutions Solution

minimized or maximized. The function makespanOf found in Fig. 1 is a shortcut
for the makespan, or sum of the completion times, which is a common and important
objective.

This set of abstractions makes it possible to model problems as various as classi-
cal shop problems (Job Shop, Open Shop, Flexible Shop, Flow Shop, Group Shop,
Cumulative Shop, Just-In-Time Job Shop), variations of the Resource-Constrained
Project Scheduling Problem (RCPSP, MRCPSP, RCPSP/max, MRCPSP/max)
(Kolisch and Sprecher (1997)), the trolley problem (Van Hentenryck et al (1999))
and the NCOS and NCGS classes of MaScLib (Nuijten et al (2004)). This covers
problems with different kind of objectives and different properties (disjunctive or
cumulative, single- or multi-mode).

Although the modelling abstractions are able to represent a large set of problems,
the set of problems that can be solved depends on the search that can be synthesized.
Table 2 presents the available synthesis classes in AEON at this point. Currently,
there are three underlying engines: Constraint Programming, Local Search (Tabu
search and Simulated Annealing) and Greedy Search.3 Their capabilities define the
capabilities of the whole system. Based on these basis solvers, more complex solvers
can also be synthesized. In particular, hybrid and animated solvers can be made out
of other solvers. For instance, an animated solver wraps any underlying solver into
a visual environment that shows the succession of (improving) solutions. Hybrid
solvers can be as simple as a sequence of solvers, or can provide decomposition
schemes parametrized by solvers for the various phases. Synthesizers also accept
parameters, for instance to bound the allocated time. Line 16 of Fig. 1 shows how
to create a synthesizer that is a sequence of two search algorithms. The first one
greedily finds a feasible solution that will serve as initial solution to the second
algorithm that is a Tabu Search.

3 Architecture

Figure 2 presents an overview of AEON centered around the resolution of a schedul-
ing problem. Rounded boxes are the successive steps toward a solution. Only the
first one, the modelling, involves the user. Subsequently, the model is analyzed and

3 Future work will also consider MIP-based solvers for various classes of scheduling problems.



AEON: Synthesizing Scheduling Algorithms from High-Level Models 49

Fig. 2 Overview of AEON. Rounded boxes represent actions to solve the problem. Rectangles
and Containers represent their inputs and outputs. The containers on the right are provided by the
system, the rectangle on the left are inputs from, and output to, users and those between actions are
transitional products. Italic text denotes user involvement.

categorized into some classes of problems. An algorithm is then synthesized and
run, yielding a solution to the problem. The containers on the right hand side of
Fig. 2 represent what is provided by the system to perform each step. The remain-
der of this section explains in more details how each step is performed. Section 4
describes how it is possible to enlarge those containers.

3.1 Modelling

Section 2 presented the modelling from a user point of view. Under the cover, when
the model is executed, an internal representation of the problem is built. Most of
the information is recorded in the modelling objects that were presented. For in-
stance, the Activity class contains an attribute recording whether preemption is
allowed or not. In addition, the Schedule object keeps a reference to all objects
that were created. The information is recorded using graph structures: precedence
relations into a digraph, objective functions and resource requests into rooted trees.
The precedence constraints are labeled arcs of a graph whose nodes represent the
start and end of activities, jobs and the schedule. In addition to the arcs explicitly
added by the user, arcs are created to link the start of a job with the start of contained
activities and the end of the job with the end of contained activities. There are also
arcs to ensure that all activities and jobs are executed between the start and the end
of the schedule. The trees representing objective functions and resource requests are



50 J.-N. Monette et al.

necessary to represent combinations of simple functions or requirements. Such com-
binations are sums, products, and minimums/maximums in the case of objectives.
They are conjunctions and disjunctions for the requirements.

