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Abstract: Human encroachment into wildlands has resulted in a rapid increase in wildland–urban
interface (WUI) expansion, exposing more buildings and population to wildfire risks. More frequent
mapping of structures and WUIs at a finer spatial resolution is needed for WUI characterization
and hazard assessment. However, most approaches rely on high-resolution commercial satellite
data with a particular focus on urban areas. We developed a deep learning framework tailored for
building footprint detection in the transitional wildland–urban areas. We leveraged meter scale aerial
imageries publicly available from the National Agriculture Imagery Program (NAIP) every 2 years.
Our approach integrated Mobile-UNet and generative adversarial network. The deep learning
models trained over three counties in California performed well in detecting building footprints
across diverse landscapes, with an F1 score of 0.62, 0.67, and 0.75 in the interface WUI, intermix
WUI, and rural regions, respectively. The bi-annual mapping captured both housing expansion
and wildfire-caused building damages. The 30 m WUI maps generated from these finer footprints
showed more granularity than the existing census tract-based maps and captured the transition
of WUI dynamics well. More frequent updates of building footprint and improved WUI mapping
will improve our understanding of WUI dynamics and provide guidance for adaptive strategies on
community planning and wildfire hazard reduction.

Keywords: national agriculture imagery program (NAIP); deep learning; wildland–urban interface;
convolutional neural network (CNN); generative adversarial network (GAN); semantic segmentation;
building footprint; urban sprawl; wildfire

1. Introduction

The wildland–urban interface (WUI), defined as the transition area where urban de-
velopment meets or intermingles with the undeveloped wildland dominated by vegetation,
is widespread across the globe [1,2]. The WUI extent has been increasing rapidly in many
countries [3,4]. In the United States (US), decentralized urbanization has led to a rapid
development in the outlying fringes of cities, fragmented rural areas and forests, and
subsequently an increase in the WUI areas over the past three decades [5,6]. One tenth of
the U.S. land areas are approximately within the WUI, home to around one third of the
houses [7]. The loss of wildland areas, which used to serve as critical buffers from natural
disasters such as wildfires, when combined with higher probability of human ignition,
can increase community exposure to wildfire risk and destruction [6–8]. For example, the
2018 Camp fire burned in WUI destroyed over 18,000 structures with 85 fatalities, causing
significant impacts on the functionalities of urban facilities [9,10]. Therefore, it is critical
to routinely examine and update the WUI extent and characteristics, especially at the
individual building level, in order to understand the spatio-temporal dynamics of WUIs
and assess the community wildfire risk for planning and hazard preparedness purposes.
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Large scale WUI mapping requires information on building density and vegetation
coverage. Although vegetation monitoring from remote sensing observations has advanced
significantly at multiple resolutions, housing density is mostly based on the census data,
typically performed at the census block level every 10 years [11–14]. For example, the most
widely used WUI maps in U.S. were developed by the Spatial Analysis for Conservation
and Sustainability (SILVIS) Lab, using the census housing data and vegetation information
derived from 30 m Landsat satellite data [3,7,15]. The size of census blocks typically gets
bigger in less populated areas, e.g., ranging from 0.06 km2 to 18,011 km2 in California [16].
This aggregated housing information at the coarse scale poses a big challenge for WUI map-
ping and characterization, especially considering the highly heterogeneous yet dynamic
nature of the WUI landscape. Recently, machine learning models have been applied to
satellite imagery at moderate resolution to improve 30 m land cover mapping in WUI areas,
e.g., in the alpine region of Switzerland [17] and in southern California [18]. Most recently,
some deep learning models, U-Net, and customed Convolutional Neural Network (CNN)
were explored for 30 m mapping of land details within WUI using the aggregated Planet
satellite imagery in southern California [13]. However, the capability of building detection
for housing density quantification is limited by the large pixel size of publicly available
free satellite imagery.

Recent advances in deep convolutional neural networks and availability of very high-
resolution satellite images or aerial photos make it possible to extract detailed building
footprints [18–21]. For example, the deep-supervision convolutional neural network for
semantic building segmentation was built on high-resolution images at 0.3 m from the WHU
Building Dataset and 1 m from the Massachusetts Building Dataset [22]. The DeepLav3+
model was modified to map building footprints for over 15 cities in the U.S., using raster
tiles from Mapbox satellite-view base maps at a zoom level of 19 [23]. Ekim et al. [24]
developed a three-output multi-task learning framework using the pan-sharpened RGB
images acquired from the WorldView-2 commercial satellite. By integrating CNN and long
shot-term memory network, post-disaster changes in WUI and urban can also be detected
from aerial orthophotos at 0.2 and 0.6 m [25,26]. Recent advances in 3D city models further
integrated deep neural networks with WorldView-2 commercial stereo imageries or point
clouds to construct high-quality building reconstructions in the urban area [27,28]. In 2018,
Microsoft also released an open building footprint dataset in the United States, derived
from Bing images with very high-resolution ranging from 0.07 m to 0.3 m [29–31]. However,
deep learning models from these studies were typically trained with data over urban areas
with relatively high housing density [20,21]. It is not clear how well these proposed models
work in different landscapes such as WUIs or with different input images [32,33]. Moreover,
the relatively high cost of commercial satellite data acquisition limits the spatial coverage
and temporal frequency of building footprint mapping.

