
HAL Id: hal-01551105
https://hal.laas.fr/hal-01551105v3

Submitted on 11 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aerial Co-Manipulation with Cables: The Role of
Internal Force for Equilibria, Stability, and Passivity

Marco Tognon, Chiara Gabellieri, Lucia Pallottino, Antonio Franchi

To cite this version:
Marco Tognon, Chiara Gabellieri, Lucia Pallottino, Antonio Franchi. Aerial Co-Manipulation with
Cables: The Role of Internal Force for Equilibria, Stability, and Passivity. IEEE Robotics and Au-
tomation Letters, IEEE 2018, 3 (3), pp.2577 - 2583. ฀10.1109/LRA.2018.2803811฀. ฀hal-01551105v3฀

https://hal.laas.fr/hal-01551105v3
https://hal.archives-ouvertes.fr


Preprint version, final version at http://ieeexplore.ieee.org/ IEEE Robotics and Automation Letters 2018

Aerial Co-Manipulation with Cables: The Role of Internal Force for

Equilibria, Stability, and Passivity

Marco Tognon1, Chiara Gabellieri1,2,†, Lucia Pallottino2, and Antonio Franchi1

Abstract— This paper considers the cooperative manipulation
of a cable-suspended load with two generic aerial robots without
the need of explicit communication. The role of the internal
force for the asymptotic stability of the beam position-and-
attitude equilibria is analyzed in depth. Using a nonlinear
Lyapunov-based approach, we prove that if a non-zero inter-
nal force is chosen, then the asymptotic stabilization of any
desired beam attitude can be achieved with a decentralized
and communication-less master-slave admittance controller. If,
conversely, a zero internal force is chosen, as done in the
majority of the state-of-the-art algorithms, the attitude of the
beam is not controllable without communication. Furthermore,
we formally proof the output-strictly passivity of the system
with respect to an energy-like storage function and a certain
input-output pair. This proves the stability and the robustness
of the method during motion and in non-ideal conditions. The
theoretical findings are validated through extensive simulations.

I. INTRODUCTION

Over the last decade UAVs (Unmanned Aerial Vehicles)

have risen the interest of a larger and larger audience for

their wide application domain. Recently, aerial physical

interaction, using aerial manipulators [1], [2] or exploiting

physical links as cables [3], has become a very popular topic.

One interesting and applicative problem is the aerial manipu-

lation of large objects, for which cooperative approaches are

usually applied because they allow to overcome the limited

payload of a single platform, thus lifting larger and heavier

loads [4].

Many works targeted this problem proposing different

methods and solutions. In [5], [6] cooperative aerial trans-

portation of a rigid and an elastic object is considered, re-

spectively. In [7] the use of multiple flying arms is exploited

to address the problem. Aerial manipulation via cables is

another interesting solution to the problem since it can

reduce the couplings between the load and the robot attitude

dynamics. Examples of cooperative aerial manipulation using

cables are studied in [8]–[10]. All these examples rely on

a centralized control. Instead, a decentralized algorithm, as

in [11], is more robust and scalable with respect to (w.r.t.)

the number of robots.
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Fig. 1: Representation of the system and its major variables. The
two aerial vehicles do not need to be necessarily quadrotors since
the analysis and control design is valid for general aerial vehicles.

However, the major bottleneck in decentralized algorithms

is the explicit communication. Communication delays and

packet losses can affect the performance and even the sta-

bility of the systems. Limiting the need for explicit com-

munication allows to reduce the complexity as well. In [12]

the authors proposed one of the first decentralized leader-

follower algorithm without explicit communication, for ob-

jects transportation performed by mobile ground robots.

Aerial cooperative transportation by two robots without

explicit communication has been addressed also in [13] for

a cable-suspended beam-like load, and a leader-follower

paradigm has been proposed. Here the leader follows an

external position reference, while the horizontal position of

the follower is controlled with an admittance filter, trying to

keep the cable always vertical (zero internal force). A similar

approach has been proposed in [14] but relying on a visual

feedback. However, those methods do not deal with the load

pose control and do not provide a formal stability proof.

For the same system composed by two aerial robots

carrying a cable suspended beam-like load (see Fig. 1 for a

schematic representation), we propose a decentralized algo-

rithm relying only on implicit communication. Our algorithm

uses a master-slave architecture with an admittance filter on

both robots (not only on the slave as in the related state of the

art), to make the overall system compliant/robust to external

disturbances.

One of our main contributions is the constructive and

intuitive method to choose the controller input to stabilize

the load at a desired pose. The control of both position and

orientation turns the simpler transportation task found in the

state of the art in a full-manipulation one.

We show that those inputs are parametrized by the internal

force of the load that plays a crucial role in the equilibria

stability. Differently from the state of the art algorithms,

which are not formally guaranteed to converge, we also

provide a formal proof of the stability through Lyapunov’s
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direct method. Furthermore, we prove that the controlled

system is output-strictly passive w.r.t. a relevant input-output

pair. This provides a bound for the energy variations during

the manipulation and an index of robustness of the method.

In Sec. II we derive the model. In Sec. III we present

the control strategy and the equilibria of the system. Their

stability is discussed in Sec. IV. In Sec. V we prove the

passivity and stability of transportation. Simulation results

and conclusive discussions are presented in Sec. VI and VII,

respectively.

II. SYSTEM MODELING

The considered system and its major variables are shown

in Fig. 1. The beam-like load is modeled as a rigid body with

mass mL 2 R>0 and a positive definite inertia matrix JL 2
R

3⇥3. We define the frame FL = {OL,xL,yL,zL} rigidly

attached to it, where OL is the the load center of mass (CoM).

Then, we define an inertial frame FW = {OW ,xW ,yW ,zW}
with zW oriented in the opposite direction to the gravity

vector. The configuration of the load is then described by the

position of OL and orientation of FL with respect to FW ,

i.e., by the vector pL 2 R
3 and the rotation matrix RL 2

SO(3), respectively. Its dynamics is given by the Newton-

Euler equations

mLp̈L =�mLge3 +fe

ṘL = S(ωL)RL

JLω̇L =�S(ωL)JLωL +τe �ω
>
L BLωL,

where, ωL 2 R
3 is the angular velocity of FL w.r.t. FW

expressed in FL, S(?) is the operator such that S(x)y =
x⇥y, g is the gravitational constant, ei is the canonical unit

vector with a 1 in the i-th entry, fe and τe 2R
3 are the sum of

external forces and moments acting on the load, respectively.

The positive definite matrix BL 2 R
3⇥3 is a damping factor

modeling the energy dissipation phenomena.