3.2 Analysis and Classification

The goal of the second step is to categorize the model into one of the “known”
classes. This classification is based on problem characteristics. Each class of prob-
lems is defined by a combination of pairs (characteristic,value). Table 3 presents a
subset of the considered characteristics. Additionally, the last two columns specify
the values for two well-known problem classes. A dash means that the value can be
anything for this class of problems. This table presents a simplified version of the
definition of classes. In fact, it is not a simple conjunction of pairs characteristic-
value but rather a Boolean formula, with negation, disjunction and conjunction of
simpler formulas. Atoms correspond to the pairs whose truth value is determined
by the analysis of the model. If the value returned by the analysis is equal to the

Table 3 Partial Listing of Characteristics. The first column gives the characteristic, the second one
defines the type of values. The third and fourth columns illustrate possible values for the Job-Shop
(JSP) and RCPSP problems.

Characteristic Type JSP RCPSP
Unit Processing Time boolean – –
Fixed Processing Time boolean true true
Preemption Allowed enum never never
Common Release Dates boolean true true
Common Deadlines boolean – –
Deadlines Exist boolean false false

Form of the Precedence Graph enum chains DAG
Delay between Activities boolean false false
No wait between Activities boolean false false
Jobs inside Jobs boolean false –

Number Of State Resources integer 0 0
Maximum Capacity integer 1 –
All Capacities are Equal boolean true –
Reservoir Consumption boolean false false
Reservoir Production boolean false false
Setup Times boolean false false
Disjunctive Requirements boolean false false
All Activities in Jobs boolean true false
Nb of Multi-Mode Activities integer 0 0
Sum Of Requirements integer 1 –

Objective Type enum minimize minimize
Objective Form enum maximum total
Objective Components enum completion time lateness
Objective Scope enum all activities one activity
All Due-Dates are equal enum – –



AEON: Synthesizing Scheduling Algorithms from High-Level Models 51

expected one, the atomic formula receives the value true. A model belongs to a
class of problem if the valuation of the formula defining this class is true.

Moreover, recurring sub-formulas are defined as higher-level characteristics or
more general models from which other models may inherit. For instance, the JSP
with Makespan is a special case of the JSP having the characteristic Makespan. The
JSP is in turn a case of Disjunctive Problem. The hierarchy of categories forms a
directed acyclic graph (DAG). This means that a problem categorized into some
class is also member of all its ancestor classes. The output of the classification is
thus a sequence of classes rather than a single class. This sequence represents a
total order on the classes of the problem compatible with the DAG of classes. This
means that, if a class inherits from another, it must appear before the ancestor in the
sequence but the order of unrelated classes is arbitrarily fixed.

The analysis of characteristics in itself is achieved by a set of functions that
gather information from the internal representation presented previously. Prior to
the analysis, a normalization step is performed on the internal representation. In
particular, the precedence graph is simplified to its transitive reduction in order to
remove useless constraints. The trees for the requirements and the objective function
are also simplified. For instance, a sum of sums is replaced by a single sum. Finally,
useless objects (unused machines, empty jobs, for instance) are marked as such.

To be useful, the analysis must be robust with respect to modelling variations.
AEON compiles models into a canonical form and the analysis is performed on
the canonical form. For instance, the code of Fig. 3 shows an alternative model
of a JSP. There are several differences (multi-mode activities, reservoirs, no jobs,
explicit objective function) compared to the code in Fig. 1. However, AEON correctly
categorizes it as a JSP, which is a highly desirable feature in practice. Indeed, it is
the semantic of the model which is significant, not the syntax of how the meaning is
described.

