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Abstract— The knowledge about the placement and appear-
ance of lane markings is a prerequisite for the creation of
maps with high precision, necessary for autonomous driving,
infrastructure monitoring, lanewise traffic management, and
urban planning. Lane markings are one of the important compo-
nents of such maps. Lane markings convey the rules of roads to
drivers. While these rules are learned by humans, an autonomous
driving vehicle should be taught to learn them to localize
itself. Therefore, accurate and reliable lane-marking semantic
segmentation in the imagery of roads and highways is needed to
achieve such goals. We use airborne imagery that can capture a
large area in a short period of time by introducing an aerial lane
marking data set. In this paper, we propose a symmetric fully
convolutional neural network enhanced by wavelet transform in
order to automatically carry out lane-marking segmentation in
aerial imagery. Due to a heavily unbalanced problem in terms
of a number of lane-marking pixels compared with background
pixels, we use a customized loss function as well as a new type of
data augmentation step. We achieve a high accuracy in pixelwise
localization of lane markings compared with the state-of-the-
art methods without using the third-party information. In this
paper, we introduce the first high-quality data set used within
our experiments, which contains a broad range of situations and
classes of lane markings representative of today’s transportation
systems. This data set will be publicly available, and hence, it can
be used as the benchmark data set for future algorithms within
this domain.

Index Terms— Aerial imagery, autonomous driving, fully
convolutional neural networks (FCNNs), infrastructure monitor-
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ing, lane-marking segmentation, mapping, remote sensing, traffic
monitoring, wavelet transform.

I. INTRODUCTION

NOWADAYS, the detailed description of the public trans-
portation network is essential for the generation of

accurate road maps and lane-based models. A broad range
of current services, e.g., navigation systems and assisted
driving, rely on such information. Future applications, such
as automated lanewise traffic monitoring, urban management,
and city planning, are also asking for high-precision maps
at centimeter-level accuracy, particularly built for autonomous
driving applications that are called high-definition (HD) maps.
At present, autonomous vehicles (AVs) are a research focus
in computer vision and remote sensing. In order to achieve
autonomy in AVs, one key factor is to localize the vehi-
cle precisely. Very accurate maps containing the location of
infrastructures, such as streets, sidewalks, traffic lights, and
even lane markings, are a necessity for reaching the goal
of fully autonomous driving. Advanced vehicle assistance
system comprising features, such as vehicle navigation and
lane departure warning, requires not only the road model
information but also the precise road lane-marking data, e.g.,
the lane-marking types and their locations.

Besides the current omnipresent topic of autonomous
driving, many more urgent topics can be addressed by HD
maps. For instance, the traffic monitoring systems could ben-
efit from the localization of lane markings as the base map.
Information about lane-marking locations in open-space park-
ing lots could also result in more complete and therefore more
efficient parking lot utilization. In addition, more applications
can arise, which will use high-precision maps, as the smart
and efficient management of transportation systems is one of
the main topics of the 21st century.

At present, the data collection for generating HD maps is
mainly carried out by the so-called mobile mapping systems
that comprise, in most cases, of a vehicle equipped with a
broad range of sensors (e.g., radar, lidar, and cameras). This
method comes with some drawbacks, for instance, the ground-
based systems can cover only a small part of the map due to
the sensor line of sight. Sensor drift and global positioning
system shadows in urban canyons lower the spatial accuracy,
and traffic flow leads to partial occlusions in the recorded data.
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Fig. 1. Sample aerial image patch from AerialLanes18 data set in which
lane markings have been annotated. In this task, all classes of lane markings
have been considered for pixelwise semantic segmentation.

Fig. 2. Challenges in lane-marking segmentation. Light and strong shadow
caused by trees and buildings. Examples of rare cases, such as speed limit,
the disabled, and bus signs have been indicated. Partial or total occlusion by
other objects, such as bridge or tree branches, can be seen.

This issue can be addressed by remote sensing imagery that is
intrinsically motivated by the need to capture data from large
areas in a short time at a monetary competitive level. More
and more airborne and space-borne sensors are recording data
in the very-high resolution, e.g., ground sampling distance
(GSD) less than 50 cm are in now operational mode. The
public sector often offers its data under a free-and-open policy,
e.g., aerial imagery of the U.S. Geological Survey in urban
regions has ground sampling distance (GSD) less than 30 cm.
Data collected by flight campaign with the goal to monitor
infrastructure can offer even better GSD. Fig. 1 gives an
example of such imagery from the AerialLanes18 data set
introduced in this paper, which can be used for the purpose
of HD maps creation.

