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Abstract—The beamspace domain of parasitic antenna arrays is
explored in this paper, providing the aerial degrees of freedom available
for use in Multiple Input-Multiple Output (MIMO) systems. The
beamspace representation allows for the design of an alternative
MIMO architecture based on single radio-frequency (RF) chains, and
facilitates the inclusion of MIMO transceivers in devices with strict size
limitations. A three dimensional orthogonal expansion is performed
on the beamspace domain providing the basis patterns used for
mapping of the transmitted symbols and for sampling at the receiver.
The expansion is based on the Gram-Schmidt orthonormalization
procedure and can be generalized for any parasitic antenna array. The
multiplexing capability of ESPAR antennas is presented as a means
for supporting future performance demanding communication systems.
Performance evaluation results are illustrated in detail.

1. INTRODUCTION

The ever growing demand in the data rate of wireless communications
systems has inevitably led the research to the application of Multiple-
Input-Multiple-Output (MIMO) technology in mobile terminals. The
implementation of multiple antennas and RF chains in compact devices
is a hot research topic and a major challenge for the years to come [1–5].
The current perspective is based on the long experienced limitations
imposed by the physical size of the terminals [1, 6]. The first limitation
comes from the finite volume available for antenna implementation
in the terminal. The second one is the spatial correlation and
electromagnetic coupling, which reduce the available Degrees of
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Freedom (DoFs) of the antenna array. To these drawbacks, the
remarkable implementation burden of conventional MIMO transceivers
due to the need for multiple chains should also be considered.

An alternative novel perspective that breaks through the
conventional MIMO paradigm has been proposed recently [7–10]. In
particular, MIMO transmission over the air is achieved [11] with the
use of antenna arrays that consist of only a single active element,
surrounded by a number of passive (parasitic) neighboring antennas.
The parasitic antennas, as has been long understood, carry currents
that are induced on them via their strong mutual coupling with the
neighboring active element [12–16]. The induced currents depend
on the array topology and can be controlled via low cost analogue
circuits, e.g., varactors, to provide beamforming capabilities [17–19].
An example of such a parasitic antenna is shown in Fig. 1. In [20]
and then in [21] and [7] it was clearly shown that parasitic antenna
arrays preserve the capability to also perform MIMO transmission.
The MIMO functionality is presented at the beamspace domain [22, 23].
In transmitting mode, symbols are not driven to diverse active antenna
elements as in conventional case, but they modulate orthogonal
radiation patterns, providing the term aerial modulation. The receiver
in turn assesses the impinging signals by switching among orthogonal
patterns within a symbol period [8, 10]. To emphasize the principle
of operation, the complete functionality is called Beamspace MIMO
(BS-MIMO).
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Figure 1. Circular ESPAR with 5 elements.
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This paper provides an analytical treatment of the aerial
degrees of freedom (ADoFs) available for MIMO transmission with
parasitic antenna arrays. Similar to the spatial multiplexing factor
of conventional MIMO systems, these DoFs show the potential of
parasitic antenna arrays to achieve a linear increase of spectral
efficiency over the air; the difference now being that this increase
is obtained in the beamspace domain, as opposed to the antenna
domain of conventional MIMO. The effective number of DoFs of MIMO
channels has been investigated using the spatial Nyquist intervals
and the spatial sampling theory in [24, 25]. Moreover, based on the
theory of non-redundant sampling of the electromagnetic field [26, 27]
provide invaluable results on the DoF of the radiated field in MIMO
channels. In [38] the authors analyze the interaction between antennas
and the propagation channel and study both the antennas and the
propagation channel by means of the spherical vector wave mode
expansion of the electromagnetic field. They also prove that the
optimum decorrelation of the antenna signals is obtained by the
excitation of orthogonal spherical vector modes. In [39] the authors
present some examples of uncorrelated antenna radiation patterns
for MIMO applications. In this paper we follow the notion of DoF
provided in [25] and [28], but in the beamspace domain, where the
spatial sampling theory is not applicable due to the parasitic elements.
Indeed, the DoFs of the Electrically Steerable Passive Array Radiator
(ESPAR) antennas are explored by providing the expansion of the
far field pattern in a complete set of orthonormal basis functions. A
generalized methodology for the calculation of the available DoFs is
given for ESPAR antennas, irrespective of the channel conditions and
the noise level. In other words, the possible multiplexing capabilities
of the antenna are explored and an extended discussion is provided on
the effects of antenna array dimensions on the effective DoFs (EDoFs).
The remainder of the paper is organized as follows: Section 2 presents a
brief review of BS-MIMO representation and sets the starting point for
the beamspace representation of ESPAR antennas. Section 3 provides
a generalized methodology for the calculation of the aerial DoFs of
ESPAR antennas. The methodology is based on the well known
Gram-Schmidt orthonormalization procedure [29], which provides a 3D
orthogonal expansion of the beamspace domain. Analytic results are
given as application examples for a circular 5-element ESPAR antenna.
Next, Section 4 discusses the effect of the array dimensions on the
number of EDoFs that are available for specific design parameters.
Section 5 illustrates the performance of the proposed scheme in terms
of capacity achieved in a full scattering environment. Finally, Section 6
summarizes the key findings of the paper.
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2. BEAM SPACE DOMAIN ANALYSIS OF SINGLE RF
MIMO SYSTEMS