The National Agriculture Imagery Program (NAIP), on the other hand, provides
nationwide high-quality free data in U.S. It has acquired aerial images at 1 m or higher
resolution since 2009, with a 2-year or shorter cycle [34]. At this meter and sub-meter
resolution, it can serve as a trustworthy open data source for building and wildland survey.
An early study by Cleve et al. [35] explored the application of NAIP imageries for wildland
and urban built-up mapping in Napa County of California. Xie et al. [36] proposed the
Locally Constrained You-Only-Look-Once framework to detect the bounding boxes of
buildings from NAIP images over five cities in Minnesota. Several segmentation methods
have also been tested for the semantic segmentation of building footprints based on NAIP
imageries around selected urban areas [37–39]. However, the publicly available repeated
free data have not been fully utilized for building footprint mapping at a large scale and
subsequently for land use and socio-economic analysis. Furthermore, most of the previous
building footprint detection models were optimized for urban or dense residential areas,
and many were only tested for small communities. A consistent and robust approach is
needed to map the building footprints in the WUI areas using frequent NAIP imagery and
subsequently update the WUI maps.
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This study therefore aims to develop a deep learning-based method to map building
footprints across landscapes with diverse building-vegetation mixtures using NAIP aerial
imageries and to further improve WUI mapping. Specifically, we first developed a com-
bined framework integrating Mobile-UNet and generative adversarial network (GAN) for
the semantic segmentation of building footprints, using ground truth footprints from three
counties in California. The ability of the model to capture spatial patterns and temporal
dynamics of buildings was then examined over another three counties, taking advantage
of the full time series of NAIP imageries since 2010. We further explored the potential
improvements in generating WUI maps and analyzed the WUI dynamics through time.

2. Materials and Methods
2.1. Datasets

NAIP aerial photos were downloaded from Google Earth Engine for six counties in
California, i.e., Shasta, Lake, Napa, Sonoma, San Luis Obispo, and Orange Counties. These
counties have experienced a rapid expansion of the WUI in the past two decades [40,41],
and represent the diverse landscape from the northern to southern part of the state. The
NAIP imageries provide ortho photography in four spectral channels (red, green, blue,
and near infrared) for the whole continental United States during the agricultural growing
season. In California, it provides high-resolution images at 1 m since 2009 and at 0.6 m
since 2016, with a 2-year acquisition cycle.

For building footprint detection algorithm development, we focused on Shasta, Napa,
and San Luis Obispo (Figure 1a), where the complete building footprint data are available
for the entire county. We obtained the footprints shapefiles, derived from various sources,
from the corresponding county websites [42–44]. These footprints matched well with
the ground truth for both locations and geometries based on the visual inspection with
ortho-imageries. We further converted these reference shapefiles into binary rasters at 1 m
resolution to match the pixel size of NAIP imagery dated back to 2009. For comparison
purposes, we also obtained the 2018 Microsoft building footprint data detected from
centimeter-resolution Bing images, which has a precision of 99% and recall of 92% across
the U.S. based on 15,000 tested buildings [29].

2.2. Deep Learning Model Architecture

As an advanced technique in computer vision, deep learning models have recently
been applied to remote sensing imagery and achieved state-of-the-art results in both
pixel- and object-level classification tasks [45–49]. Our model framework consists of two
components (Figure 2). The Mobile-UNet was first used to generate building segment
candidates from NAIP images, i.e., detecting candidate building pixels [50]. The fully
convolutional network (FCN) can efficiently label pixels from high-resolution images [51].
The UNet model, for example, has been used to map objects such as tree crowns, roads, and
buildings from commercial satellite images or aerial photos [52–55]. The UNet network
structure uses convolutional layers to perform the semantic segmentation via spatial feature
extraction by encoder followed by segmentation construction by decoder [52]. A UNet-
based architecture was found to perform better for buildings in WUI regions than other
network structures such as FCN or DeepLabv3 [45]. We used the Mobile-UNet model
due to its improved accuracy and efficiency [50]. It replaces the UNet encoder with
the MobileNetV2, a simple but efficient network, for robust feature extraction [56]. The
adoption of depth-wise separable convolution reduces both the size and the complexity
cost of the network [56]. Moreover, its implementation requires less parameters and thus
potentially minimizes the over-fitting issue [50]. Features extracted from MobileNetV2
were further deconvoluted to generate segmentation masks [50].
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Figure 1. Foci of the study areas (a). NAIP image subsets from three counties, (b) Shasta, (c) Napa,
and (d) San Luis Obispo were used to train and test the deep learning model. The model was applied
to all NAIP imagery in Lake, Sonoma, and Orange Counties for building detection and WUI mapping
every 2 years.