A. Challenges

Several issues raise the level of difficulty when it comes to
image segmentation of aerial imagery for creating HD maps.
Some of them are the well-known general problems in the
computer vision domain as follows.

Fig. 3. Different lane-marking classes. Single and double boundary, inter-
section, boxed junction, turn signs, separator, zigzag, bus and bike sign, speed
limit, no-parking zone, and pedestrian crossing.

1) Occlusion (partial or full) changes the appearance of
lane markings in the image. Some occlusion cases can
be observed in Fig. 2: full occlusion can be caused by
other objects such as bridge, tree and so on, while partial
occlusion that occurs more often is mostly caused by
trees.

2) Shadow creates a different illumination over lane mark-
ings causing changes in their appearance. It does not
happen often that lane markings are overshadowed,
making it a special case. This reason, such as the
previous one, could reduce the accuracy of automatic
lane-marking algorithms, especially deep learning meth-
ods that need a lot of training samples.

Some other challenges are specifically bound to the task of
lane-marking segmentation. A short overview is given in the
following itemization.

1) Different Classes: Generally, lane markings are catego-
rized into different classes, such as single and double
boundary, intersection, boxed junction, separator, zigzag,
special sign for the disabled, bus and bike sign, speed
limit, no-parking zone, pedestrian crossing, and so on.
Some of these classes can be seen in Fig. 3.

2) Small Size: In airborne imagery, the size of lane mark-
ings compared with other objects in the image is,
depending on the GSD, quite small. In some cases,
a sign of separator could be 5 × 5 pixels. This is one of
the biggest challenges within the lane-marking mapping
task in aerial imagery.

3) Washed Out Samples: Not all lane markings are vis-
ible in the image; some of them appear washed out
partially or completely. This imposes another challenge
for the accurate localization of lane markings. On the
one hand, in the case of completely washed out lane
markings, no visual feature may be captured. Therefore,
these cases are ignored. On the other hand, partially
occluded objects impose a difficult challenge both in
the prediction and data set annotation steps.

4) Rare Cases: Lane-marking classes are not equally dis-
tributed, as some classes are more frequent than others.
Speed limit, bus and bike signs, and parking place for
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Fig. 4. Complex background. Objects, such as those shown in this
figure, share a similar appearance with lane markings. As in some complex
background cases, one can name sport field lines, rail ways, roofs of buildings,
and so on.

the disabled can be named as rare cases, which can be
seen in Fig. 2.

5) The complex background represents an additional hin-
drance in accurate localization of lane markings.
Structures, such as those in Fig. 4, resemble with
high-similarity lane markings.

B. Related Work

In spite of the above-mentioned challenges concerning
semantic lane-marking segmentation of aerial imagery, another
challenge was identified in the early phase of this paper.
The usage of aerial images in order to extract valuable data
from transportation infrastructure has a rich literature in the
remote sensing domain, but as it comes to supervised learning
algorithms, we identified the lack of annotated, high-quality
data sets. As the lane markings are so small, annotating such
objects is difficult and time-consuming. We will, later on,
tackle this issue by making our data set easily available.

Concerning aerial imagery, Jin et al. [1] first extract the
roads. Then, they apply Gabor filters for highlighting the lane
markings followed by Otsu’s thresholding algorithm for raw
binary segmentation. The final result is then given by mor-
phological operators or by using support vector machines [2].
However, by using this approach, some white linear features,
such as the ridges of house roofs, may be misclassified if
the road extraction is not applied. Also, lines belonging to
vehicles or bridges may be misclassified as they are inside the
road areas. Furthermore, they did not investigate lane-marking
extraction into detail, providing only one resulting image. They
also mentioned that objects, such as trees above roads or worn-
out/dirty lane markings on the roads, decrease the accuracy of
the final results. In order to solve the problem, Jin and Feng [3]
propose an approach consisting of three steps to detect lane
markings.

1) First, the road centerline is extracted.
2) Then, the road surface is detected.
3) Finally, pavement markings are extracted.

Similar to the previous work, in this paper, also roads are
extracted first, and then, lane markings are detected. Even
though this method shows a better performance than the previ-
ous methods as claimed by the author, it still has the drawback
of the previous methods such as not being able to have a good
accuracy on lane-marking detection without road extraction.