The limitation of a single active element does not allow for the
assignment of diverse transmit symbols to different antenna elements
and therefore, known spatial signal processing techniques for MIMO
transmission cannot be used directly. The question now is how to
transmit different signals simultaneously with a single active element.
The answer lies in the beamspace domain representation of parasitic
antenna arrays. This representation has been already considered for
the study of antenna arrays [30], as well as for the intuitive modeling
of MIMO channels [22, 23]. The author in [22] proposes an alternative
MIMO channel representation in terms of angular basis functions or
“eigen-patterns”, thus the MIMO channel matrix is defined at the
beamspace or angular domain. The beamspace domain of an antenna
array is a signal space where any radiation pattern of the antenna
can be represented by a point within that space with position vector
whose coordinates correspond to the basis patterns which are mutually
orthogonal. Apparently, increasing the dimensions of the beamspace
domain, i.e., the number of aerial DoFs, the beamforming capabilities
of the antenna become stronger. In contrast to conventional MIMO
transmitters, in the single RF MIMO transmitter each symbol is
allocated to a basis pattern. Thus, the number of symbols that
can be simultaneously transmitted is restricted by the aerial DoFs
of the parasitic antenna array. At the receiver, the spatial sampling
of the incident waves is not feasible and samples are obtained at
the beamspace domain using the available basis patterns [10]. The
narrowband signal model can be written [10]

ybs = Hbssbs + nbs = ΦH
RHbΦT sbs + nbs (1)

where ybs is the received signal vector that contains samples of the
transmitted symbols, sbs, as these are obtained using different basis
patterns. The elements of the channel matrix Hbs correspond to the
complex channel gains among the basis patterns of the transmitter
and receiver parasitic arrays. This matrix can be written with the
help of a parametric physical model that considers the geometry of the
scattering environment and the basis patterns at the transmitter and
the receiver as Hbs = ΦH

RHbΦT . In this representation each path i
connecting the area of the transmitter with the area of the receiver
has a single direction-of-departure (DoD) ΩT,i and a single direction-
of-arrival (DoA) ΩR,i, and a path gain bi. For MT aerial DoFs or
equivalently basis patterns at the transmitter, the matrix ΦT (K ×MT )
contains MT column vectors with samples of the basis patterns towards
the DoDs. The same applies to the matrix ΦR (K ×MR) that contains
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MR vectors with samples of the basis patterns towards the DoAs. If
K paths exist, then Hb is a diagonal (K ×K) matrix whose entries
represent the complex gain of each path. With these in mind, the
functionality of single RF MIMO Tx and Rx are explained at the
beamspace domain in more detail.