To refine the building segments from the Mobile-UNet, the conditional generative
adversarial network (cGAN) was applied to combine the candidate map with the original
input images for final prediction labels [57]. This second step is necessary due to the
potential challenges of using coarser resolution imagery for building segmentation in the
diverse WUI landscapes, e.g., missing pixels or partially occluded objects, and false alarms.
Originally proposed as the generative model for unsupervised learning, the GAN model
includes a pair of two competing networks, namely, the generator and the discrimina-
tor [57,58]. The objective of the generative network is to generate fake samples while the
discriminative network aims to evaluate outputs from the generator and distinguish these
generated samples from the true data distribution [58]. cGAN extends the basic GAN
model to condition on external information and thus can be used for image-to-image trans-
lation [59,60]. We here adopted the model structure proposed by Isola et al. (2018), which
uses a U-Net-based generator and a convolutional PatchGAN discriminator, for image
translation (Figure 2). In cGAN, the generator not only aims to synthesize realistic-looking
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images to fool the discriminator, but also uses auxiliary information to generate images
matching the labels [61]. The PatchGAN discriminator runs convolutionally across the
image, focuses on each N×N patch of the image, and determines if it is real or fake [60,62].
It only penalizes the structure at the scale of image patches and then averages out all
responses to make the final decision [63].
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2.3. Model Implementation
2.3.1. Data Preparation

For the model development, we used the 2016 NAIP imagery for Napa and San Luis
Obispo, and 2018 imagery for Shasta County to match the report years of the corresponding
building footprint reference data. NAIP images were resampled from 0.6 m to 1 m, in order
to apply the pre-trained model to 1 m NAIP images prior to 2016. Both the NAIP images and
the reference building data were partitioned into blocks of 512 m by 512 m. We compiled a
total of 2573 NAIP image subsets to cover different types of human settlement patterns in
WUI, rural, and urban areas (Figure 1). These subsets represented over 10,000 buildings
across these three counties. We further randomly sampled 1200 image blocks for model
training and 670 blocks for the general model accuracy evaluation (Figure 1). To further
examine the model performance across the four different residential patterns, the rest of
703 blocks were reserved as an independent evaluation dataset, including 128 interface
WUI subsets (6573 buildings), 179 intermix WUI subsets (2430 buildings), 68 urban subsets
(4878 buildings), and 327 rural subsets (1121 buildings).

To further evaluate the model’s ability in capturing both spatial and temporal dynam-
ics of the building footprint and WUIs, we used all NAIP images from 2010 to 2018 in Lake
County, and in 2010 and 2018 for Sonoma County and Orange County.

2.3.2. Model Configurations

The structure of our framework integrating two models is shown in Figure 2. The
model takes image blocks at the size of 512 by 512, corresponding to 512 m by 512 m on the
ground. We first applied two image preprocessing steps, histogram normalization through
adaptive equalization and wavelet-based image denoising [64]. During the preliminary
experiment, we also compared different input channels, including all four input bands,
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natural color composite (red, green, and blue), color infrared (near infrared, red, and green),
and top three principal components. Simple RGB input was found to provide the best
results and thus was used for this study.

The Mobile-UNet component consists of a contraction path and an expansion path.
The contraction section applies an encoder with five inverted residual blocks to the input
NAIP image to extract features. Each block includes the 1 × 1 convolution with the batch
normalization, the rectified linear unit (ReLU) activation function, and a stride of 1; the
3 × 3 depth-wise convolution with batch-normalization, the ReLU function, and a stride of
2, and one more 1 × 1 convolution with the batch-normalization but without a non-linear
function. The expansion path uses the decoder to create segmentation maps of candidate
building footprints. Each upsampling layer in the decoder of the expansion section is fused
with the same scale as it is in its symmetric downsampling layer.

Both the raw NAIP image and the candidate maps of building footprints were then
fed into the cGAN component of the model. The generator of the cGAN follows a basic
U-Net structure. The downsampler of the generator has seven 4 × 4 convolutions with the
batch normalization, the LeakyReLU activation function, and a stride of 2. The upsampler
uses the 4 × 4 deconvolution with the 50% dropout rate, the batch normalization, the ReLU
function, and a stride of 2. The loss of the generator is calculated as the combination of the
sigmoid cross entropy loss and mean absolute error between the generated image and the
real image [60]. The PatchGAN discriminator applies blocks of 4 × 4 convolutions with
batch normalization and LeakyReLU activation to generate 30 × 30 patches. It uses the
Adam optimizer to minimize the sum of the sigmoid cross entropy losses of the real and
the generated images.

The resulting images of building segmentations were further converted into shapefile
format for geospatial analysis and applications. Finally, we applied a post-processing
algorithm to smooth the output building segmentations, remove noise pixels, and regularize
the shape and the geometry [65–67]. Specifically, we cleaned small polygons smaller than
4 m2 and straightened narrow sides of any building outline shorter than 4 m.