Following this workflow, Jin et al. [4] use an unsupervised
algorithm to extract the road surface first. Second, Jin et al. [4]
employed co-occurrence contrast measurements to enhance the
lane markings, under the assumption that the contrast between
lane marking and road surface is strong and then localized lane
markings. Subsequently, morphological closings and openings
are applied in order to remove the enhanced edges in the
shadow regions. In the last step, the extracted lane-marking
features are narrowed by a modified Wang–Zangen algorithm
and further fitted to a line by least-square regression. This
paper extends lane-marking detection to rural areas. Similar
to the previously mentioned works, despite yielding good
results in the few provided test images, this paper also suffers
from a high rate of false positives in case of not using road
extraction step. Further works following this core approach
are given by Javanmardi et al. [5] and Huang et al. [6] who
used adaptive threshold in airborne images. Javanmardi et al.’s
approach [5] contains different steps, such as digital surface
model processing, removing vehicles using multiple images,
and in the end utilizing a simple adaptive thresholding to
extract lane marking. In this method, lane markings are not
detected directly as we have done in this paper and the
third-party data are used to remove nonlane-marking objects.

Hinz and Baumgartner [7] propose a method to extract lane
markings by multiview imagery and context cues and also
used the extracted thin lines as a hint for the presence of
a road. This method yields very good results. However, this
method works only when multiple images have been captured
with different views from a place of interest. This method is
also similar to previously mentioned works in using the road
mask, and therefore, it suffers from low accuracy in case of
not applying the road extraction step. Máttyus et al. [8] and
Gellert et al. [9] proposed a method based on Markov random
fields and a combined parsing of both ground and aerial images
to generate detailed maps. These road models could be used
for masking images in order to localize lane markings, but
it cannot be used directly for lane-marking localization and
only helps to find roads and the boundaries of each line in the
roads.

Tournaire et al. [10] extract the dashed line and zebra cross-
ing with the use of information obtained by the reconstruction
process from the extracted primitives of the image. In contrast
to this paper, they only considered rectangle line markings and
studied their geometric properties to be able to extract them.
Furthermore, they did not use a learning feature approach to
detect lane markings as we have done in this paper. More
complete overviews about the extraction of roads and road
features from airborne images can be found in [11] and [12].

As discussed, no previous work has tried to learn the fea-
tures of the lane marking through an end-to-end feature learn-
ing mechanism, e.g., deep learning methods, to the best of our
knowledge. Unlike in remote sensing community, researchers
in computer vision community have already applied deep
learning methods to extract road infrastructure features in
in situ images.

Deep learning methods, currently widely used in computer
vision, try to learn features rather than using engineered
features. During the last few years, deep learning methods



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

have shown an impressive performance in a variety of
computer vision tasks, such as object recognition [13]–[15],
detection [16]–[19], and semantic segmentation [20]–[23].
Convolutional neural networks (CNNs), as one of the widely
used deep learning methods, have been proven to be very
successful for object recognition in images [13]–[15].

However, pixelwise semantic segmentation is a more
challenging problem, as each pixel should be classified.
Kim and Park [24] propose a sequential transfer learning
method based on fully convolutional neural networks (FCNNs)
by segmenting the road in the first step and then lane-marking
segmentation on the road-masked image. This method is simi-
lar to the methodology used in current lane-marking detection
algorithms in remote sensing. The main difference is now
using FCNNs to extract roads first rather than using nondeep-
learning-based methods.

Gurghian et al. [25] propose a CNN classification method
to localize lane markings on both sides of a vehicle. However,
this method is not applicable to remote sensing applications as
we are interested to detect lane marking in all regions in the
images. Lee et al. [26] propose a multitask CNN to localize
and classify lane markings in the daytime with different
weather conditions as well as during nighttime. This is a very
interesting work where the author has developed a method to
detect lane markings in different weather conditions. However,
this method and other FCNN-based methods in lane-marking
detection have been developed for ground imagery processing.
Lane markings of small size in image data have not been
the focus of most works in this context. In imagery from
cars or poles (ground imagery), they are big enough and
therefore do not introduce a significant challenge. Having
said that in remote sensing imagery, lane markings can be
as small as 3 × 3 pixels, which are much more difficult to
detect.

In order to facilitate the application of supervised learning
methods, Caltech Lane [27] and tuSimple [28] data sets were
created for lane-marking segmentation, while large-scale data
sets for semantic understanding of roads containing a diverse
range of classes, including lane markings, have been defined
in [29] and [30]. The aforementioned data sets are in ground
imagery, and to the best of our knowledge, there is no public
data set available for research on lane-marking localization in
remote sensing data.