The load is transported by two aerial robots by means

of two cables, one for each robot. We denote with Ai the

attachment point of the i-th cable to the i-th robot, with

i = 1,2, and we define the frame FRi = {Ai,xRi,yRi,zRi}
rigidly attached to the robot and centered in the attachment

point. The i-th robot configuration is described by the po-

sition of Ai and orientation of FRi w.r.t. FW , denoted by

the vector pRi 2 R
3, and the rotation matrix RRi 2 SO(3),

respectively. We assume that a position controller is applied

to the aerial robot, able to track any C2 trajectory with

negligible error in the domain of interest, independently

from external disturbances. Indeed, with the recent robust

controllers (as the one in [15] for both unidirectional- and

multidirectional-thrust vehicles) and disturbance observers

for aerial vehicles, one can obtain very precise motions,

even in the presence of external disturbances. However,

the proposed control method results particularly robust to

non-ideality, thanks to its passivity nature (see Sec. V). As

a consequence, in real applications, a precise tracking is

actually not needed for the stability, but only to achieve

perfect performance.

The closed loop translational dynamics of the robot subject

to the position controller is then assumed as the one of a

double integrator: p̈Ri = uRi, where uRi is a virtual input

to be designed. If we consider a multidirectional-thrust

platform capable of controlling both position and orientation

independently [16], the double integrator is an exact model

of the closed loop system apart from modeling errors. In

the case of underactuated unidirectional-thrust vehicle, the

double integrator is instead a very good approximation.

Indeed the rotational dynamics is totally decoupled from the

translational one and it is much faster than the latter, allowing

to apply the time-scale separation principle. At this stage it

might seem that the platform is ‘infinitely stiff’ w.r.t. the

force produced by the cable. However, we shall re-introduce

a compliant behavior by suitably designing the input uRi.

The other end of the i-th cable is attached to the load

at the anchoring point Bi described by the vector Lbi 2 R
3

denoting its position with respect to FL. The position of Bi

w.r.t. FW is then given by bi = pL +RL
Lbi. To simplify

the discussion we assume, without loss of generality, that
Lb1 = [kLb1k 0 0]>.

Assumption 1. The two anchoring points are placed such that

the load CoM coincides with their middle point, i.e., Lb1 =
�Lb2. This assumption is rather easy to meet in practice.

We model the i-th cable as a unilateral spring along

its principal direction, characterized by a constant elastic

coefficient ki 2R>0, a constant nominal length denoted by l0i

and a negligible mass and inertia w.r.t. the ones of the robots

and of the load. The attitude of the cable is described by the

normalized vector, ni = li/klik, where li = pRi � bi. Given

a certain elongation klik of the cable, the latter produces a

force acting on the load at Bi equal to:

fi = tini, ti =

(

ki(klik� l0i) if klik� l0i > 0

0 otherwise
. (1)

ti 2 R�0 denotes the tension along the cable and it is given

by the simplified Hooke’s law. As usually done in the related

literature, we assume that the controller and the gravity force

always maintain the cables taut, at least in the domain of

interest. The force produced at the other hand of the cable,

namely on the i-th robot at Ai, is equal to �fi.

Considering the forces that robots and load exchange by

means of the cables, the dynamics of the full system is:

v̇R = uR

v̇L =M�1
L (�cL(vL)�gL +G(qL)f) ,

(2)

where qR = [p>
R1 p>

R2]
>, qL = (pL,RL), vR = [ṗ>

R1 ṗ>
R2]

>,

vL = [ṗ>
L ω

>
L ]

>, uR = [u>
R1 u>

R2]
>, f = [f>

1 f>
2 ]> where

fi is given in (1), and is a function of the state, ML =
diag(mLI3,JL) and I3 2 R

3⇥3 the identity matrix, gL =
[�mLge>3 0]>, cL = [0 S(ωL)JLωL �ω

>
L BLωL]

> and

G=



I3 I3

S(Lb1)R
>
L S(Lb2)R

>
L

�

.

We remark that the two dynamics in (2) are coupled together

by the cable forces in (1).
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Fig. 2: Schematic representation of the overall system including
both physical and control blocks.

Control problem

In this work we aim to: i) stabilize the load at a desired

configuration, q̄L = (p̄L,R̄L); ii) preserve the stability of the

load during its transportation.

Assuming a perfect knowledge of the system dynamic

model, and a perfect state estimation, one could use a

centralized control approach, as in [8], [9]. We are instead

interested in solving the mentioned objectives using a decen-

tralized approach without explicit communication between

the robots.

III. CONTROL DESIGN AND EQUILIBRIA

To achieve the previous control objectives we propose the

use of an admittance filter for both robots, i.e., setting:

uRi =M�1
Ai (�BAiṗRi �KAipRi �fi +πAi) , (3)

where the tree positive definite symmetric matrices

MAi,BAi,KAi 2R
3⇥3 are the virtual inertia of the robot, the

virtual damping, and the stiffness of a virtual spring attached

to the robot, and πAi 2 R
3 is an additional input (see Fig. 2

for a schematic representation). Notice that (3) does not

require explicit communication. Indeed it requires only local

information, i.e., the state of the robot (pRi, ṗRi), and the

force applied by the cable fi. The first can be retrieved with

standard on-board sensors, while the second can be directly

measured by an on-board force sensor or estimated by a

sufficiently precise model-based observer as done in [13],

[16].

Combining equations (2) and (3) we can write the closed

loop system dynamics as v̇ = m(q,v,πA) where

m(q,v,πA) =



M�1
A (�BAṗR �KApR �f+πA)

M�1
L (�cL(vL)�gL +Gf)

�

, (4)

with q = (qR,qL), v = [v>
R v>

L ]
> and πA = [π>

A1 π
>
A2]

>. Fur-

thermore MA = diag(MA1,MA2), BA = diag(BA1,BA2) and

KA = diag(KA1,KA2). In order to coordinate the motions of

the robots in a decentralized way we propose a master-slave

approach. Only one robot, namely the designated master, will

have an active control of the system. Choosing robot 1 as

master and robot 2 as slave we set KA1 6= 0, KA2 = 0.

We say that q is an equilibrium configuration if 9 πA s.t.

0= m(q,0,πA), i.e, if the corresponding zero-velocity state

(q,0) is a forced equilibrium for the system (4) for a certain

forcing input πA. We say that an equilibrium configuration q

is stable, unstable, or asymptotically stable if (q,0) is stable,

unstable, or asymptotically stable, respectively.