1 range machines;
2 range tasks;
3 int proc[tasks];
4 int mach[tasks];
5
6 Schedule<Mod> s();
7 Reservoir<Mod> M[i in machines](s,0,5,5,IntToString(i));
8 MultiModeActivity<Mod> A[i in tasks](s,1,IntToString(i));
9 forall(i in tasks) {

10 A[i].setProcTime(1,proc[i],proc[i]);
11 A[i].requires(1,M[mach[i]],3);
12 }
13 forall(i in tasks:i%nbmachines!=0)
14 A[i].precedes(A[i+1]);
15 s.minimizeObj(maxOf(all(i in tasks)completionTimeOf(A[i])));
16
17 GreedyTabuSynthesizer synth();
18 Solution<Mod> sol = synth.solve(s);
19 sol.printSolution();

Fig. 3 Alternative Model for the Job-Shop Problem



52 J.-N. Monette et al.

3.3 Algorithm Synthesis

The classes responsible for the synthesis are ScheduleSynthesizer and its
subclasses (see Table 2). As reflected in Fig. 2, the input of the synthesis step is com-
posed of three parts: the user model, its classification, and a choice made by the user
for a particular solving technology. The chosen subclass of ScheduleSynthe-
sizer defines the solving technology (for instance Constraint Programming for
CPSynthesizer) and the solve method takes the model as an argument.

Based on the classification output, the synthesizer chooses the appropriate solv-
ing strategy. A strategy is a search algorithm specific to a class of problems that will
be instantiated to a particular instance. Each synthesizer associates different strate-
gies with the classes of problems. For instance, the TSSynthesizer class asso-
ciates the Tabu Search of Dell’Amico and Trubian (1993) with the class Job-Shop
Problem with Makespan. Each synthesizer might not define strategies for each class
of problems but it is possible that it defines a strategy for a more general problems.
As the output of the classification is a sequence of problem classes, the synthesizer
will look for a strategy for the first class. If it does not exist, a strategy for the next
class will be looked up. The sequence is visited while there is no matching strategy.
In the worst case, the problem is recognized as a “general scheduling problem” for
which there is a basic default search.

Once the strategy is chosen, it must be instantiated to the problem being solved.
The synthesizer delegates this work to a subclass of the Strategy class. Roughly
speaking, there is such a subclass for each existing pair of problem class and solving
technology. Each Strategy subclass is responsible for setting up and running a
search algorithm for the problem being solved. The difficulty is that although the
class of the problem is known, it may be hard to find the suitable information to
instantiate the search. To facilitate this step, AEON features a set of classes called
views. The views are used to present the schedule and its components in a unified
way, no matter how they were introduced. Different views correspond to different
conceptions of the problem. The most general (ScheduleView) is a generic way
to access the information, while specific views give direct access to the subset of
useful information for some classes of problems. For instance, the JobShopView
gives information for JSPs. It is meant to give the same interface no matter how
the problem was modeled by the user (whether it was specified as in Fig. 1 or as in
Fig. 3).

3.4 Algorithm Execution

The algorithm being actually run is different for each strategy. However they have
in common that a solution is returned. Objects of the class Solution assign
a value to each decision variable of the problem. This assignment is expressed
in terms of the model objects. For instance, the method getStartingTime
(Activity<Mod> act) returns the starting time of an activity. Beside the



AEON: Synthesizing Scheduling Algorithms from High-Level Models 53

1 Solution<Mod> solve(Schedule<Mod> sched){
2 JobShopView view(sched);
3 range Activities = view.getActivities();
4 range Jobs = view.getJobs();
5 range Machines = view.getMachines();
6 int[] duration =
7 all(i in Activities) view.getProcessingTime(i);
8 int[] machine = all(i in Activities) view.getMachine(i);
9 int[][] jobAct =

10 all(j in Jobs) view.getOrderedActivitiesOfJob(j);
11
12 JobshopAlgorithm ls(LocalSolver(),Activities, Jobs,
13 Machines, duration, machine, jobAct);
14 ls.solve();
15 SolutionView sol(view);
16 ls.saveSolution(sol);
17 return sol.getModelSolution();
18 }

Fig. 4 Solving a Job-Shop Problem

starting time, other decision variables of activities are the completion time, the set
of resources effectively used, the mode (for multi-mode activities) and the presence
or absence (for optional activities). The solution records also the value of the ob-
jective function under this assignment. The main benefit of solution objects is that
the model stays independent. It can thus have several solutions that can be com-
pared. Moreover, solutions serve to communicate between cooperating strategies.
They can be used to perform an initial assignment, to provide an upper bound, or to
guide heuristics.