In this paper, we have created the first high-quality
annotated data set for lane-marking semantic segmentation
in remote sensing imagery specifically in airborne images.
We use FCNNs as the baselines of our method. Therefore,
this paper is, to our knowledge, the first time using FCNNs
to segment lane marking in remote sensing data in contrast
to previous methods that mostly detect road first as a hint
and second apply edge detection-based methods to segment
lane markings. This is one of the main differences of this
paper compared with previous works on this task. Unlike the
works are done in ground imagery, in this paper, we focus
on small-size lane markings by inserting discrete wavelet
transforms (DWTs) of input images in different steps into
FCNNs to preserve high-frequency information, including lane
markings. Wavelet transforms have been widely used both

in ground [31] and remote sensing imagery [32]. Recently,
Fujieda et al. [33] also used DWT combined with CNNs for
texture classification. They used CNNs for classification, while
in this paper, the focus is on the semantic segmentation task
that is a different task from classification. They inserted all
DWT decompositions with CNN only in two steps and in
the middle of the convolutional layers and did not investigate
which insertion place for DWT yields the best results, while
in this paper, we use three decompositions and also investigate
where is the best place to insert DWT to yield the best results.
In their work, DWT decompositions were inserted into CNNs
as an input, while in this paper, we still give the RGB image
as an input. More importantly, the effect of DWT was not
investigated from the point of preserving high-frequency data
such as very small objects for semantic segmentation. More-
over, we deploy a weighted loss function as well as symmetric
FCNN. Although FCNNs introduced by Long et al. [20]
are among the first deep learning methods for the semantic
segmentation task, its accuracies are still comparable with the
state of the art, such as DeepLabv3 [34], DeepLabv3+ [35],
PSPNet [22], and ICNet [36], and others with deep backbone
networks, such as ResNet [14], ResNext [37], Xception [38],
and DenseNet [39]. We choose the FCNN network proposed
by Long et al. [20] with VGG16 backbone as a baseline of our
method due to its simplicity and familiarity of the community
with its architecture and yet its accuracy is comparable with
the-state-of-the-art methods.

C. Our Contribution
In this paper, we focus on lane-marking pixelwise semantic

segmentation using aerial images. In high-resolution aerial
images, the lane markings are easy to identify. Our proposal
is based on combining FCNNs with DWT for lane-marking
pixelwise semantic segmentation in airborne images. The
motivation of using FCNNs as a deep learning method for
semantic segmentation is its higher performance compared
with nondeep-learning methods.

Unlike traditional methods in which feature extraction and
classification steps are performed separately, in FCNNs, fea-
tures are learned during an end-to-end training and there is
no separation between feature extraction and feature clas-
sification. FCNNs have been proposed first by Long et al.
[20] for semantic segmentation in in situ imagery with extra
upsampling layers (deconvolutional layers). The authors of
FCNNs propose multiple pooling layers to be fused with
upsampling layers (skip layers) to further refine segmentation
boundaries. The authors call their network and its variants
FCN32s, FCN16s, and FCN8s. We consider FCN32s as the
baseline of this paper.

In order to enhance current network performance, we com-
bine different input images with the FCNN network. The
motivation of using DWT is to provide the network with
different representations of input objects in different scales as
well as full-spectral analysis. DWTs can represent the input
image at different scales. While CNNs process the image
in the spatial domain and partially in the spectral domain,
DWT allows analyzing the images in the full-spectral domain.
Therefore, the properties of these algorithms are different.
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Fig. 5. Aerial LaneNet. Overview of lane-marking segmentation approach using the wavelet-enhanced symmetric cost-sensitive FCNNs. The input image
is a high-resolution aerial image. It is cropped first and segmented using the Aerial LaneNet network. In the end, segmented patches are stitched together.
H and W represent height and width and the third number is the number of feature maps.

Integrating DWT will enable the network to access the
intensity frequency information that is lost in the convolution
and average pooling layers, carrying out limited spectral analy-
sis. The intensity frequency information lays in the frequency
domain for the pixel intensities variation and not in the
different image bands, e.g., in hyperspectral images. Wavelet
transform has been investigated for a long time for frequency
analysis and also image compression.

In this paper, we have carried out experiments with different
combinations of DWT decompositions to be used as an input
with a modified version of FCN32s, which we call “Symmetric
FCNN.” The final result is a pixelwise semantic segmentation
of lane marking. Due to the heavily unbalanced task in terms
of a number of lane-marking pixels compared with background
ones, we have applied a cost-sensitive loss function to impose
higher loss for the wrong classification of lane markings
as a minor class than loss for the wrong classification of
background. As mentioned earlier, we introduce the first
high-quality pixelwise annotated data set for lane-marking
segmentation and detection in aerial imagery, which shall
encourage future works in this area.