2.4. Model Evaluation

We evaluated the model performance at the building segment level with testing and
evaluation datasets, respectively. Evaluations were performed at the county level and
across four types of residential landscape, i.e., urban, interface WUI, intermix WUI, and
rural areas. Besides overall pixel level accuracy, three metrics, including precision, recall,
and F1 score (also known as dice score), were calculated to assess the segmentation results
at the object level, according to the number of objects correctly or falsely predicted by the
model, as shown by Equations (1)–(3) [68–70]. Precision is used to represent, out of all the
detected building footprints, what percentage is truly positive, while the “recall” metrics
quantifies, out of all the reference building footprints, what percentage is detected. The F1
metric provides a solid evaluation of model performance, by taking the harmonic mean of
both false positives and false negatives.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 =
True Positive

True Positive + 0.5 ∗ (False Positive + False Negative)
(3)

In addition, intersection of union (IoU), also known as Jaccard index, was calculated
to assess the overlapping of the predicted segmentations (Equation (4)).

IoU =
Area o f Overlap
Area o f Union

(4)
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Using our pre-trained model, we also detected the building footprints for another
three counties, i.e., Lake, Sonoma, and Orange Counties from NAIP imagery. The 2018 wall-
to-wall mapping results was compared with 2018 Microsoft building footprints generated
from very high-resolution Bing images. We randomly sampled 600 512 m by 512 m
sites from the WUIs of these three counties and calculated evaluation metrics. We also
evaluated the spatial consistence between our whole county maps and Microsoft data
through visualizations of both subset regions and aggregated 300 m building count maps
across the time.

2.5. WUI Mapping

Based on detected building footprints in Lake, Sonoma, and Orange Counties from
our model, we further mapped wildland urban interface. WUI is the area containing at
least one housing unit per 0.16 km2 (40 acres), following the federal register’s definition [1].
Based on the vegetation information, it can be further split into intermix WUI, where
vegetation coverage is higher than 50%; and interface WUI, where vegetation coverage
is lower than 50% but the land is within 2.4 km to a continuously heavily vegetated area
that includes 75% wildland vegetation and is larger than 5 km2 [1,3]. Additionally, if the
intermix WUI is within a heavily vegetated area, it is further defined as a heavily vegetated
intermix WUI [1].

We built a 30 m binary mask for vegetation and another mask for continuously heavily
vegetated areas using National Land Cover Data (NLCD) available in 2011, 2013, 2016, and
2019 [71]. Forests, shrublands, herbaceous plants, and woody wetlands from the NLCD
layers are masked as the vegetation. We then applied the moving window approach to
quantify the housing density, the vegetation cover, and the distance to remote areas. The
400 m by 400 m moving window size (16 ha, 40 acres) was chosen to calculate housing
density. For each 30 m pixel, if a housing unit exists in the 16 ha moving window, the
vegetation percentage is then examined within the neighborhood of the pixel. If the
fractional vegetation cover is higher than 50%, the pixel is labeled as the intermix WUI.
However, if the vegetation cover is lower than 50% but the closest continuously heavily
vegetated zone of the pixel is within 2.4 km, the pixel is labeled as the interface WUI. For
an intermix WUI pixel, if the vegetation coverage is higher than 75% within the 2.25 km
by 2.25 km moving window (5 km2), the pixel is further classified as highly vegetated
intermix WUI.

To evaluate the model applicability in county-wide WUI mapping, we generated
WUI maps for the Lake, Sonoma, and Orange Counties in 2010, based on the building
footprints detected in this study. Results of the 2010 WUI mapping were compared with
the existing widely used WUI maps, developed by SILVIS lab [7]. The SILVIS WUI map
relied on the housing density data from TIGER at the census block scale, available in 1990,
2000, and 2010 [3]. We also derived another set of WUI maps using the Microsoft building
footprints, available only in 2018, for comparison. To examine if our approach can capture
the temporal dynamics of WUI areas, we further performed a wall-to-wall mapping of the
WUI region in the whole Lake County for the year of 2010, 2012, 2014, 2016, and 2018.

3. Results
3.1. Model Performance

The integrative deep learning model was built with the 1200 NAIP image blocks,
using the labeled reference data in three counties. Overall, it performed well in detect-
ing building footprints over California’s diverse landscape with various housing density
(Figure 3). A visual inspection of examples over the independent evaluation blocks showed
that the majority of the reference buildings were identified correctly over the interface WUI
(Figure 3a–c) and urban areas (Figure 3d–f), and the mapped building footprints aligned
well with reference buildings. For example, houses within Cambria Pines near Moon-
stone Park (Figure 3a) and the community next to barren areas around Lake Nacimiento
(Figure 3b) were all been detected. The model also showed a good performance over
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areas where buildings intermingled with vegetation (Figure 3g–i) and where few build-
ings scattered across the landscape dominated by forests or bare soil (Figure 3h,i). Our
approach even identified buildings omitted by the reference data in the rural areas of
Calistoga (Figure 3l). Occasionally several adjacent buildings were identified as one large
building segment, for example in dense urban areas, and the size of some detected building
segmentations were smaller than that of the reference, such as the pixel-level omission at
the building edges (Figure 3d,f).