Solutions are expressed in terms of the model but strategies deal with views.
They need a SolutionView to express the solution in terms of the view. A
SolutionView object is created from a view and the values for the decision
variables are given in terms of this view. The underlying solution in terms of the
model can then be retrieved from the solution view. Figure 4 shows the body of
the solve method of the DellAmico class. It features the JobShopView and
SolutionView classes. Line 2-10 shows the creation and the use of the view
for Job-Shop problems. The actual search is delegated to another class named
JobshopAlgorithm (lines 12-14). Line 15 creates the view for the solution from
the view for the problem. This view is then fulfilled in line 16 and the actual solution
is returned in line 17.

4 Adding Classes of Problems and Strategies

As the main concern of this work is to simplify the use of scheduling algorithms,
it is also important to provide simple mechanisms to extend the system. In partic-
ular, the AEON architecture allows implementors to easily add classes of problems,



54 J.-N. Monette et al.

synthesizers, and solving strategies. The extension of the modelling abstractions is
not covered as it may need deeper modifications into the system. New classes of
problems can be specified using XML files. Synthesizers and strategies are defined
by extending existing classes.

4.1 Adding Classes of Problems

All classes of problems and high-level characteristics are defined in XML files. Each
class is defined by its unique name and a structure of constraints that the problems of
this class must respect. This structure is recursively made of the following elements:

• SimpleConstraint: The characteristic must have a given value.
• And: All constraints must be respected.
• Or: At least one constraint must be respected.
• Not: The constraint cannot be respected.
• IsA: The constraints of another given model must be respected.

The root element is called “Constraints” and corresponds to an “And”. To add a
new class, it is necessary to write an XML file that defines the constraints to satisfy.
It is simple to reuse previous model thanks to IsA inheritance construct. For instance,
Fig. 5 shows the file for the particular case of a JSP with two jobs that can be solved
in polynomial time (Akers and Friedman (1955)). It is a conjunction of constraints,
namely that it is a Job-Shop problem, that the objective function is the makespan,
and that the number of jobs is two.

4.2 Adding Strategies

A new search strategy is created by extending class Strategy, which requires
specifying two methods: solve(Schedule<Mod>s) and solve(Schedule
<Mod> sched, Solution<Mod> initSol). The first method imple-
ments the resolution of the problem from scratch and the second one solves

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE Model SYSTEM "models.dtd">
3 <Model ID="JobShopWithMakespanWithTwoJobs">
4 <Constraints>
5 <IsA Name="Makespan"/>
6 <IsA Name="JobShop"/>
7 <Constraint Name="nbJobs" Value="2"/>
8 </Constraints>
9 </Model>

Fig. 5 XML Definition of the Job-Shop with 2 jobs.



AEON: Synthesizing Scheduling Algorithms from High-Level Models 55

1 class MySynthesizer extends TSSynthesizer{
2 MySynthesizer():TSSynthesizer(){
3 registerStrategy("JobShopWithMakespanWithTwoJobs",
4 new AkersAndFriedmanAlgorithm());
5 }
6 }

Fig. 6 Adding a new strategy to the TSSynthesizer

the problem, starting from an initial solution. This initial solution may be dis-
carded, for instance in the case of a greedy solver. The body of these methods
should use views. This is illustrated in Fig. 4, which shows the implementation
of the first method. The implementation of the second one is similar. The only
modification is the replacement of line 14 by the instruction ls.solve(new
SolutionView(view,initSol)) where a view of the initial solution is
forwarded to the search algorithm.