The following sections are organized as follows. Section II
represents the methodology to enhance FCNN with different
DWT decompositions, the cost-sensitive loss function used
during the training phase, and the symmetric FCNNs architec-
ture. In Section III, we introduce the data set and its features
and properties and report different experiments. In Section IV,
the results of the experiments are given and evaluated. In
Section V, a conclusion is drawn.

II. ARIAL LANENET: WAVELET-ENHANCED

COST-SENSITIVE SYMMETRIC FULLY

CONVOLUTIONAL NEURAL NETWORK

In this paper, we propose a cost-sensitive symmetric FCNN
enhanced by DWT, which we call Aerial LaneNet. The overall

workflow of our method is illustrated in Fig. 5. Due to the high
resolution of aerial images and hardware memory constraint,
the original images are chopped into small patches using a
sliding window [40]. Then, each patch is processed by Aerial
LaneNet in order to predict a semantic segmentation of the
input patch.

The output is a binary image that denotes which pixel
belongs to lane markings and which one to the background. In
the end, patches are stitched together to create the final output
with the same resolution as the input image. In the following,
we explain our proposed methods in detail.

CNNs are a combination of different layers, such as
convolution, pooling, activation function, dropout, and fully
connected layers. Input data are convolved with a linear
convolution filter in convolution layers

(hk)i j = (Wk ∗ X)i j + bk (1)

where k = 1, . . . , K is the kth feature map in the convolution
layer and (i, j) is the index of a neuron in it. X stands for
the input data and Wk and bk are the weights (trainable para-
meters) of the network and the biases (trainable parameters),
respectively.

The output of each neuron in the kth feature map has been
represented by (hk)i j at position (i, j). The 2-D convolution
between input data and filter mask in the spatial domain is
represented by “∗,” which partially includes spectral analysis
at low frequencies, while the remaining spectral information
is lost.

Considering Fig. 6, parts shown in red in the DWT algo-
rithm can be considered as a convolution function in the
traditional CNNs. On the other hand, a wavelet transform is
able to capture the full-spectral information of the input in the
frequency domain.

Moreover, wavelets can extract multiresolution spectral
information from input data at different decomposition levels,
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Fig. 6. First-level DWT decomposition workflow. The input gray-scale image
is processed by low-pass and high-pass filter in different directions. The output
is with a half size of the original image. Afterward, the same operation is
applied to each part, resulting in four decomposition parts of the input image in
the first-level DWT. In conventional FCNNs, only the low-frequency analysis
is carried out shown in red, while DWT offers a full-spectral analysis shown
in blue.

Fig. 7. Different DWT decompositions. The input RGB image is converted
to gray scale first. Then, first DWT decomposition is computed followed by
next levels. High-pass and low-pass filters are represented by “H” and “L,”
respectively. LL stands for two-step low-pass filtering, where HL, LH, and
HH contain the horizontal, vertical, and diagonal details, respectively.

as shown in Fig. 7. A multiresolution analysis of the input
data would represent the input in different scales similar to a
pooling operation. Each subsampling step in wavelet transform
can be considered as a different pooling operation.

Therefore, pooling layers could also be replaced by wavelet
transforms. Instead of doing so, we merge (fuse) wavelet
information of the input with the traditional FCNNs together
with pooling layers, which can be done in different ways.
In order to add the wavelet decomposition to the network,
one can compute wavelet transforms for each image and
apply the output to FCNNs. However, in this case, multiscale
information of the data is lost. Therefore, the network is not
able to learn the lane-marking features at different resolutions.
This will lead to a nonscale-invariant method. To address this
problem, multiscale input processing is needed.

Each level of wavelet decomposition analyzes the data
at different resolutions. Therefore, by combining different
decomposition levels of wavelet transforms with FCNNs,
low- and high-frequency domain analyses as well as different
resolution analyses are achieved.

After applying a wavelet transform on the input image,
lane-marking boundaries appear as high-frequency objects in
vertical, horizontal, and partially in diagonal details in the

wavelet coefficients. Different parts from the first to the third
level of the DWT are illustrated in Fig. 7.