A comparison with the full testing dataset from 670 blocks showed a high overall pixel
level accuracy of 97% for building segmentation (Table 1). An F1 score of 0.53 and IoU of
0.52 suggest a reasonable performance on the individual building detection. Similar results
were found when evaluated with the additional evaluation dataset with an F1 score of 0.64
and IoU of 0.5. The accuracy of our approach varied slightly with housing density (Table 2).
Relatively more precise and robust results were found over less populated regions such as
intermix WUI or rural areas, as shown by F1 scores of 0.67 for the intermix WUI and 0.75
for rural regions vs. 0.62 for interface and urban areas, and higher percentages of predicted
building objects being correctly mapped in dense residential areas. However, relatively
lower recall values for these two sparse regions, especially for the intermix WUI, indicated
potential omission of some buildings when they are highly intermixed with vegetation.
In interface WUI, the model captured the individual buildings slightly better than in the
intermix WUI and rural areas. We also found larger overlapping between the NAIP-based
building segmentation and the reference building footprints in the interface WUI and urban
areas (IoU of 0.53) vs. 0.47 for intermix and 0.43 for rural areas. Similarly, better results were
found in counties with more dispersed building patterns, i.e., San Luis Obispo and Shasta
Counties, than counties with more dense communities such as Napa County, as shown by
much higher F1 scores and IoU across the four different types of human settlements.
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The model also captured the total building count and footprint coverage well along the
gradient of different housing densities across multiple counties (Table 2). The result showed
a very good agreement on the percentage of identified building footprint areas, with an
error of around 1% in dense settlements compared with the ground truth information.
It detected 80% of the building count in the interface areas, accounting for 5.1% of the
total land area, similar to 6.15% from the reference data. In the intermix region, the model
slightly overestimated the total building count but mapped a similar total percentage of
the building area (1.39% vs. 1.47%). The detected building footprint areas in regions with
very dense or sparse housing also agreed well with the reference data, accounting for
(7.26% vs. 8.83%) and (0.39% vs. 0.40%) of the land areas, respectively.

Table 1. Performance of different model components in building footprint detection, based on the
testing and the evaluation sets, respectively.

Accuracy F1 Precision Recall IoU

Testing Dataset
Final Model 0.97 0.53 0.52 0.54 0.52

Mobile-UNet Only 0.96 0.41 0.30 0.66 0.43
cGAN only 0.88 0.31 0.24 0.40 0.32

Evaluation Dataset
Final Model 0.98 0.64 0.65 0.62 0.50

Mobile-UNet Only 0.97 0.48 0.36 0.70 0.43
cGAN only 0.93 0.35 0.49 0.27 0.34

Table 2. Evaluation of building footprint mapping with the evaluation dataset at the pixel and
individual object level over the whole study area and three counties in California, along the gradient
of housing density, i.e., urban, Interface WUI, Intermix WUI, and rural areas, respectively. Moreover,
included are the aggregated percentages of building cover from this study and reference data.

Accuracy % Building Area
Accuracy F1 Precision Recall IoU This Study Ground Truth

Overall
Urban 0.93 0.61 0.58 0.65 0.53 7.26% 8.83%

Interface WUI 0.95 0.62 0.62 0.62 0.52 5.12% 6.15%
Intermix WUI 0.99 0.67 0.80 0.58 0.47 1.39% 1.47%

Rural 0.99 0.75 0.89 0.64 0.43 0.39% 0.40%

Shasta County
Urban 0.95 0.61 0.69 0.55 0.51 5.14% 6.13%

Interface WUI 0.97 0.62 0.69 0.56 0.51 3.54% 4.61%
Intermix WUI 0.99 0.68 0.84 0.58 0.48 1.18% 1.25%

Rural 0.99 0.76 0.91 0.66 0.44 0.43% 0.42%

Napa County
Urban 0.88 0.58 0.56 0.61 0.50 9.21% 11.82%

Interface WUI 0.93 0.56 0.57 0.55 0.47 7.39% 7.35%
Intermix WUI 0.98 0.60 0.71 0.52 0.44 2.10% 2.07%

Rural 0.99 0.66 0.86 0.54 0.36 0.36% 0.41%

San Luis Obispo County
Urban 0.93 0.62 0.55 0.70 0.54 7.91% 9.62%

Interface WUI 0.95 0.64 0.57 0.72 0.53 6.75% 8.09%
Intermix WUI 0.99 0.70 0.78 0.64 0.48 1.41% 1.60%