Configuration Space Parameter Space

ΠA(q̄L) S

tL<0

Q
−(tL, q̄L)

S

tL>0

Q
+(tL, q̄L)

tL < 0

tL > 0 tL = 0

q̄L

Load

qL = (pL,RL) πA q = (pR1,pR2,pL,RL)

Constant Input

Q(0, q̄L)
q̄L

Configuration Space
Full System

R
3
× SO(3) R

6 R
9
× SO(3)

Fig. 3: Relation between the equilibria and forcing control input. In
particular, starting from the left: to a desired load configuration of
equilibrium it corresponds a forcing input in the subset ΠA(q̄L) of
dimension one (inverse problem). Then, moving to the right: to a
forcing input in ΠA(q̄L) it corresponds an equilibrium in the subsets
Q+(tL, q̄L), Q�(tL, q̄L) or Q(0, q̄L) according to the value of tL
(direct problem). The orange line inside Q+(tL, q̄L) corresponds to
the equilibria q 2 Q+(tL, q̄L) such that qL = q̄L.

In the following we shall prove that for any desired load

configuration q̄L there exists a set ΠA(q̄L) ⇢ R
6 such that

for any πA 2 ΠA(q̄L) one can compute a q̄R, depending on

q̄L and πA, that makes q̄ = (q̄L, q̄R) an asymptotically stable

equilibrium with πA as forcing input. As we shall see, a

key role in all the following analyses is played by the load

internal force, defined as

tL := 1
2
f>

⇥

I3 �I3

⇤>
RLe1 =: 1

2
f>rL, (5)

where rL =
⇥

I3 �I3

⇤>
R̄Le1. We have that if tL > 0 the

internal force is a tension (the work of the internal force

is positive if the distance between the anchoring points

increases) while if tL < 0 the internal force is a compression

(viceversa, the work is positive if the distance decreases).

A. Equilibrium Configurations of the Closed Loop System

We firstly carefully analyze the relation between equilib-

rium configurations, from now on simply called equilibria,

and the forcing input πA. In particular, we shall study:

i) equilibria inverse problem: which is the set of inputs (and

corresponding robot positions) that equilibrates a desired q̄L

(Theorem 1); ii) equilibria direct problem: which is the set of

equilibria if πA, chosen in the aforementioned set, is applied

to the system (Theorem 2). A schematic representation of the

results described in the theorems is given in Fig. 3.

Theorem 1 (equilibria inverse problem). Consider the closed

loop system (4) and assume that the load is at a given desired

configuration qL = q̄L = (p̄L,R̄L). For each internal force

tL 2R, there exists an unique constant value for the forcing

input πA = π̄A (and an unique position of the robots qR = q̄R)

such that q̄ = (q̄L, q̄R) is an equilibrium of the system.

In particular π̄A and q̄R = [p̄>
R1 p̄

>
R2]

> are given by

π̄A(q̄L, tL) =KAq̄R + f̄(q̄L, tL) (6)

p̄Ri(q̄L, tL) = p̄L + R̄L
Lbi +

✓

kf̄ik

ki

+ l0i

◆

f̄i

kf̄ik
, (7)

for i = 1,2, where

f̄(q̄L, tL) =



f̄1

f̄2

�

=
mLg

2



I3

I3

�

e3 + tL



I3

�I3

�

R̄Le1. (8)
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Proof. The desired load configuration q̄L can be equilibrated

if there exists at least a q̄R and a πA such that:

m(q̄,0,πA) = 0. (9)

Consider the last six rows of (9). We must find the f solving

Gf = gL. (10)

G is not invertible since rank(G) = 5, thus we have to verify

that a solution for (10) exists. Expanding (10) we obtain

f1 +f2 =�mLge3 (11)

S(Lb1)R̄
>
L f1 +S(Lb2)R̄

>
L f2 = 0. (12)

Then, substituting in (12) the f1 obtained from (11) we

have 2S(Lb1)R̄
>
L f2 = �S(Lb1)R̄

>
L mLge3, for which f2 =

mLge3/2 is always a solution. Therefore, all the solutions

of (10) can be written as

f̄ =G†gL +rLtL, (13)

where G† = 1/2[I3 I3]
> is the pseudo inverse of G, rL 2R

6

is a vector in Null(G) , and tL 2 R is an arbitrary number.

We computed rL = [f>
1 f>

2 ]> from (11) and (12) imposing

the right hand side equal to zero. From (11) f2 =�f1, and

replacing it into (12) we obtain S(2 Lb1)R̄
>
L f1 = 0 which

is verified if f1 = tLR̄Le1 with tL 2 R. Finally we obtain

rL =
⇥

I3 �I3

⇤>
R̄Le1, as in the definition (5).

Equation (13) can be then rewritten as (8). The expression

of p̄Ri in (7) is computed using (1) and the kinematics of the

system. Notice that (7) is singular when f̄i = 0 for some i.

However this can always be avoided properly choosing tL.

Lastly, from the first six rows of (9) we have that q̄L is

equilibrated if πA = π̄A, where π̄A is defined as in (6).

Remark 1. Based on Theorem 1 we can define a set

ΠA(q̄L) = {πA 2R
6 : πA = π̄A(q̄L, tL) for tL 2R} which has

dimension 1, since it is parametrized by the scalar tL 2 R.

Remark 2. Given a desired load configuration q̄L to equili-

brate, Theorem 1 and its constructive proofs, give an intuitive

method for choosing the forcing input πA. In particular one

has to choose only the value of the internal force tL.

Once tL is chosen and the input πA = π̄A(tL, q̄L) is applied

to the system, it is not in general granted that (q̄L, q̄R) is the

only equilibrium of (4), i.e., the equilibria direct problem

may have multiple solutions.

Theorem 2 (equilibria direct problem). Given tL 2 R and

the corresponding π̄A 2 ΠA(q̄L) computed as in (6), the

equilibria of the system (4), when the input πA = π̄A(tL, q̄L) is

applied, are all and only the ones described by the following

conditions

tLRLe1 ⇥ R̄Le1 = 0

pR1 = p̄R1

pL = pR1 �RL
Lb1 �

✓

kf̄1k

k1
+ l01

◆

f̄1

kf̄1k
=

= p̄L +(R̄L �RL)
Lb1

pR2 = pL +RL
Lb2 +

✓

kf̄2k

k2
+ l02

◆

f̄2

kf̄2k
.

(14)
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−f1 −f2
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(a) Two equilibria for tL 6= 0.
On the top and on the bottom
one equilibrium configuration in
Q+(tL, q̄L) and Q�(tL, q̄L), re-
spectively.
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A2
A2

A2

FL

B2

A1

B1

b2
b1

(b) Five of the possible infinite
equilibria in Q(0, q̄L). In vivid
color the configuration q̄. The fi-
nal load pose depends on the ini-
tial conditions.

Fig. 4: 2D representation of the equilibria varying tL.

Q(tL, q̄L) denotes the set of configurations respecting (14).