A. Discrete Wavelet Transform (Background)

DWT of a signal x is computed by applying a series of filters
and subsampling in subsequent levels [32]. For instance, in the
first level of DWT, a low-pass and a high-pass filter are applied
simultaneously with impulse responses of g and h resulting in
two convolutions of

ylowpass[n] = (x ∗ g)[n] =
+∞∑

x=−∞
x[k]g[n − k]

yhighpass[n] = (x ∗ h)[n] =
+∞∑

x=−∞
x[k]h[n − k] (2)

and the resulting signals are subsampled by a factor of 2, i.e.,

ylowpass = (x ∗ g) ↓ 2

yhighpass = (x ∗ h) ↓ 2. (3)

In order to further increase the approximation coefficients and
the frequency resolution resulting from low- and high-pass
filters and downsamplings, this decomposition is repeated.
This results in a tree representation of each decomposition
level known as a filter bank, which is illustrated for a two-level
decomposition in Fig. 6. We can consider the implementation
of wavelet filters as the wavelet coefficients calculation of
a discrete set of lower level wavelets for a mother wavelet
function �(x). By applying DWT, a discrete function f (x)
is converted into a signal of two variables [32]: scale and
translation, which can be described as

� j,k(x) := 1

2 j/2 �

(
x − k2 j

2 j

)
(4)

� j,k(x) := 1

2 j/2 �

(
x − k2 j

2 j

)
(5)

�(x) :=

⎧⎪⎨
⎪⎩

1, for 0 ≤ x ≤ 1/2

−1, for 1/2 < x ≤ 1

0, otherwise

(6)

�(x) :=
{

1, for 0 ≤ x ≤ 1

0, otherwise
(7)

in which � j,k(x) is the scaling function for which the box
function � has been chosen. � j,k(x) and � j,k(x) have ranges
of [−(1/2 j/2), (1/2 j/2)] and [0, (1/2 j/2)] accordingly with
width 2 j that starts at k2 j . The scale level is represented by j
and the shift by k. � j,k(x) are scaled and shifted versions of
the continuous mother wavelet �(x). In the discrete domain,
for a signal of length N = 2n , one considers the N functions
�n,0,�n,0 . . . �1,2n−1−1. In this paper, we consider the Haar
wavelet transform as the first order of the Daubechies wavelet
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Fig. 8. Different first-level DWT fusions with symmetric FCNNs. There are three fusion variants. (Left) Before pooling layer. (Middle) After convolution
layer. (Right) After pooling layer.

family [41] with n = 2 and use the basis vectors

�2,0 = 1

2
(1, 1, 1, 1)T

�2,1 = 1

2
(1, 1,−1,−1)T

�1,0 = 1

2
(1,−1, 0, 0)T

�1,1 = 1

2
(0, 0, 1,−1)T (8)

that yield the coefficients

c j,k := f T � j,k

d j,k := f T � j,k (9)

in which c j,k are coefficients of the scaling vector � j,k , and
for coarse decomposition, these are low-pass filter coefficients.
Similarly, d j,k are the coefficients of the wavelet vector � j,k

for detailed decompositions, which are high-pass filter coeffi-
cients. In 2-D DWT, it starts first with calculating the wavelet
decomposition on a single level in the x-direction than in the
y-direction. Afterward, the next decomposition is performed
only in the quadrant part that contains the low-frequency parts
(scaling coefficients) for both directions. The decomposition
levels proceed until a single pixel is reached.

In order to compress the images as wavelet transform
injections, the orthonormal Daubechies wavelet family [41] is
selected for their proven success in decomposing images and
identifying borders. The Daubechies wavelet family is written
as dbN, where N is the order and db is the abbreviation
for the Daubechies wavelet family. The db1 wavelet is the
same as the Haar wavelet and the first order of Daubechies
family with lower computation cost and fewer wavelet filter
bank coefficients. The continuous wavelet transform has been
presented in (4).

As shown in Fig. 5, DWT decompositions are injected
as shown by the paths in pink. Given that the input data
are H (Height) and W (Weight) pixels after having changed
to gray-scale image shown in Fig. 7, using four levels of
the wavelet transform on the input image results in the
outputs with H/2 × W/2, H/4 × W/4, H/8 × W/8, and
H/16 × W/16 sizes. The input image is first converted to
gray scale before DWT computation. In contrast to usual

cases in which more data result in a better performance,
our preliminary results show that using an RGB input image
results in 1.78% intersection over union (IoU) performance
decrease. To further investigate this issue, we considered other
color spaces including hue, saturation, and value and observed
the same effect which we conjecture it could be due to
insertion of redundant input data. It is worth mentioning that
the parameters of DWT is fixed and are not updated during
the training phase. The first-level DWT has an input size of
H × W and four outputs (approximate, horizontal, vertical,
and diagonal) with half size capturing different details in the
image such as shown in Fig. 6.