2.1. Single RF MIMO Transmitter

If the radiated pattern at the transmitter can be expressed as a linear
combination of the basis patterns with weights that correspond to the
transmitted symbols, then PT (θ, ϕ) is a vector with angular samples
of the radiated pattern and is written as

PT (θ, ϕ) = ΦT sbs =
MT−1∑

n=0

sbs,nΦn (θ, ϕ) (2)

where Φn(θ, ϕ) is the n-th basis pattern of the parasitic array at the
transmitter. Equation (2) states that at each symbol period the shape
of the radiated pattern, i.e., its amplitude and phase components, is
determined by the symbol vector sbs for transmission. Indeed, each
transmit symbol modulates a different basis pattern, an operation that
can be thought of as pattern mapping, or aerial modulation.

2.2. Single RF MIMO Receiver

At the single RF MIMO receiver, the simultaneous reception of
multiple signals at the spatial domain is not possible. Signals have
to be obtained at the beamspace domain using all possible basis
patterns serially, i.e., in a time division mode, during the same symbol
period. This is accomplished by splitting the symbol period to sub-
periods, the number of which is identical to the number of available
basis patterns, i.e., the number of available aerial DoFs. At each
sub-period the impinging signals are assessed using one of the basis
patterns. The oversampling of the impinging signals within the symbol
period has a negative effect on the system performance as compared
to conventional MIMO transceivers, since reduces the effective SNR
by the oversampling factor, i.e., by the number of pattern switching
within a symbol period. This drawback has been pointed out in [8]
and [10].

3. 3D PATTERN ORTHOGONAL EXPANSION

The objective in this section is to provide a methodology for the
calculation of the available DoFs for a general category of parasitic



292 Barousis and Kanatas

arrays, the ESPAR antennas [15]. This objective is achieved with
the decomposition of the far field ESPAR pattern to orthonormal
functions, called basis patterns. An ESPAR with M elements consists
of a single active element surrounded by M − 1 parasitic elements,
often called parasitics, usually in linear or circular arrangement. Fig. 1
shows a circular ESPAR antenna with M = 5 elements. Due to strong
mutual couplings, the feeding of the active element is responsible for
the currents induced to all parasitics and beamforming is possible by
adjusting the connected variable loads [19]. The current vector is
given by i = vs(Y−1 + X)−1u, where Y is the (M ×M) admittance
matrix, obtained using an antenna analysis software, with each entry
yij representing the mutual admittance between the i-th and j-th
element. The load matrix X = diag[ 50 jx1 . . . jxM−1 ], adjusts
the radiation pattern, whereas u = [ 1 0 . . . 0 ]T is a (M × 1)
column selection vector and vS is the complex feeding at the active
element [16]. The radiation pattern is then given by:

P (θ, ϕ) = iTa(θ, ϕ) =
M−1∑

m=0

imam (θ, ϕ) (3)

where a(θ, ϕ) = [ a0(θ, ϕ) . . . aM−1(θ, ϕ) ]T is the steering vector
of the ESPAR at a direction (θ, ϕ). The relationship between the
radiation pattern and the loading matrix is non-linear. Consequently,
it is preferable to study the radiation capabilities of ESPAR antennas
by considering the antenna geometry indirectly. The beamspace
representation approach bypasses the nonlinear ESPAR equations and
describes the radiation mechanism using more tractable expressions.