Proof. Given tL 2 R, and π̄A 2 ΠA(q̄L), a configuration q

is an equilibrium if m(q,0, π̄A) = 0. The first six rows are

KAqR +f� π̄A = 0. Then, from (6) we have that

f =KA(q̄R �qR)+ f̄ . (15)

Multiplying both sides of (15) by G and using (10) we obtain
GKA(q̄R �qR)+Gf̄ = gL. Then, using KA2 = 0, and the
expression of f̄ in (8), we get


KA1eR1

S(Lb1)RLKA1eR1

�

+



mLge3

2S(Lb2)R
>
L R̄Le1tL

�

=



mLge3

0

�

, (16)

where eRi = (p̄Ri �pRi). The top row of (16) implies that

eR1 = 0, hence pR1 = p̄R1. Replacing eR1 = 0 in the bottom

part of (16) we obtain

S(Lb2)R
>
L R̄Le1tL = 0, Lb2 ⇥R>

L R̄Le1tL = 0

, RLe1 ⇥ R̄Le1tL = 0.
(17)

We can retrieve pL and pR2, using (1) and the kinematics.

Remark 3. If tL = 0 the conditions in (17) hold for all the

possible load attitudes RL 2 SO(3). This means that Q(0, q̄L)
contains all the RL 2 SO(3) and the qR, pL computed from

RL using (14). Figure 4b illustrates some of these equilibria.

For tL 6= 0, it is required that RLe1 is parallel to

R̄Le1. This can be obtained with RL = RL(k,φ) =
R̄LRzL

(kπ)RxL
(φ), where k = 0,1, φ 2 [0,2π], and RzL

(·)
and RxL

(·) are the rotations about zL and xL, respec-

tively. Considering that Lb1 is parallel to xL we have that

RzL
(kπ)RxL

(φ)Lb1 is either equal to Lb1 if k= 0 or to �Lb1

if k = 1. Therefore, using (14), we obtain either pL = p̄L if

k = 0 or pL = p̄L+2b1 if k = 1. Fig. 4a provides a simplified

representations of the two different sets of equilibria for k = 0

and k = 1, formally defined as follows:

• Q+(tL, q̄L) = {q 2 Q(tL, q̄L)|RL =RL(0,φ)8φ},

• Q�(tL, q̄L) = {q 2 Q(tL, q̄L)|RL =RL(1,φ)8φ}.

Notice that Q(0, q̄L) is parametrized by an element in

SO(3) (any RL 2 SO(3) is allowed), while Q+(tL, q̄L) and

Q�(tL, q̄L), for tL 6= 0, are parametrized by an element in
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SO(1) (RL(0,φ) and RL(1,φ), for any φ 2 [0,2π], respec-

tively). For all tL, the load rotation about xL is arbitrary

because the robots can not apply any torque along xL, so

the corresponding rotation results uncontrollable.

We can conclude that choosing tL = 0 (equilibrium with

vertical cables) every orientation of the load is contained in

the equilibrium set and the load equilibrium positions are

free to move on a sphere of radius kLb1k centered on B1.

Contrarily, tL 6= 0 is a much better choice. In this case, a

part from the rotation about the xL axis, there are only two

distinct equilibria, and one is exactly qL = q̄L, as expected.

For the other one the load orientation is parallel to the one

in q̄L but its position is reflected w.r.t. B1 (see Fig. 4a for an

example).

IV. STABILITY OF THE EQUILIBRIA

In this section we shall analyze the stability of the equi-

libria discovered in Sec. III-A. Firstly we define x= (q,v)
as the state of the system, x̄= (q̄,0) the desired equilibrium

state, and the following sets (subspaces of the state space):

• X (tL, q̄L) = {x : q 2 Q(tL, q̄L), v = 0},

• X (0, q̄L) = {x : q 2 Q(0, q̄L), v = 0},

• X +(tL, q̄L) = {x : q 2 Q+(tL, q̄L), v = 0},

• X �(tL, q̄L) = {x : q 2 Q�(tL, q̄L), v = 0}.

Theorem 3. Let us consider a desired load configuration

q̄L. For the system (4) let the constant forcing input πA be

chosen in ΠA(q̄L) corresponding to a certain internal force

tL. Then x belonging to:

• X +(tL, q̄L) is locally asymptotically stable if tL > 0;

• X �(tL, q̄L) is unstable if tL > 0;

• X (0, q̄L) is locally asymptotically stable;

• X +(tL, q̄L) is unstable if tL < 0;

• X �(tL, q̄L) is locally asymptotically stable if tL < 0.

Proof. Let us consider the following Lyapunov candidate:

V (x) =
1

2
(v>

R MAvR +e>R KAeR +v>
L MLvL+

+ k1(kl1k� l01)
2 + k2(kl2k� l02)

2)� l>1 f̄1+

� l>2 f̄2 + tL(1� (R̄Le1)
>RLe1)+V0,

(18)

where V0 2R�0 and eR = p̄R1�pR1. For an opportune choice

of V0, V (x) is a positive definite, continuously differentiable

function in the domain of interest for which we have that

xmin = argmin
x

V (x) is such that xmin 2 X (0, q̄L) and

xmin 2X +(tL, q̄L) for tL > 0. The complete proof is provided

in technical report in the multimedia materials. In particular,

if tL � 0, we can choose the term V0 such that V (x)� 0 and

V (x̄) = 0. Notice that V (x) = 0 for all x 2 X (0, q̄L) and

x 2 X +(tL, q̄L) for tL > 0.

Computing the time derivative of (18) and replacing

(4), (1) and (8) we obtain V̇ =�vR
>BAvR �ω

>
L BLωL that

is clearly negative semidefinite. In particular V̇ (x) = 0 for

all x 2 E {x : vR = 0, ωL = 0}
Since V̇ is only negative semidefinite, to prove the asymp-

totic stability we rely on the LaSalle’s invariance princi-

ple [17]. Let us define a positively invariant set Ωα = {x :

V (x)  α with α 2 R>0}. By construction Ωα is compact

since (18) is radially unbounded and Ω0 is compact (Ω0 =
X (0, q̄L) and Ω0 = X +(tL, q̄L) for tL = 0 and tL > 0,

respectively, are both compact sets). Then we need to find

the largest invariant set M in E = {x 2 Ωα | V̇ (x) = 0}.

A trajectory x(t) belongs identically to E if V̇ (x(t)) ⌘
0 , vR(t) ⌘ 0 and ωL(t) ⌘ 0 , m(q(t),0,πA) = 0 for all

t 2 R>0. Therefore x has to be an equilibrium, and from

Theorem 2 we have that V̇ (x(t)) ⌘ 0 , x(t) 2 X (tL, q̄L).
Thus we obtain M = Ωα \X (tL, q̄L).

For tL > 0, it is easy to see that for a sufficiently

small α , X +(tL, q̄L)✓ Ωα but X �(tL, q̄L)\Ωα =∅. This

because V (x) = 0 for x 2 X +(tL, q̄L), while V (x) > 0

for x 2 X �(tL, q̄L). Indeed, in (18), for x 2 X �(tL, q̄L),
the term tL(1� (R̄Le1)

>RLe1) = 2tL > 0. Therefore M =
X +(tL, q̄L). All conditions of LaSalle’s principle are satis-

fied and X +(tL, q̄L) is locally asymptotically stable.