Rural 0.99 0.76 0.86 0.68 0.47 0.31% 0.33%

The integrative model developed here significantly improved the accuracy of building
footprint detection, compared with Mobile-UNet only and cGAN only models (Table 1). It
had a more balanced performance, as shown by the higher F1 score of 0.53 in the testing
dataset and 0.64 in the evaluation dataset, compared with 0.41 and 0.48 by Mobile-UNet, as
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well as 0.31 and 0.35 by cGAN only. Although the Mobile-UNet model itself identified a
higher percentage of reference building objects (recall), it caused false detection more likely
as indicated by its lower precision (Table 1 and Figure 4). For example, some discrete and
noisy pixels falsely detected by Mobile-UNet over intermix WUI or rural areas, probably
due to the confusion with bare ground, were removed by applying the cGAN to the Mobile-
UNet results and NAIP images at a second step (Figure 4b,c). Incorporation of cGAN also
improved separating the adjacent buildings and filled the missing pixels for relatively large
buildings in the Mobile-UNet outputs (Figure 4a,b). For example, predictions of Mobile-
UNet clumped adjacent buildings together as one large and long object in communities by
the Moonstone beach in Cambria and the buildings close to the Nacimiento Lake in Paso
Robles (Figure 4a,b). The synthesized model, however, successfully solved this problem
by learning the separation of those mixed pixels with building boundaries and residential
spacings in input images.
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respectively, over example areas with dense human settlements (a,b) and sparse human
settlements (c,d). The original true color NAIP imagery from the testing set is also shown as a
reference (right).



Remote Sens. 2022, 14, 3622 11 of 21

3.2. Building Footprint Mapping and Patterns

We applied the trained model to the time series of NAIP imagery and mapped individ-
ual building footprints for Lake, Sonoma, and Orange Counties every 2 years from 2010 to
2018. For county-wide visualization purposes, we aggregated the building footprints into
building count at 300 m resolution (Figures 5 and 6). The building footprint mapping based
on our approach captured the human settlement patterns from more remote to suburban
counties well (Figure 5). For example, in Lake County, areas such as Clearlake city and Lake-
port city were well-identified as dense residential clusters and the expansion of the houses
to the WUI region was also delineated (Figure 5a). Orange County was mapped as highly
urbanized, with few smaller communities such as Silverado scattered in the rural region
(Figure 5e). In Sonoma County, on the other hand, most buildings were clustered around
Santa Rosa and human settlements spread towards the wildland areas (Figure 5c). Overall,
the building patterns from our approach matched the 2018 Microsoft data, as shown by
the building density aggregated at 300 m (Figure 5b,d,f). However, missing buildings from
our detection may exist in the very dense region. Across the random samples from each
county, our detected building footprints showed good consistency with Microsoft data,
with F1 scores over 0.6 for all three counties. For Lake and Sonoma counties with sparse
housing arrangements, our predictions have high precision scores of 0.79 and 0.83, but
relatively low recalls of 0.62 and 0.47 as reference to Microsoft buildings. Conversely, in
Orange County with dense interface WUIs or cities, the predictions have a lower precision
of 0.54 but a recall of 0.79, possibly constrained by the limited number of urban trainings
sampled in the model.

The time series of building footprints derived from NAIP imagery captured the
dynamics of building expansion, for example, in Lake County (Figure 6). The total number
of houses increased from 34,566 in 2010 to 45,695 in 2014 (Figure 6a,b). Transitions from
rural to human settlements, such as infills, community expansion, and new community
development were well-captured by the model. The intermix WUI region showed an
increase in both building density, e.g., around the town of Clear Lake, and area expansion,
e.g., new residential communities in the southern and northeastern parts of the county.
Example subsets were shown at the individual building level (Figure 7). Our approach
detected recreational houses built between 2010 and 2012 around Lake Pillsbury, as well as
the changes in structures such as the dam across the Eel River and piers along the shoreline
of the lake (Figure 7a). New houses were also detected across the whole Spring Valley
community and along the Spring Valley Road and Long Valley Road in the southwest of
the community, resulting in increased housing density by approximately 25% from 2012 to
2014 in the local community (Figure 7b).

Our approach also identified building reduction caused by wildfire events. We found
that the number of mapped buildings decreased by around 20% in 2018 from 2014. A closer
examination of Lake County’s fire history showed that around 2000 km2, approximately
57% of the total area in Lake County, were burned during 2015–2018 (Figure 6d), especially
over the eastern and southern parts of the county, covering southern Mendocino National
Forests and Cache Creek Wilderness. We found that a total of 6,768 buildings shown in
the 2014 building footprint map (Figure 6c) were within the 2015–2018 fire perimeters and
2459 buildings were destroyed. This result was consistent with the DINS building survey
which recorded a total of 2982 buildings damaged by 2015–2018 fire events in Lake County.