3.1. Gram-Schmidt Method for Arbitrary Planar ESPAR
Geometry

To represent P (θ, ϕ) at the beamspace domain, the functions
am(θ, ϕ), m = 0, . . . , M − 1 are expressed as a linear combination
of orthonormal functions Φn(θ, ϕ), n = 0, . . . , N − 1, that span a
N -th dimensional space. For this purpose the process of Gram-
Schmidt orthonormalization is used [29]. This process accepts a set
of M linearly independent functions and provides a set of N ≤
M orthonormal functions that span an N -dimensional space, i.e.,

am(θ, ϕ) =
N−1∑
n=0

qmnΦn(θ, ϕ). Therefore:

P (θ, ϕ) =
M−1∑

m=0

im

N−1∑

n=0

qmnΦn (θ, ϕ), N ≤ M (4)
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where qmn =
2π∫
0

π∫
0

am(θ, ϕ)Φ∗n(θ, ϕ) sin θdθdϕ, denotes the projection of

am(θ, ϕ) onto the basis pattern Φn(θ, ϕ). The steering vectors for an
arbitrary planar ESPAR geometry are:

am (θ, ϕ) =
{

1 m = 0
exp [jbm sin θ cos (ϕ− ϕm)] m 6= 0

(5)

where ϕm represents the angle of the m-th parasitic element in the
azimuthal plane with respect to a reference axis, bm = 2πdm, and dm

is the normalized to the wavelength distance of the m-th parasitic from
the active element. Observing (2) for bm 6= 0, all functions am(θ, ϕ)
are linearly independent implying that N = M [29]. Thus, the aerial
DoFs theoretically equal the number of ESPAR elements and

P (θ, ϕ) =
M−1∑

m=0

im

M−1∑

n=0

qmnΦn (θ, ϕ) =
M−1∑

n=0

M−1∑

m=0

imqmnΦn (θ, ϕ)

=
M−1∑

n=0

iTqnΦn (θ, ϕ) =
M−1∑

n=0

sbs,nΦn (θ, ϕ) (6)

where qn =
[

q0n . . . q(M−1)n

]T is a (M × 1) vector with the
projections of all functions am (θ, ϕ) , m = 0, . . . , M−1 onto Φn (θ, ϕ).
From (3) the n-th basis pattern is weighted by the symbol sbs,n =
iTqn and sbs = [ sbs,0 sbs,1 . . . sbs,M−1 ]T defines a coordinate
vector at the beamspace domain which corresponds to a radiated
pattern. Gram-Schmidt process begins by selecting any function
am (θ, ϕ). Starting from a0 (θ, ϕ), the first basis pattern is Φ0 (θ, ϕ) =
a0 (θ, ϕ)/k0, while the remaining are obtained by subtracting out the
projection of the next function onto the functions defined so far in the
orthonormal set:

Φn (θ, ϕ) =
1
kn

(
an (θ, ϕ)−

n−1∑

s=0

qnsΦs (θ, ϕ)

)
(7)

where kn =

√
2π∫
0

π∫
0

|an(θ, ϕ)−
n−1∑
s=0

qnsΦs(θ, ϕ)|2 sin θdθdϕ, n =

0, . . . , N − 1, are the normalization coefficients ensuring basis patterns
with unit power. For an arbitrary geometry and number of parasitic
elements the basis patterns can be computed numerically by the
iterative expression (7). It will be shown in Section 4 that not
necessarily all the DoFs are effective, especially for all geometries and
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antenna dimensions. Having decided upon the number of DoFs to
be exploited as well as the type of modulation scheme to be used in
a MIMO system, (9) implies that one can calculate all the possible
linear combinations, i.e., all the patterns to be radiated. For a specific
ESPAR antenna it is then possible to calculate the set of load matrices
X that will provide the required patterns [18].

3.2. Analytic Results for 5 Element Circular ESPAR

Next, the Gram-Schmidt process is applied to the circular ESPAR with
5 elements shown in Fig. 1. The selected ESPAR configuration has
been reported as the simplest one that supports 360◦ beam steering,
thus allowing for high beamforming capabilities [15]. The circular
arrangement of the parasitics implies that bm = b = 2πd where
d denotes the antenna radius normalized to the wavelength, while
ϕm = (m− 1) 2π/(M − 1), m = 1, . . .M − 1. Substituting to (3)
the radiation pattern becomes:

P (θ, ϕ)=i0+i1e
jb sinθ cosϕ+i2e

jb sinθ cosϕ+i3e
−jb sinθ cosϕ+i4e

−jb sinθ cosϕ

=i0 1︸︷︷︸
ã0(θ,ϕ)