The fusion of the first-level wavelet transform has to be
done after the first pooling. The reason is that the input size
of the image is H ×W , while the size of the first-level wavelet
decomposition is H/2×W/2. Hence, due to incompatible size
resolution, the first fusion layer is carried out after the first
pooling operation.

Inserting the first-level DWT decompositions with a half
size of the input image as an input to the network results in
losing spatial and spectral information of the original input.
Therefore, this scenario is not efficient.

There are different ways of wavelet transform fusion with
the FCNN network, as shown in Fig. 8. As mentioned,
the wavelet decompositions have to be placed after the pooling
layer. We have considered all three illustrated cases to combine
the first wavelet decomposition level to the network. The
same goes for other DWT levels. A typical cross-entropy loss
function in semantic segmentation treats pixels belonging to
different classes equally. For a binary classification problem,
this can be represented as

L(W) = − 1

N

N∑
n=1

yn log ŷ(xn, W)

+ (1 − yn)(1 − log ŷ(xn, W)) (10)

where xn ∈ [0, 255] is the input pixel value, yn ∈ {0, 1} is the
ground-truth label, ŷn ∈ [0, 1] is the prediction probability,
W is the weight matrix of the network, and L denotes the
loss function.

In order to classify each pixel, the softmax function is
widely used in multiclass classification tasks in FCNNs.
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Fig. 9. Aerial LaneNet architecture break down.

The vector of real values between [0, 1] generated by this
function denotes a categorical probability distribution.

The softmax function can be expressed as ŷ j =
softmax(X, W j ) = ((eX T W j )/(

∑K
k=1 eX T W j )), in which W j

and X denote the weights of the network (including bias
values) and the input data, respectively. The well-known loss
layer using the softmax function for multiclass classification
is cross-entropy loss.

However, for lane-marking segmentation, the majority of
pixels belong to the nonlane-marking class. This makes the
problem highly unbalanced. Therefore, we modify the typical
cross-entropy loss function by imposing a higher cost on the
wrong classification of a lane-marking pixel compared with a
background pixel. The defined loss function is

L(W) = − 1

N

(
λlane

N∑
n=1

yn log ŷ(xn, W) +
N∑

n=1

(1 − yn)

× log (1 − ŷ(xn, W))

)
(11)

which is cost-sensitive, as it penalizes different class pixels
differently. This is done by introducing parameter λlane in
the cross-entropy loss function. This weighted loss function
can be easily extended to a multiclass segmentation scenario
by inserting a function 1cls(xn) which is equal to one if xn

belongs to class cls and zero if it does not. To leverage
the capacity of CNNs to perform semantic segmentation,
the networks can be modified by replacing fully connected
layers with convolution layers that allow CNNs to be applied
to images with variable sizes.

This approach will not lead to semantic segmentation
with the same resolution as the input image. There-
fore, extra upsampling layers (bilinear interpolation) are
applied in the baseline network. Bilinear interpolation is
differentiable, which makes applying backpropagation during
training feasible.

In order to grasp varied visual input information yet keeping
input feature map dimensions, the upsampling layer is applied

after the last convolution layer to upsample the extracted
features to the input dimension size. This can be considered
as the encoding of the input data to the first upsampling layer
and decoding by upsampling layers, as shown in Fig. 5.

By modification of FCNNs to be more robust to overfitting,
we design a symmetric FCNN network. In this methodology,
we add convolution and dropout layers after upsampling layers
in the baseline network of FCN32s. We do the same for
FCN16s and FCN8s network architectures. We also add one
additional upsampling layer, which can be seen as a new
FCN4s network.

Instead of using average pooling layers, we use max-pooling
layers. In FCN4s, we also apply the fusion technique used
in the baseline paper, which is a summation of the corre-
sponding pooling layers with the output of the upsampling
layers. The motivation to add more convolution layers comes
from [13], [14], and [42] where it has been shown that depth
has a key role in high-level feature extraction.

Aerial LaneNet is not limited to a fixed input size, i.e.,
there is no need to resize input images. The only preprocessing
step is the subtraction of image mean. Due to the heavily
unbalanced data sets for lane marking and the scarcity of such
data sets, more dropout layers have been added to the network
to prevent overfitting. The deep neural networks are prone to
overfitting according to the noise present in the training set
samples if that is small.

The inserted layers have been denoted in red in Table I.
In Fig. 9, the Aerial LaneNet network architecture is reported
in detail. In order to investigate the architecture of the network
and its properties such as input and output size, feature
map dimension, receptive field, and so on, Table I has been
prepared.