Although not designed for mapping building damage, the approach from this study
captured the building loss from wildfires well (Figure 7c,d). For example, over the 30,790 ha
burned by the 2015 Valley fire, we found 2078 buildings, out of 3574 buildings in our pre-fire
building footprint map, disappeared in our postfire building footprint map (Figure 7c),
while 80 out of 165 buildings were destroyed over the 892.8 ha burned by 2017 Sulphur fire
(Figure 7d). The numbers and locations of building loss were consistent with those from
the DINS postfire building damage survey.
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example regions in Figure 7.
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Figure 7. Examples of tracking building dynamics: (a,b) newly built houses (in black) during
2010–2014 and (c,d) destroyed buildings (in red) by wildfires during 2015-2018 in Lake County. The
2010 buildings were shown at the top in red (a,b) and 2018 postfire buildings in black (c,d). The
damaged buildings from the DINS survey were shown in purple for comparison (c,d). Refer to yellow
bounding boxes in Figure 6d for the locations of these four examples.

3.3. WUI Mapping—Spatial Patterns and Temporal Dynamics

We generated WUI maps every two years since 2010 in three counties, i.e., Lake,
Sonoma, and Orange, using the building footprints derived from NAIP 1 m imagery with
our approach and the NLCD vegetation map [72]. Overall, our WUI maps showed similar
spatial patterns with the existing 2010 census tract-based SILVIS WUI maps within each
county and across counties (Figure 8). For example, in Lake County, both approaches
identified major clusters of interface WUI around the boundaries of major cities, such
as Lakeport, Kelseyville, and Clearlake, around Lake Clear, transitioning into intermix
WUI and highly vegetated regions. In the more urbanized counties (Figure 8d–i), such
as Orange and Sonoma, our approach successfully mapped those WUI areas with a low
housing density, especially those large census tracts with small housing clusters scattered
within vegetated wildlands, which further captured the spatial spanning of the WUI
clusters. Orange County has the largest WUI interface areas, followed by Sonoma, and
Lake Counties. In contrast, Sonoma and Lake Counties have much larger intermixed WUI
areas, similar to what were shown by SILVIS maps.



Remote Sens. 2022, 14, 3622 15 of 21
Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

  
Figure 8. Comparison of WUI maps derived from the 2010 NAIP-based building footprints in this 
study (a,d,g); from SILVIS 2010 WUI maps (b,e,h); and from the 2018 Microsoft building dataset 
Figure 8. Comparison of WUI maps derived from the 2010 NAIP-based building footprints in this
study (a,d,g); from SILVIS 2010 WUI maps (b,e,h); and from the 2018 Microsoft building dataset (c,f,i).
Results are shown over Lake County (top), Sonoma County (middle), and Orange County
(bottom panel).



Remote Sens. 2022, 14, 3622 16 of 21

However, our 30 m WUI maps identified larger WUI areas and showed more granular-
ity and smoother transition from urban to WUI areas than SILVIS maps. Overall, the results
from this study were similar to patterns derived from the Microsoft building footprints
(Figure 8c,f,i). In Lake County, our approach mapped a total WUI area of 468 km2, domi-
nated by intermix WUI (375 vs. 94 km2 of interface WUI), compared with 411 km2 from the
SILVIS WUI map (334 km2 of intermix WUI vs. 78 km2 of interface WUI). Our results identi-
fied total WUI areas of 1635 km2 in Sonoma County and 660 km2 in Orange County, which
were 28% higher than, and almost doubled the SILVIS estimates, respectively. Among the
WUI areas, both our maps and SILVIS maps showed that the intermix WUI was dominant
in Sonoma County, accounting for 74% and 77% of the WUI areas; while Orange County
was dominated by interface WUI, contributing to 80% based on our map and 82% in the
SILVIS WUI map.

Using bi-annual building density and vegetation maps, the approach developed in
this study captured well the temporal dynamics of WUI areas and types. For example, the
time series of derived WUI maps in Lake County showed the changes in WUI regions every
2 years from 2010 to 2018 (Figure 9), associated with urban sprawl and wildfire disasters.
We found that the combined area of interface and intermix WUI fluctuated from year to
year. In the first half of the 2010s, WUI areas expanded steadily, reaching 210 km2 in 2012
and 215.6 km2 in 2014. The majority of expansions was found in the regions transitioning
from wildlands to intermix WUI regions, with additional housing development in some
tracts of highly vegetated intermix regions further away from populated towns (Figure 9f,g).
After the 2015 extreme fire events, the total WUI areas decreased to 199.4 km2 in 2016,
but then increased to 215.5 km2 in 2018 following the community rebuilding [73–75]. Our
approach also detected that a continuous highly vegetated intermix region has evolved
into the intermix WUI in the southwest of the county in 2018.
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Figure 9. Changes in identified WUI areas in Lake County from 2010 to 2018 (a–e). Closeups are also
shown for a subset region in 2010 (f) and 2018 (g).
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4. Discussion