+j(i1−i3) sin(b sin θ cosϕ)︸ ︷︷ ︸
ã1(θ,ϕ)

+j(i2−i4) sin(b sin θ sinϕ)︸ ︷︷ ︸
ã2(θ,ϕ)

+(i1 + i3) cos (b sin θ cosϕ)︸ ︷︷ ︸
ã3(θ,ϕ)

+(i2 + i4) cos (b sin θ sinϕ)︸ ︷︷ ︸
ã4(θ,ϕ)

(8)

The expansion in the second part of (11) was done in order to
simplify the analytical derivation. Therefore, the functions used for
the orthogonal expansion in this example are the ãi(θ, ϕ), and not the
complex exponentials of the steering vector. It is easy to show that the
two solutions are equivalent. Applying the Gram-Schmidt process, the
basis patterns that construct the beamspace domain are given after
some mathematical manipulations (see Appendix) by:

Φ0(θ, ϕ)=
1
k0

Φ1(θ, ϕ)=
1
k1

sin (b sin θ cosϕ)

Φ2(θ, ϕ)=
1
k2

sin(b sin θ sinϕ) Φ3(θ, ϕ)=
1
k3

[
cos(b sin θ cosϕ)− q30

k0

]

Φ4(θ, ϕ)=
1
k4

[
cos (b sin θ sinϕ)− q40

k0
− q43

k3
cos(b sin θ cosϕ)+

q43q30

k0k3

]
(9)
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Figure 2. 3D Basis patterns of a circular ESPAR antenna with
MT = 5. The red patterns correspond to d = 1/16 and the green
ones to d = 1/2.

where qmn are the projections defined in Section 3.1 and are given by:

q30 =
π

k0

2π∫

0

E1 (b cosϕ)dϕ

q40 =
π

k0

2π∫

0

E1 (b sinϕ)dϕ

q43 =
π

k3

2π∫

0

E1 [2b cos (π/4) cosϕ] dϕ− q30q40

k3

(10)

In (10), the function E1(z) denotes the Weber function of the first
order defined as [31]:

Eν (z) =
1
π

π∫

0

sin (νθ − z sin θ)dθ (11)

As an example, Fig. 2 presents the basis patterns for d = 1/16 and
d = 1/2.

4. EFFECTIVE AERIAL DOFS AND ARRAY
DIMENSION

The presented decomposition based on Gram-Schmidt process implies
that the number of aerial DoFs, i.e., the beamspace dimensionality, is
equal to the number of ESPAR elements. However in this Section it is
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shown that the electromagnetic coupling between the ESPAR elements,
which is heavily dependent on the array’s dimensions, strongly affects
the subset of significant aerial DoFs Neff ≤ MT , called effective aerial
DoFs (EDoFs). A similar result has been recorded in [10], where a
rough estimation of the effective aerial DoFs is shown. The authors
therein consider an azimuth decomposition of the ESPAR pattern and
also ignore the electromagnetic coupling between elements. To cope
with this effect, the complex coupling Zmn = Rmn + jXmn between
two side by side elements is used as given by [31]:

Rmn =30
[
2Ci(2π)−Ci

(
2π

(√
d̃2

mn+D2+D

))
−Ci

(
2π

(√
d̃2

mn+D2−D

))]

Xmn =−30
[
2Si(2π)−Si

(
2π

(√
d̃2

mn+D2+D

))
−Si

(
2π

(√
d̃2

mn+D2−D

))]

(12)

where d̃mn is the distance between the m-th and n-th ESPAR elements
(this is not the ESPAR radius), D is the element’s length, usually equal
to λ/2, and Si (x) , Ci(x) are the sine and cosine integrals [36].