On the other hand, for tL = 0 we have that X (tL, q̄L)✓Ωα

for every sufficiently small α . Therefore M = X (tL, q̄L)
and, as before, we can conclude that X (tL, q̄L) is locally

asymptotically stable for the LaSalle’s invariance principle.

Now, let us investigate the stability for tL < 0. As before,

with an opportune choice of V0, we have that V (x) = 0

for x 2 X +(tL, q̄L). However X +(tL, q̄L) is a set of ac-

cumulation for the points where V (x)< 0. Indeed, consider

v= 0, pR1 = p̄R1, RL such that (R̄Le1)
>RLe1 = 1�ε , with

ε > 0 arbitrarily small, pL and pR2 as in (14). Under this

conditions, we have that V (x) = tL(1� (R̄Le1)
>RLe1) =

tLε < 0. Then, V̇ (x) < 0 in a neighborhood of X +(tL, q̄L).
All conditions of Chetaev’s theorem [17] are satisfied, and

we can conclude that X +(tL, q̄L) is an unstable set.

Finally, to study the stability of X �(tL, q̄L) for tL 6= 0,

let us consider a desired load configuration q̄0L = (p̄0
L,R̄

0
L)

such that p̄0
L = p0

L + 2R̄Le1 and R̄0
L = RL(1,φ) for a cer-

tain φ . Then we choose π
0
A 2 ΠA(q̄

0
L) with t 0L = �tL. For

the reasoning in Sec. III-A, we have that X +(t 0L, q̄
0
L) =

X �(tL, q̄L). Furthermore, for the previous results, if tL > 0,

t 0L < 0 and X +(t 0L, q̄
0
L) is unstable. Therefore, X �(tL, q̄L) is

unstable too. A similar reasoning can be done to prove that

X �(tL, q̄L) is locally asymptotically stable for tL < 0.

V. PASSIVITY AND STABILITY OF MANIPULATION

Theorem 3 characterizes the stability of all the possible

static equilibria given a certain constant forcing input. In

particular, it shows that one has to choose tL > 0 and πA 2
ΠA(q̄L) to let the system asymptotically converge to a desired

load configuration. On the contrary, one must avoid tL = 0

because the control of the load attitude and its position is

not possible. Notice that this last case is the most used in

the literature, where the attempt is made to keep the cables

always vertical, i.e., with no internal forces.

Let us now show how one can exploit the input πA1

in order to move the load between two distinct positions.

From (6)–(8) and from the fact that KA2 = 0, it descends that

only π̄A1, in π̄A=[π̄
>
A1 π̄

>
A2]

>, actually depends on the desired

load position p̄L. This makes robot 1 able to steer alone the

load position without communicating with robot 2. This is
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done by first plugging a new desired position p̄0
L in (6) thus

computing a new p̄0
R1, and then plugging p̄0

R1 in (7) in order

to compute the new constant forcing input π̄
0
A1. However,

one may want to minimize the transient phases generated by

a piecewise constant forcing input. It is sufficient to design

πA1 as

πA1(t) = π̄A1 +uA1(t), (19)

where uA1(t) is a smooth function such that πA1(0) = π̄A1

and πA1(t f ) = π̄
0
A1 for t f 2 R>0.

To ensure that the system remains stable when the input is

time-varying, we shall prove that the system is output-strictly

passive w.r.t. the input-output pair (u,y) = (uA,vR).

Theorem 4. If πA is defined as in (19) for a certain q̄ and

q̄0 with tL � 0, then system (4) is output-strictly passive w.r.t.

the storage function (18) and the input-output pair (u,y) =
(uA, vR).

Proof. In the proof of Theorem 3 we already shown that (18)

is a continuously differentiable positive definite function for

tL � 0, properly choosing V0. Furthermore, replacing (19)

into (3), and differentiating (18) we obtain

V̇ =�vR
>BAvR +vR

>uA �ω
>
L BLωL

u>y�y>BAy = u>y�y>
Φ(y),

(20)

with y>
Φ(y)> 0 8 y 6= 0. Therefore, system (4) is output-

strictly passive [17].

Thanks to the passivity of the system we can say that

for a bounded input provided to the master, the energy

of the system remains bounded too, and in particular it

stabilizes to a new constant value as soon as uA1 becomes

constant again. This means that while moving the master,

the overall state of the system will remain bounded, and will

converge to another specific equilibrium configuration when

the master input becomes constant. Furthermore, it is well

known that passivity is a robust property, especially w.r.t.

model uncertainties. In particular, choosing πA 2 ΠA(q̄L) for

a given q̄, the system remains asymptotically stable even

in the presence of some parameter uncertainties, but it will

converge to a q̄0 that is slightly different from q̄.

Remark 4. Once the desired load pose is decided and the

value of tL is chosen, one can compute the control input

πA and send it to the robots. Afterwards, if tL > 0 the robots

will steer the load to the desired configuration preserving the

stability and without the need of sending data to each other.

The cooperative task is performed exploiting the implicit

communication through the forces that the robots exchange

and feel from the cables and the object.

VI. NUMERICAL VALIDATION

In this section we shall describe the results of several

numerical simulations validating the proposed method and

all the presented theoretical concepts and results.

For the simulation we considered a quadrotor-like vehicle

with its proper nonlinear dynamics together with a geometric

position controller, even though, our method can be applied

to more general flying vehicles. System and control parame-

ters are reported in Tab. I. Notice the smaller apparent inertia

of the slave, chosen to make it more sensitive to external

forces.

Let us consider the desired equilibrium q̄ = (p̄L,R̄L),
whose value are in Tab. I, where (φ̄ , θ̄ , ψ̄) are the Euler

angles that parametrize R̄L. We performed several simula-

tions with πA 2 ΠA(q̄L) computed as in (6) for the cases:

1) tL1 = 1.5 [N]> 0, 2) tL2 = 0 [N], 3) tL3 =�1 [N]< 0.

To test the stability of the equilibria, we initialized the

system in different initial configurations and we let it evolve.

Figure 6 shows the position and orientation error for the three

tL and several different initial conditions. 1) For tL = tL1, the

system always converges to a state belonging to X +(tL, q̄L),
independently from the initial state, validating the asymptotic

stability of X +(tL, q̄L) when tL > 0. 2) For tL2, the system

final state belongs to X (0, q̄L). The particular final attitude

of the load depends on the initial state. 3) For tL3, the system

never converges to X +(tL, q̄L) even with a very close initial

configuration. This is due to the instability of X +(tL, q̄L)
when tL < 0. Fig. 5 shows the evolution of the system starting

from two different initial states for the three cases.