A newly created strategy must then be linked to a class of problem by mean of a
synthesizer. This pairing is done by the method registerStrategy(string
name, Strategy strategy) defined in the Synthesizer class. This
method associates a class (defined by its name) to a strategy. If another strategy
was already associated with a synthesizer, the new one replaces the old one. This
method is typically called inside the constructor of a new class of synthesizer.
Figure 6 shows such a case, where a new synthesizer is defined as a subclass of
TSSynthesizer. This means that a JSP with two jobs will be solved using
the ad-hoc polynomial algorithm and all other problems will be solved with Tabu
Search.

From this example, it is clear that the user choice for a particular search tech-
nology (in Fig. 2) can also be removed, allowing a completely black-box search.
It suffices to create a default synthesizer with each class of problems, choosing the
best possible strategy for each problem subclass. However, the “best” strategy is not
necessarily unique even for a subclass: it may depend on the time constraints, the
need to obtain lower and upper bounds, the desire for optimality, and the character-
istics of the instances at hand. So providing the synthesizers increase the flexibility
and effectiveness of the system.

4.3 Building New Strategies Compositionally

New strategies can also be built from simpler strategies. The architecture of AEON
allows implementors to build composite searches by specialization or composition.
The first possibility is to create a new strategy for a specialized class as shown in the
previous subsection. At a more general level, a synthesizer can systematically create
compound strategies from other synthesizers. Figure 7 presents the two possibilities
for a simple compound: a Tabu Search followed by a CP search. Lines 1–14 illus-
trate a compound strategy for the JSP and lines 15-26 show the code of a synthesizer



56 J.-N. Monette et al.

1 class TS_CPJSP extends Strategy{
2 Strategy _s1;
3 Strategy _s2;
4 TS_CPJSP():Strategy(){
5 _s1 = new DellAmico();
6 _s2 = new CPJobShop();
7 }
8 Solution<Mod> solve(Schedule<Mod> s){
9 return _s2.solve(s,_s1.solve(s));

10 }
11 Solution<Mod> solve(Schedule<Mod> s,Solution<Mod> initSol){
12 return _s2.solve(s,_s1.solve(s, initSol));
13 }
14 }
15 class TS_CPSynthesizer extends ScheduleSynthesizer{
16 ScheduleSynthesizer _s1;
17 ScheduleSynthesizer _s2;
18 TS_CPSynthesizer():ScheduleSynthesizer(){
19 _s1 = new TSSynthesizer();
20 _s2 = new CPSynthesizer();
21 }
22 Solution<Mod> solve(Schedule<Mod> s){
23 string[] models = classify(s);
24 return _s2.solve(s,models,_s1.solve(s, models));
25 }
26 }

Fig. 7 Two implementations for a TS+CP strategy

chaining TS and CP. The methods classify and solve with several argument
are defined in ScheduleSynthesizer and represent the different steps under
the responsibility of the synthesizer: the classification and the resolution (with and
without initial solution). It is interesting to see how the code of the compound syn-
thesizer mimics the code of the compound strategy.

5 Experiments

The goal of this section is to show that the genericity of the system is compatible
with effective and efficient solving of scheduling problems. To assess this, we chose
to perform experiments on a few classical benchmark, the Job-Shop Problem with
Makespan minimization (JSP), the Open-Shop Problem with Makespan minimiza-
tion (OSP) and the Job-Shop Problem with total weighted tardiness minimization
(JSTWT). For each benchmark, three synthesized search algorithms will be consid-
ered: A Local Search (LS), a Constraint Progamming approach (CP) and a com-
pound where the Tabu Search gives an upper bound to the CP part (LS+CP). They
will be compared with the COMET implementation (Van Hentenryck and Michel
(2005)) of respectively the Tabu Search of Dell’Amico and Trubian (1993) for JSP,



AEON: Synthesizing Scheduling Algorithms from High-Level Models 57

Table 4 Mean Relative Error and running time (in seconds) for 4 algorithms. Ref. stands for the
references algorithms, LS for Local Searches embedded in AEON, CP for Constraint Programming
embedded in AEON and LS+CP for a compound of LS and CP. For CP and LS+CP, the number in
parenthesis is the number of instances for which the search was complete and for which the running
time is counted. For OSP, the column CP counts 2 values. The second one is a Large Neighborhood
Search that can also be generated in AEON.