The impact of the array’s dimension on the number of EDoFs
is estimated indirectly. In particular, the power contribution of each
basis pattern to the total radiated power is evaluated as a function of
the ESPAR’s radius d, which determines the distance d̃mn between the
side by side elements, and considering also the corresponding coupling
effects. Focusing on a specific radius d, 10,000 random patterns were
generated by changing the loads at the parasitics randomly in the
range of −100 to 100 Ohms. Then, the contribution of each basis
pattern at the randomly generated patterns was computed. Fig. 3
presents the mean values over all projections, in terms of power, as a
function of d. It is observed that for tiny values of d only the first basis
pattern Φ0(θ, ϕ) dominates. Intuitively this is reasonable since with an
extremely small d the array approaches the point source. Increasing
the ESPAR radius, more basis patterns participate considerably to
the total radiated pattern, while larger radii values reduce remarkably
the contribution of all basis patterns except the first that eventually
dominates. This behavior is also reasonable, since large radii values
weaken considerably the electromagnetic coupling between elements.
In terms of ESPAR theory this means that the currents induced on the
parasitics due to feeding of the sole active element gradually attenuate,
and the contribution of the parasitics to radiation mechanism is
minimized. The radiation in this case is only due to the active element’s
feeding. Consequently, Fig. 3 constitutes a quantitative and qualitative
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Figure 3. Mean power contributed by each basis pattern (%) to the
total power.

illustration of the ESPAR features, showing that for certain radii values
the contribution of all basis patterns is maximized allowing for high
beamforming capabilities. What is pointed out is that an ESPAR is
fully functional for small radii values. Up to now this fact has been
adopted implicitly in the literature on ESPAR antennas. According
to the authors’ knowledge such a descriptive visualization is novel and
can be applied also to ESPARs with arbitrary geometry. Therefore,
although the Gram-Schmidt process indicates that the dimensionality
of the beamspace domain depends only on the number of ESPAR
elements, Fig. 3 illustrates the behavior of all basis patterns as a
function of the radius and provides the number of EDoFs that can be
actually exploited. This knowledge is of great interest when studying
ESPAR antennas in a communication system level, as follows in Section
5. It should be emphasized that the singular value decomposition
(SVD) method can provide an equivalent set of basis patterns that
inevitably belong to the same space.

5. PERFORMANCE EVALUATION

This Section provides performance evaluation results of the proposed
single RF MIMO architecture against its conventional counterpart
MIMO transceivers in terms of capacity. The proposed architecture
utilizes the basis patterns computed in previous section for a 5-element
circular ESPAR antenna. Based on (2) and Fig. 3 it is observed that
a single RF MIMO transmitter is able to create up to Neff = MT = 5
uncorrelated data pipes at the beamspace domain using an ESPAR
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antenna with radius well below 0.5 wavelengths, i.e., d = 0.25. In
contrast, a conventional MIMO transceiver would require much larger
antenna dimensions to ensure spatially uncorrelated transmit signals
and to attain the same multiplexing order. Thus, a fair comparison
between the two competitive MIMO approaches would impose the same
restrictions on antenna dimensions. By reducing the antenna spacing
in conventional MIMO systems, two effects cause capacity degradation:
the spatial correlation of transmit and receive signals and the antenna
mutual couplings. This is the case in applications with critical size and
cost constraints, where the available space is limited to distribute the
antenna elements over. To account for these effects the conventional
MIMO channel Hconv is expressed as in [10] using the Kronecker
model [32] combined with the transmit and receive coupling matrices
as in [33, 34]. Since a full scattering environment is considered, the
correlation coefficient between the m-th and n-th antenna is evaluated
as ρmn = J0(2πd̃mn), m 6= n and ρmn = 1, m = n [35], where J0(·) is
the zero order Bessel function of the first kind. The fair comparison of
the two MIMO systems calls for the inclusion of the oversampling effect
at the single RF receiver, as explained in Section 2.2. The oversampling
causes SNR degradation, as compared to conventional MIMO, by the
oversampling factor, i.e., by the number of pattern switching:

γbs = γconv/Neff (13)

where γbs and γconv denote the SNR in single RF and conventional
MIMO respectively, and Neff ≤ MT indicates the number of EDoFs.
The capacity of single RF MIMO is evaluated by:

C = log2

(
det

(
I +

γbs

Neff
HbsHH

bs

))
(14)

The same expression applies also in conventional MIMO by replacing
Hbs with Hconv, γbs with γconv and Neff with the number of transmit
antenna elements [10, 22]. Fig. 4 illustrates the ergodic capacity of
single RF MIMO when transmit and receive ESPAR antennas are able
to offer Neff = 3 or 5 EDoFs. According to Fig. 3 this is reasonable
for d = 1/16 and d = 1/4 respectively. The performance is compared
against the conventional counterparts, i.e., 3× 3 and 5× 5 MIMO, as
well as the classic SISO system. The comparison against conventional
MIMO is twofold; the ideal case ignores the spatial correlation of
signals and any couplings between elements, provided that the antenna
separation at both link ends is sufficient. On the contrary, the non-
ideal case takes into account both effects, as explained. For fair
comparison uniform circular arrays (UCAs) are considered in the latter
case preserving the same dimensions as in single RF MIMO. It is clearly
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shown that ideal conventional MIMO outperform all cases. This is
expected since according to (13) the oversampling factor in single RF
MIMO introduces a reasonable SNR loss. Increasing the ESPAR radius
the number of EDoFs becomes Neff = MT = 5 and the capacity also
increases, but less than in ideal conventional case. This is reasonable,
since the transmitting ESPAR is able to multiplex more symbols at
the beamspace domain, but on the other hand the SNR degradation
at the receiver reduces the capacity enhancement. The fair comparison
against non-ideal conventional MIMO reveals the real benefits of single
RF MIMO architecture. Although it seems that the proposed scheme
is not advantageous for high MIMO order systems, in applications with
stringent size limitations it’s able to offer the MIMO benefits, even with
increased performance as compared to the conventional counterpart.
This observation is important considering also the significant hardware
savings in single RF MIMO; the RF chains have been replaced with
a simpler varactor-based circuit attached to the parasitics [17–19].
For completeness, Fig. 4 depicts also a comparison against the SISO
system, which in terms of hardware complexity is meaningful. Fig. 5 in
turn, illustrates a comparison regarding the 10% outage capacity, with
similar observations. One should notice that a clustered propagation
channel, will definitely affect the performance of the BS-MIMO as well
as that of the conventional MIMO system [37], but will not alter the
calculation of the DoFs provided by the ESPAR antenna. Finally, we
should highlight that the measurement results obtained in the proof-of-
concept experiment described in [11], were based on initial theoretical
investigation of orthogonal or semi-orthogonal basis patterns provided
in [9].
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6. CONCLUSION

This paper explores the beamspace domain representation of parasitic
antenna arrays and elaborates on the aerial degrees of freedom provided
by these arrays. A geometry based methodology is used to visualize
the multiplexing capabilities of ESPAR antennas. Although a circular
ESPAR with 5 elements was used for demonstration, the methodology
can be used effectively for other geometries. A key result of the paper
is that with significantly reduced antenna dimensions a reasonable
number of orthogonal basis patterns can be produced, able to support
uncorrelated transmit signals at the beamspace domain. Therefore,
the multiplexing can be done in the beamspace domain where multiple
transmit symbols are mapped to different basis patterns. The results
are very promising for the application of parasitic arrays in single
RF MIMO transceivers with reduced hardware complexity and pave
the way for lightweight MIMO systems that are well suited to mobile
devices with strict size limitations.

APPENDIX A.