In another set of simulations, shown in detail in the

attached technical report, the master input πA1(t) is chosen

as in (19) to bring the load in p̄0
L = [4.5 4.5 5]>[m]. We

observed that, as expected, for both tL = tL1 and tL = tL2

the system remains stable during the master maneuver. Once

the input becomes constant, the master stops and the system

converges to q̄ for tL = tL1. For tL = tL2, the final load attitude

depends on the particular motion, and it is in general different

from q̄.

Additional simulations in non-ideal conditions are pro-

vided in the attached technical report. The results show

that thanks to the passivity of the system, the latter is very

robust to the considered non-idealities. Some representative

simulations are available in the attached video too.

VII. CONCLUSIONS

This work deals with the decentralized cooperative manip-

ulation of a cable-suspended load performed by two aerial

vehicles. The proposed master-slave architecture exploits an

admittance controller in order to coordinate the robots with

implicit communication only, exploiting the cable forces. The

passivity of the system has been proven, and the stability of

the static equilibria has been studied highlighting the crucial

role of the internal force. In particular, contrarily from what

System Parameters Controller Gains

i = 1 i = 2 i = 1 i = 2

mRi [Kg] 1.02 0.993 MAi 3I3 0.5I3

JRi [Kg ·m2] 0.015I3 0.015I3 BAi 18I3 1.3I3

l0i [m] 1 1 KAi 15I3 0

ki [N/m] 20 20 Desired Load Pose
Lbi [m] [0.433 0 0] [�0.433 0 0] p̄L = [0.3 0.3 0.2]> [m]

mL = 0.900 [Kg], JLx = 0.112 [Kg ·m2] φ̄ = 0, θ̄ = π/8 [rad]

JLy = 5.681, JLz = 5.681 [Kg ·m2] ψ̄ = π/7 [rad]

TABLE I: Parameters used in the simulations.
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Fig. 5: Each figure shows the evolution of the system from two different initial conditions (one is shown in red and the other in blue).
The two evolutions are represented as a sequence of images discriminated by the brightness of the color that represents the time (from
bright/start to dark/end). The load is represented as a tick solid line, the cables as thin dashed lines, the master robot as a circle and the
slave robot as a cross.

Fig. 6: Convergence to the desired load configuration for cases 1) 2)
and 3). In particular the first and second rows show the position and
the attitude errors, respectively, for four different initial conditions
(different colors) and for the three different internal force values
(columns). The attitude error is computed as the sum of pitch
and yaw errors. The roll error is not considered since it is not
controllable.

it is normally done in the literature (zero internal force), it is

advisable to choose a positive internal force to control both

position and orientation of the beam. In the future it would

be interesting to test the method on real platforms and to

extend the analysis to general loads or to agile motions. An

extension to a more generic load attached to N robots could

be very interesting too.
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Abstract—This document is a technical attachment to [1] as
an extension of the theoretical analysis and of the numerical
validation part. Here we present additional plots and additional
simulations in presence of non-ideal conditions as noise and
parameter variations. A thorough validation of the robustness of
the proposed method against the aforementioned non-idealities
is also conducted.

I. HOW TO CITE THIS WORK

This technical report is accompanying our IEEE Robotics
and Automation Letters paper [1]. If you wish to reference
this work, please cite this paper as follows:

@Art i c l e {Tognon2018�RAL,
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II. INTRODUCTION

In Sec. III we integrate the Lyapunov based stability analysis

of Sec. IV of the manuscript. In particular we shall prove

that the Lyapunov function (18) of the manuscript is positive

definite and has global minima in a particular set of interest.

Then, in the following sections, we shall describe several

additional simulations validating the proposed method and

all the theoretical concepts and results presented in [1]. The

parameter of the simulated system are the one reported in [1].
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III. LYAPUNOV FUNCTION CHARACTERIZATION

In the following proposition we analyze in details the

Lyapunov candidate:

V (x) =
1

2
(v>

R MAvR +e>R KAeR +v>
L MLvL+

+ k1(kl1k� l01)
2 + k2(kl2k� l02)

2)� l>1 f̄1+

� l>2 f̄2 + tL(1� (R̄Le1)
>RLe1)+V0,

(1)

used in Sec. IV and Sec. V of the manuscript, for the proofs

of stability and passivity of the system.

Proposition 1. Considering the Lyapunov function (1), we

have that:

• xmin = argminxV (x) is such that xmin 2 X (0, q̄L) and

xmin 2 X +(tL, q̄L) for tL > 0;

• V (x) is positive definite for an opportune choice of V0.

Proof. We divide (1) into three parts such that

V (x) = V̄ (x)+V1(x)+V2(x), (2)

where

V̄ (x) =
1

2
(v>

R MAvR +e>R KAeR +v>
L MLvL+

+ tL(1� (R̄Le1)
>RLe1)+V0

Vi(x) =
1

2
ki(klik� l0i)

2 � l>i f̄i, (3)

for i = 1,2.

We firstly show that the Lyapunov function is radially

unbounded (also called coercive), i.e., limkxk!∞ V (x) = ∞.

Indeed, we have that clearly limkxk!∞ V̄ (x) = ∞, while

lim
kxk!∞

Vi(x)

lim
kxk!∞

1

2
ki(klik� l0i)

2 � l>i f̄i =

lim
kxk!∞

1

2
ki(klik

2 + l2
0i)� kiklikl0i � l>i f̄i �

lim
kxk!∞

1

2
ki(klik

2 + l2
0i)� kiklikl0i �klikkf̄ik=

lim
kxk!∞

klik
2(

ki

2
+

kil
2
0i

2klik
2
�

kil0i

klik
�

kf̄ik

klik
) = +∞.

(4)

Based on this results and on Theorem 1.15 of [2], we can say

that function (3) has a global minimum. Now we can look

for this minimum among the stationary points, i.e., where the
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gradient ∇V (x) = 0, and among the points where (1) is not

differentiable [3].

It is clear that ∇V̄ (x) = 0 only if v = 0, pR1 = p̄R1 and

tLRLe1 ⇥ R̄Le1 = 0. Regarding Vi(x), let us consider its

gradient with respect to the cable configuration li:

∇li
Vi(x) =

∂Vi(x)

∂ li
= ki(klik� l0i)

l>i
klik

� f̄T
i . (5)

Then, ∇li
Vi(x) = 0 if and only if

ki(klik� l0i)
l>i
klik

= fi = f̄i. (6)

Condition (6) holds in two different cases:

a)
ki(klik�l0i)

klik
= kf̄ik and li =

f̄i

kf̄ik
, for which klik > l0i and

l>i f̄i > 0;

b)
ki(klik�l0i)

klik
=�kf̄ik and li =� f̄i

kf̄ik
, for which klik< l0i and

l>i f̄i < 0.