Problem #Inst. Average MRE Average running time to best solution
Ref. LS CP/LNS LS+CP Ref. LS CP/LNS LS+CP

JSP 78 2.08 2.09 54.40 2.03 2.6 3.1 4.4(30) 3.4(52)
OSP 80 1.68 1.70 1.58/0.01 0.85 24.1 25.0 8.0(49)/ <120 30.2(50)

JSPTW 22 4.28 3.87 97.88 4.14 24.4 24.3 -(0) -(0)

the Tabu Search of Liaw (1999) for OSP and a Metropolis algorithm presented in
Van Hentenryck and Michel (2004) for JSPTW.

The LS algorithms are counterparts of the original algorithms and have the same
limits : 12,000 iterations for JSP and OSP and 600,000 iterations for JSPWT. The
CP search is limited in time to max(300,3∗#activities) seconds, that is 25 minutes
for the largest instances.

For local search algorithms, 20 runs for each instance were performed. The al-
gorithms involving CP were only run once as they are much less variable. All runs
were performed on a Intel Core 2 Duo, 1.66Ghz with 1 Gb of RAM.

Table 4 presents a summary of the results for classical benchmark instances.
More detailed results are available online4. For each algorithm, the mean relative
error (MRE) is given. The MRE is equal to 100 ∗ (UB−LB)/LB where UB is the
value of the (average) makespan found by the algorithm and LB is the best lower
bound known for the instance (taken from Zhang et al (2008, 2007); Van Hentenryck
and Michel (2005); Laborie and Godard (2007)).

To show another hybrid approach, we also generated a Large Neighborhood
Search (LNS) for the OSP. This search is particularly efficient and solved all but
one of the 80 instances in less than 2 minutes, yielding a MRE of 0.01 as shown in
column CP/LNS of Table 4.

This table shows that there is no significant difference between the search gener-
ated by AEON and a search that is written apart. Of course the CP approach is not
always usable for larger instances but it is not restricted to AEON. On the contrary,
the use of CP in conjunction with the Local Search permits to prove optimality of
heuristically found solutions. In terms of running time, the CP approach is not com-
petitive for large problems but the local search (LS) is competitive with the COMET
implementation of the reference algorithms.

The cost of the use of AEON is illustrated on Fig. 8 where the total time used by
the setup, analysis, classification and generation operations is reported in function
of the number of activities in the problem. The plot exhibits a quadratic progression
with a soft slope. For instances containing 500 activities, the classification time is
less than 1.5 second.

4 http://becool.info.ucl.ac.be/aeon

http://becool.info.ucl.ac.be/aeon


58 J.-N. Monette et al.

Fig. 8 Time (in milliseconds) to analyze a problem and generate the search in function of the
number of activities.

6 Conclusion

This work presents AEON, a system to model and solve scheduling problems. Given
a scheduling model specified in a high-level modeling language, AEON recognizes
and classifies its structure, and synthesizes an appropriate search algorithm. The
synthesized algorithm is specialized to a particular paradigm such as local search
or constraint programming. The approach makes it possible to exploit structural
information from the models to derive scheduling algorithms dedicated to classes of
problems.

AEON has a number of fundamental features: First the model classification does
not depend on the syntax or on the modeling choices. Models are transformed into a
canonical form on which the analysis is performed, increasing the robustness of the
modeling process. Second, AEON is an open and extensible system: New problem
classes can be specified in standard XML format and new solving strategies can be
added for all problem classes. Moreover, new synthesizers can be built from existing
ones compositionally, building sequences of solvers or specializing decomposition
algorithms (e.g., logical Benders decomposition) with different algorithms.