Our study demonstrated the possibility of an efficient approach for building surveys
from high resolution images and improved the temporal and spatial accuracy of WUI
mapping. Further improvements are needed for operational and broader applications.
First, the building detection in this study was limited by the 1 m NAIP imagery in order
to take advantage of the historical archives for bi-annual mapping. An improvement of
the model can be based on the 0.6 m NAIP images in California after 2016 to better resolve
the mixed pixel issues at the edge of the buildings. Additionally, some uncertainties in
our building detection may be caused by some inconsistency in NAIP image acquisitions,
such as varying viewing angles, sunlight conditions, and imaging days across different
images. Although denoising and equalization during preprocessing can help harmonize
differences in ground reflection, calibration of the input images across the space and time
can further improve the accuracy and generalization of the model. Whenever possible,
other well-calibrated high-resolution imagery can also be used as additional sources for
improved local scale mapping. Secondly, improved accuracy of ground truth building
footprints data are also needed, especially in intermix and rural areas.

Moreover, the building detection model in this study was trained mostly on images
within the WUI regions due to the WUI focus of our study. Although when applied into a
large region, the model can successfully capture the spatial extent of housing development
areas, regions such as urban or dense residential areas might be less represented. Lastly, in
this study, we used Mobile-UNet as the backbone of the model architecture considering its
efficiency in applications. A previous study on WUI building detection showed that the
UNet-based structure has promising performance; however, a more sophisticated feature
extractor, such as ResNet or VGG models, can better optimize the model performance and
improve detection accuracy through considerably increased network depth [76,77].

The improved performance of the combined network structure by stacking UNet or
GAN was consistent with previous studies for image harmonization and noise cleaning for
products derived from medical or remote sensing images [78–81]. Through image-to-image
translation, GAN can serve as a post-processing process to reinforce spatial contiguity,
remove artifacts or undesired objects, and boost and harmonize the quality of predictions
from relatively low-resolution or compressed inputs [80,81]. Only a limited number of
studies have focused on building detection in WUI at 1 m resolution. Caggiano et al.
detected building footprints within sparse WUIs using object-based approaches in four
counties of Colorado from NAIP images in 2014 [82,83]. Their approach achieved an overall
accuracy fluctuated from 50 to 95%, a precision of 0.66, and recall of 0.51 [82]. The other study
in WUI achieved a high F1 score of around 0.8, but was based on 0.5 m fused commercial
SuperView-1 satellite data, which has twice as high resolution as NAIP images [45].

Most previous research of building detection have focused on urban regions, which
had quite different landscapes and housing patterns from wildland urban interfaces. Al-
though trained for the WUI areas, our model had a decent performance, F1 of 0.61, and
IoU of 0.53, over the urban regions. Compared with urban building segmentation models,
our model had very competitive recall scores, but slightly lower precision scores, possibly
due to the much fewer urban samples in our training data [37]. For instance, Locally Con-
strained You-Only-Look-Once (YOLO) framework for object detection was developed for
NAIP images with F1 scores varying from 0.73 to 0.8 across testing cities in Minnesota [36].
For similar studies using semantic building segmentation methods on NAIP images within
urban regions, deep learning models such as segNet, CRFasRNN, or FCN were constructed
for dense residential areas in the U.S. and achieved the overall accuracy ranging from 0.62
to 0.71 and IoU ranging from 0.45 to 0.58 [37,84]. As shown in these studies, the model
built on dense urban regions performed relatively worse with high false positives when
applied to sparse landscapes such as desert, mountainous areas, or agricultural lands, and
requires further modification and retraining of the model [37,84].

In terms of WUI mapping, our approach improved upon previous methods and
is able to delineate the natural transition from dense urban regions to WUIs and rural
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human settlements. Currently, the most widely used SILVIS WUI dataset relied on housing
densities from census tract regions, which captures spatial heterogeneity at relatively coarse
scales [7]. Although there were several other recent studies exploring the possibilities of
using building locations or individual building information for WUI mapping, these results
were only available for 1 static year while our bi-annual WUI maps provide more frequent
updates with free NAIP imagery [31,85].

5. Conclusions

We developed and evaluated a deep learning framework to detect individual building
footprints over the transitional areas from urban to wildland in this study. By taking
advantage of the publicly available NAIP aerial imagery at meter scale, our framework
provides an efficient approach to provide high resolution building footprint maps every
other year. Our analysis in California showed that the combination of Mobile-UNet and
generative adversarial network had a more balanced detection performance. When ex-
amined at a large scale over three counties, the total building area agreed well with that
derived from the reference building area. Bi-annual footprint maps of Lake, Sonoma, and
Orange Counties showed the capability of the integrated approach to capture the spatial
patterns and dynamics associated with urban expansion and wildfire damages. We further
applied a moving window-based workflow for WUI mapping using the derived fine scale
building footprints. The resulting WUI maps showed finer granularity than those from
census tract-based housing density, and are expected to contribute to community develop-
ment planning, wildfire risk assessment, and adaptive strategies on climate adaptation and
disaster response.
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