The previous two cases have a straightforward physical in-

terpretation. Since the cables are modeled as a spring, they

can produce a force at a certain point both being stretched in

the same direction of the force itself, as in case a), or being

compressed in the opposite direction, as in case b). However

in this work we consider only case a) because case b) is

not practicably feasible for cables, thus out of our region of

interest.

Therefore ∇V (x) = 0 if x 2 X a
∇0

[X b
∇0

where

a) X a
∇0

= {x | v = 0, pR1 = p̄R1, tLRLe1 ⇥ R̄Le1 =

0, ki(klik�l0i)
klik

= kf̄ik, li =
f̄i

kf̄ik
}

b) X b
∇0

= {x | v = 0, pR1 = p̄R1, tLRLe1 ⇥ R̄Le1 =

0, ki(klik�l0i)
klik

=�kf̄ik, li =� f̄i

kf̄ik
}

However, x2X b
∇0

can not be the global minima since we can

show that V (xa)<V (xb) with xa 2X a
∇0

and xb 2X b
∇0

. This

comes from the fact that in (1), �l>i f̄i < 0 and �l>i f̄i > 0 for

x 2 X a
∇0

and x 2 X b
∇0

, respectively.

Finally we have to check the non-differentiable points of (1),

namely the state x2Xli0 = {x | klik= 0 for i = 1,2}. Notice

that this condition is out of our domain of interest. Never-

theless, also in this case we can show that V (xa) < V (xli0).
Indeed, V̄ (xa) = V̄ (xli0) and

Vi(xli0) =
1

2
kil

2
0i

Vi(xa) =
1

2
ki(klik

2 + l2
0i �2klikl0i)� l>i ki(klik� l0i)

li

klik

=
1

2
kiklik

2 +
1

2
kil

2
0i � kiklikl0i � kikl

2
i k+ kiklikl0i

=
1

2
kil

2
0i �

1

2
kiklik

2.

Thus Vi(xa)<Vi(xli0).

We can finally conclude that x2X a
∇0

is the global minima

of (1). Furthermore, with a similar reasoning to the proof

of Theorem 2 of the manuscript, we can show that X a
∇0

=
X (0, q̄L) for tL = 0 and X a

∇0
=X +(tL, q̄L) for tL > 0, proving

the first point of Proposition 1.

For the last point, let us define the function V 0(x) as in (1)

but without V0. Then, in order to obtain V (x) > 0, we can

simply set

V0 > min
x

(V 0(x)) =V 0(xa)

with xa 2 X a
∇0

.
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IV. LOAD POSE REGULATION

Given the desired load configuration of equilibrium p̄L =
[0.3 0.3 0.2]>[m], ψ̄ = π/7[rad] and θ̄ = π/8[rad], we per-

formed several simulations with πA 2 ΠA(q̄L) computed for

the cases: 1) tL = 1.5 > 0, 2) tL = 0, 3) tL =�1 < 0,

To study the stability of the equilibrium configuration for

the different values of tL, we initialized the system in two

different initial configurations and we observed the evolution

of the system. We observed that for case

1) the system final configuration belongs to X +(tL, q̄L). Fig-

ure 1 shows the system configuration evolution for the

two different initial conditions. The final state of the two

trajectories is the same;

2) the system final configuration belongs to X (0, q̄L), and

depends on the system initial state. Figure 2 shows the

system configuration evolution in these cases;

3) the system does not converge to X �(tL, q̄L) even initializ-

ing it very close. Figure 3 shows the system configuration

evolution in these cases.

The previous plots integrate the ones provided [1] showing

the complete evolution of the main quantities of the system

for two particular initial conditions.

(a) First initial condition.

(b) Second initial condition.

Fig. 1: Evolution of the system variables for tL = 1.5 [N] starting from
two different initial conditions. The positions of the robots center of
masses (which coincide with the cables attaching points) are shown,
together with the position of the load center of mass and its yaw and
pitch angles. The reference signals are displayed with dotted lines of
the same color.
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(a) First initial condition.

(b) Second initial condition.

Fig. 2: Evolution of the system variables for tL = 0 [N] starting from
two different initial conditions.

(a) First initial condition.

(b) Second initial condition.

Fig. 3: Evolution of the system variables for tL =�1 [N] starting from
two different initial conditions.
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V. LOAD TRANSPORTATION

Considering a time-varying control input, we defined πA1(t)
such that the master robot follows a 5th-order polynomial

trajectory in the three directions (rest to rest with condition

of zero acceleration at the initial and final points) starting

from an initial position of [1.18 0.72 2.2]>[m]. The trajectory

covers 4[m] along each of the the three directions in 30[s].

The particular πA(t), with πA2(t) = π̄
0
A2 and πA1(t f ) = π̄

0
A1,

brings the load in the configuration p̄L = [4.5 4.5 5.0]> [m],
ψ̄ = π/9 [rad] and θ̄ = π/8 [rad]. In Fig. 5 we show the

results of the simulations in ideal conditions. We notice that,

once the final input πA1(t f ) = π̄
0
A1 with tL > 0[N] is set, the

system successfully transports the load between the two points

stopping at the desired configuration, as shown in Fig. 4(a).

For tL = 0[N] instead, the final load attitude depends on the

particular motion, and it is in general different from the desired

one, as shown in Fig. 4(b). Finally, as one can see in Fig. 4(c),

when tL < 0[N] the final configuration of the system does

not correspond to the desired one, since it was an unstable

equilibrium. Notice in Fig. 4(a) how the error on the load

trajectory remains sufficiently small for all the transportation,

and goes to zero at the end of the task. In Fig. 5(a), 5(b)

and 5(c) we show the results for a similar task, for tL > 0,

tL = 0 and tL < 0, respectively. In this case the trajectory

is followed at a higher speed, since it is completed in 4 [s].
Consequently, as one can see in Fig. 5(a), the system moves

faster and the tracking error increases. However it remains

always bounded and the stability during the transportation

is preserved. Furthermore, one could tune the admittance

controller parameters of the slave robot to achieve better

results if needed.
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(a) tL = 1.5 [N].
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(c) tL =�1 [N].

Fig. 4: Evolution of the system variables during transportation for
the three different values of internal force.
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Fig. 5: Evolution of the system variables during transportation for
the three different values of internal force.
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Fig. 6: Simulation result with noisy measurements.

VI. NON-IDEAL CONDITIONS

In the following, we test the robustness of the proposed

method against noise in the measured state and model pa-

rameter uncertainties. The following simulations consider the

transportation scenario presented in Sec. V, where the trajec-

tory is performed in 4[s].

A. Noisy Measurements

In Fig. 6 we report the results of a simulation where

Gaussian noise is added to the estimated state of the robots and

to the measured cable force, in order to simulate real sensors.