The experimental results demonstrated the feasibility of the approach. They show
that the overhead of using AEON compared to dedicated algorithm is small and that
the analysis cost is perfectly acceptable and grows quadratically with the problem
size, taking about 1.5 seconds for 500 activities.

Our current work aims at defining a wide variety of scheduling algorithms for
many problem classes. The inclusion of new algorithms, including large neighbor-
hood search and parallel version of existing algorithms, is also under way and ex-
perimental results should be available soon. Long-term research will focus on two
main directions. First, the automatic linearization of models will allow us to solve
them using MIP technology or to obtain linear relaxations to provide lower bounds



AEON: Synthesizing Scheduling Algorithms from High-Level Models 59

or guide the search. Second, robust default search should be built for various general
classes of problems (e.g., disjunctive scheduling) when idiosyncratic constraints are
present.

Acknowledgments

The authors want to thank the anonymous reviewers for their helpful comments.
This research is partially supported by the Walloon Region, project Transmaze
(516207) and by Interuniversity Attraction Poles Programme (Belgian State,
Belgian Science Policy).

References

Akers S, Friedman J (1955) A non-numerical approach to production scheduling
problems. Operations Research 3:429–442

Dell’Amico M, Trubian M (1993) Applying tabu search to the job-shop scheduling
problem. Annals of Operations Research 41:231–252

Kolisch R, Sprecher A (1997) Psplib — a project scheduling problem li-
brary. European Journal of Operational Research 96:205–216, URL cite-
seer.ist.psu.edu/kolisch96psplib.html

Laborie P, Godard D (2007) Self-adapting large neighborhood search: Application
to single-mode scheduling problems. In Proceedings MISTA-07, Paris

Liaw CF (1999) A tabu search algorithm for the open shop scheduling problem.
Computers and Operations Research 26:109–126

Nuijten W, Bousonville T, Focacci F, Godard D, Le Pape C (2004) Towards
an industrial manufacturing scheduling problem and test bed. PMS URL
http://www2.ilog.com/masclib/

Refalo P (2004) Impact-based search strategies for constraint programming. In: CP
2004, Toronto (Canada), pp 557–571

Van Hentenryck P, Michel L (2004) Scheduling abstractions for local search. In:
CP-AI-OR’04, Nice, pp 319–334

Van Hentenryck P, Michel L (2005) Constraint-Based Local Search. The MIT Press
Van Hentenryck P, Michel L (2007) Synthesis of constraint-based local search algo-

rithms from high-level models. AAAI’07, Vancouver, British Columbia
Van Hentenryck P, Michel L, Laborie P, Nuijten W, Rogerie J (1999) Combinatorial

optimization in OPL studio. In: Portuguese Conference on Artificial Intelligence,
pp 1–15, URL citeseer.ist.psu.edu/article/vanhentenryck99combinatorial.html

Zhang CY, Li P, Rao Y, Guan Z (2007) A tabu search algorithm with a new neigh-
borhood structure for the job shop scheduling problem. Computers & Operations
Research 34:3229–3242

Zhang CY, Li P, Rao Y, Guan Z (2008) A very fast ts/sa algorithm for the job shop
scheduling problem. Computers & Operations Research 35:282–294

http://www2.ilog.com/masclib/

	Chapter 3
	AEON: Synthesizing Scheduling Algorithms from High-Level Models
	1 Introduction
	2 Modelling and Solving Scheduling Problems
	3 Architecture
	3.1 Modelling
	3.2 Analysis and Classification
	3.3 Algorithm Synthesis
	3.4 Algorithm Execution

	4 Adding Classes of Problems and Strategies
	4.1 Adding Classes of Problems
	4.2 Adding Strategies
	4.3 Building New Strategies Compositionally

	5 Experiments
	6 Conclusion
	Acknowledgments
	References