The circular ESPAR’s radiation pattern is given in (8). As explained
in Section 3, the first basis pattern is chosen as:

Φ0 (θ, ϕ) =
1
k0

(A1)

The projection q10 of ã1 (θ, ϕ) onto Φ0 (θ, ϕ) is computed as:

q10 =

2π∫

0

π∫

0

ã1(θ, ϕ)Φ∗0(θ, ϕ) sin θdθdϕ=
1
k0

2π∫

0

π∫

0

sin(b sinθcosϕ)sinθdθdϕ

=
1

2k0

2π∫

0

π∫

0

cos(b sinθ cosϕ−θ)dθdϕ− 1
2k0

2π∫

0

π∫

0

cos(b sinθ cosϕ+θ)dθdϕ

=
π

2k0

2π∫

0

J1(b cosϕ)dϕ +
π

2k0

2π∫

0

J−1(b cosϕ)dϕ

=
π

k0

2π∫

0

J1(b cosϕ)dϕ = 0 (A2)

Thus, due to (7) the next basis pattern is:

Φ1 (θ, ϕ) =
1
k1

sin (b sin θ cosϕ) (A3)
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Therefore:

Φ2 (θ, ϕ) =
1
k2

[ã2 (θ, ϕ)− q20Φ0 (θ, ϕ)− q21Φ1 (θ, ϕ)] (A4)

Similarly, as in (A2) it holds that:

q20 =

2π∫

0

π∫

0

ã2 (θ, ϕ)Φ∗0 (θ, ϕ) sin θdθdϕ = 0 (A5)

The projection q21 is computed after long mathematical manipulations
considering similar trigonometric identities and the Weber function of
the first order E1(z) given in (11) as:

q21=

2π∫

0

π∫

0

ã2 (θ, ϕ)Φ∗1 (θ, ϕ) sin θdθdϕ

=
1
k1

2π∫

0

π∫

0

sin (b sin θ sinϕ) sin (b sin θ cosϕ) sin θdθdϕ

=
1

2k1

2π∫

0

π∫

0

dθdϕ sin θ[cos(b(sinϕ− cosϕ) sin θ)

− cos(b(sinϕ + cosϕ) sin θ)] = 0 (A6)

In (A6) we also take into account that E1 (z) = −E−1 (z) and E1 (z) =
E1 (−z). Due to (A5) and (A6) the next basis pattern is:

Φ2 (θ, ϕ) =
1
k2

sin (b sin θ sinϕ) (A7)

The projections of the term ã3 (θ, ϕ) onto all basis patterns defined so
far are computed similarly:

q30=

2π∫

0

π∫

0

ã3(θ, ϕ)Φ∗0(θ, ϕ) sin θdθdϕ=
1
k0

2π∫

0

π∫

0

cos(b sin θ cosϕ) sin θdθdϕ

=
π

k0

2π∫

0

E1 (b cosϕ)dϕ (A8)
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q31=

2π∫

0

π∫

0

ã3 (θ, ϕ)Φ∗1 (θ, ϕ) sin θdθdϕ

=
1
k1

2π∫

0

π∫

0

cos (b sin θ cosϕ) sin (b sin θ cosϕ) sin θdθdϕ

=
1

2k1

2π∫

0

π∫

0

sin (2b sin θ cosϕ) sin θdθdϕ = 0 (A9)

q32=

2π∫

0

π∫

0

ã3 (θ, ϕ)Φ∗2 (θ, ϕ) sin θdθdϕ

=
1
k2

2π∫

0

π∫

0

cos (b sin θ cosϕ) sin (b sin θ sinϕ) sin θdθdϕ = 0 (A10)

Due to (7), (A8), (A9) and (A10) the next basis pattern consequently
is:

Φ3 (θ, ϕ) =
1
k3

[
cos (b sin θ cosϕ)− q30

k0

]
(A11)

Working in the same way the last basis pattern is defined as:

Φ4(ϕ)=
1
k4

[
cos(b sinθsinϕ)− q40

k0
−q43

k3
cos(b sinθcosϕ)+

q30q43

k0k3

]
(A12)

where:

q40 =
π

k0

2π∫

0

E1 (b sinϕ) dϕ

q41 = q42 = 0

q43 =
π

k3

2π∫

0

E1 [2b cos (π/4) cosϕ] dϕ− q30π

k0k3

2π∫

0

E1 [b cosϕ] dϕ

(A13)
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