In particular, the noise variances on the aerial vehicle position,

velocity and measured cable force are equal to 0.005[m],
0.01[m/s] and 0.01[N], respectively. From the plots one can

see that, even in the presence of noise, the system is able to

bring the load to the desired pose showing only very small

oscillations.

B. Noisy Measurements and Parametric Uncertainties

In Fig. 7 both measurement noise and parametric uncer-

tainties are considered. In particular, the rest length of the

cables, the cables anchoring points positions with respect to

the center of mass of the load (or equivalently the position

of the center of mass of the load) and the mass of the load

are uncertain parameters. In other words, we put ourselves

in a condition in which the real parameters and the nominal

ones do not perfectly match. In particular, the known cables

rest length has been set 5% greater than the real one, the

load mass used to generate the constant control input πA

is 20% greater than the real one, and the anchoring points

positions in body frame have been chosen as follows: Lb1 =
[0.5 0.01 0.02]>[m], Lb2 = [�0.47 0.02 0.03]>[m]. With this

simulation we want to show that the proposed algorithm is

robust to uncertainties on the parameters in the sense that

the system final equilibrium will be clearly different from

the desired one, but the robots are still perfectly capable of

performing the object transportation task in a stable way, as

guaranteed by the system passivity. Fig. 7 shows the results

of the simulation during the transportation. As on can see, the

Fig. 7: Evolution of the main system variables for the transportation
can in the presence of noise and model uncertainties.

passive nature of the closed loop system makes the system

state and output completely stable and converging to a constant

equilibrium, that is of course different from the desired one

because of the wrong parameter used. An adaptive approach

could be used to reduce the effect of this

C. Sensitivity to Load Mass Uncertainty

We performed several simulations varying the mass of the

load known by the controller with respect to the real mass.

Figure 8 displays how the load position and attitude errors

at steady state, e
p
L and ea

L, change when the real mass is not

exactly known. In particular, the errors are defined as:

e
p
L = kpL � p̄Lk

ea
L = ||θ � θ̄ ||+ ||ψ � ψ̄||.

The load starts from the configuration given by: pL(0) =
[0.5 0.5 1]> [m], ψ = π/10 [rad] , θ = π/8 [rad] and tL =
1.5 [N]. The desired final configuration is given by p̄L =
[0.5 0.5 1]> [m] , θ̄ = π/9 [rad], ψ̄ = π/8 [rad], tL = 1.5 [N].
Calling m0

L the known mass, we compute it as m0
L = ∆m ·mL

where ∆m is the relative mass increment. Figure 8 shows

e
p
L and ea

L with respect to ∆m. The larger the parametric

uncertainty on the load mass, the more the errors increase,

too. However one can notice that even with an uncertainty

grater than the 25% the system still remains stable. After the

value ∆m = 1.3 the system becomes unstable. Nevertheless,

we remark that the mass of the load is one of the parameters

that can be known with very good precision, also using an

online estimation algorithm.

D. Sensitivity to Anchoring Point Position Uncertainty

As an additional study of the robustness of the proposed

method, in Fig. 9 we show the load position and attitude

errors at steady state when the parametric uncertainty is on
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Fig. 8: Load position and attitude errors when the load mass known
by the controller differs from the real one.

the position of the cables anchoring points on the load. In

particular, the known anchoring positions are given by

Lb01 =
Lb1 +





1

1

1



∆bkLb1k

Lb02 =
Lb2 +





�1

1

1



∆bkLb1k,

where ∆b 2 R�0. The system starts from the configuration

given by pL(0) = [0.5 0.5 1]> [m], ψ = π/10 [rad], θ =
π/8 [rad] and tL = 1.5 [N]. The desired final configuration is

given by p̄L = [0.5 0.5 1]> [m] , θ̄ = π/9 [rad], ψ̄ = π/8 [rad],
tL = 1.5 [N]. Also in this case, as expected, the larger the para-

metric uncertainty on the considered quantities, the more the

errors increase, too. However, with the considerable variation

of ∆b = 0.5 the system still remains stable.
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Fig. 9: Load position and attitude errors when the anchoring points
position on the load known by the controller differs from the real
one.
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Fig. 10: Convergence time of the load position and attitude errors
when the tL increases.

VII. EFFECTS OF THE INTERNAL FORCE ALONG THE

LOAD

In the manuscript we saw that to make a desired load con-

figuration asymptotically stable, one has to compute the proper

control input πA(q̄, tL) choosing tL > 0. In the following, we

shall analyze the effects of the intensity of the internal force

on the system behavior. In this way we can better decide the

value of tL. In particular, in the following, we shall analyze

the relations between tL and convergence time, and between

tL and required total thrust in the equilibrium configuration.

A. Internal Force and Convergence Time

If the internal force tL = 0 [N] the load does not in general

converge to its desired pose, which instead happens for tL > 0.

However, it is interesting to see how the convergence rate

behaves changing the intensity of the internal force. In Fig. 10,

we show how the convergence time of the load position and

attitude, defined by tc, varies when increasing the internal

force. Here tc = min{ta
c , t

p
c }, where ta

c is the time after which

ea
L remains below 5 [�], while t

p
c is the time after which e

p
L

remains below 0.02 [m]. The initial and the final desired load

configurations are the same as before. Notice that for tL = 0

the convergence time is in general infinite. One can notice

that increasing tL up to 0.7 [N], tc decreases. However, after

this value, tc starts to increase due to the appearance of some

larger oscillations that takes more time to be damped. In any

case, this study shows that even a minimal internal force of

0.1 [N] is enough to obtain asymptotically stability for which

an almost negligible increase of total thrust is required.

B. Internal Force and Total Thrust

Since the internal force, necessary to make the load con-

verge to the desired pose, implies an additional energy con-

sumption for the robots, we evaluated the amount of additional

thrust required when the internal force increases. Given a
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Fig. 11: Additional thrust required by the two robots to stabilize the
load when tL increases.

certain desired load pose, Fig. 11 shows the relative increase

of total thrust, ∆ fR, augmenting the intensity of the internal

force with respect to the total thrust required by the case with

zero internal force. In particular ∆ fR is computed as

∆ fR(tL) =
fR(tL)� f 0

R

f 0
R

,

where fR(tL) is the the sum of the thrusts required by the two

vehicles at steady state to stabilize the load at a certain load

configuration with a certain value of tL, and f 0
R = fR(0).

One can notice that even imposing tL = 1 [N], much higher

than the real internal force required to stabilize the system,

the ∆ fR is below the 0.005, i.e., the total extra thrust is lower

than the 0.5% of the total thrust required with tL = 0 [N].
In any case we remark that the proposed control method

is still applicable for tL = 0 [N]. The system is proven to be

still stable, but will not clearly asymptotically converge to the

desired pose.
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