III. EXPERIMENTS

In this section, we introduce the data set used in the
experiments. Then, we explain the experiments and provide the
quantitative and qualitative results along with corresponding
discussions.
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TABLE I

SYMMETRIC FCNN INPUT AND OUTPUT SIZES FOR EACH LAYER AS WELL AS FILTER MAPS AND RECEPTIVE FIELDS.
ADDED LAYERS IN SYMMETRIC FCNN TO FCN8S HAVE BEEN SPECIFIED WITH RED COLORS

A. AerialLanes18 Data Set

The experiments were conducted using images acquired by
the German Aerospace Center (DLR) within a flight campaign
in the framework of the VABENE++ project. The campaign
was carried out over the greater area of the city of Munich on
April 26, 2012.

The 3K camera system [43] consisting of three Canon Eos
1Ds Mark III cameras was used for recording the raw data,
where two cameras are mounted side looking and one is
mounted nadir looking on a flexible platform.

The 3K system is a low-cost camera system used for various
remote sensing applications, such as real-time mapping [44],
disaster monitoring [45], traffic monitoring [46], and detection
of high-density crowds [47].

In total, 20 representative RGB images of size
5616 × 3744 pixels have been chosen. The flight height of
about 1000 m above ground led to a GSD of approximately
13 cm.

The images depict urban and partly rural areas with high-
ways and first-/second-order roads. Complex traffic situations,
such as crossings and congestions, are included. The images
served as a starting point for works in the domain of vehicle
detection by Liu and Mattyus [46].

B. Annotation of AerialLanes18

The ground truth has been annotated by human experts who
marked all kinds of lane markings over roads and highways,

such as separate line, continuous line, turn sign, speed limit
sign, and even bus and disabled people parking place signs.
The annotation was carried out manually by using an in-house
annotation software. During annotation, we ignored washed
out lane markings. Fig. 10 shows some patches of the
mentioned data set. Fig. 11 show the large training images
with the overlaid lane-marking annotations.

C. Implementation Details

As the data set does not consist of many images, most likely
training a deep neural network on such a small data set from
scratch with randomly initialized parameters will lead to over-
fitting. On the other hand, as annotating small lane-marking
objects is difficult and time-consuming, only images of the
mentioned data set have been annotated. To address this
problem, networks that have already been trained using large
data sets, such as ImageNet [48], are used as initialization of
parameters in order to transfer the learned information to a new
task. This technique is known as “Transfer Learning.” Using
this technique, we can initialize the weights more efficiently.

Therefore, it can be assumed that the network is already
close to one of the optimal solutions and needs far less
training data to converge, and by retraining the network known
as “fine-tuning” technique, the problem of overfitting can
decrease significantly. In our experiments with wavelet trans-
form fusion, we use FCN32s [20] as the baseline. VGG16 pro-
posed by Simonyan and Zisserman [13] is the backbone
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Fig. 10. Sample training patches from the AerialLanes18 data set taken by aerial imagery over Munich, Germany. The original image patch is shown with
its corresponding annotation. GSD is 13 cm.

Fig. 11. Sample large training image from the AerialLanes18 data set. The original image patch is shown with its corresponding annotation.

main network. However, AlexNet [42], GoogleNet [49], and
ResNet-101 [14] are also considered.

We use the patches of 1024 × 1024 pixels as an input
to the network. We employ the 800 pixels cropping step in
the horizontal and vertical directions in the training phase
and 1000 pixels in the test phase. For the training step,
random flipping patches are applied for data augmentation. We
consider one random image as a validation set that consists
of 24 patches. In the test set, the number of test patches is
240. Networks are trained on the training set to find the best
hyperparameters, and then, both the training and the validation
set are used for the final training.

It should be mentioned that in the following experiments,
no extra information such as road segmentation or third-party
data such as OpenStreetMap [50] has been used.

Aerial LaneNet is trained end-to-end. The optimization
problem of finding the minimum value in the loss function

is solved by Adam optimizer [51] and backpropagation [52]
process. The learning rate of 0.0001 with a batch size of 1 is
used. We have trained the final network for about 10 epochs
on one Nvidia Titan X Pascal GPU using the Tensorflow [53]
framework.

IV. RESULTS AND EVALUATION

In our experiments, we compare the final output of the sys-
tem for each image (not patch) with the corresponding ground
truth. Therefore, in lane-marking segmentation, the goal is
to classify each pixel as lane-marking class (foreground) or
nonlane marking (background). The more pixels are classified
correctly, the more accurate the system is. Concerning the
evaluation criteria, we use the metrics used by Long et al. [20],
which are widely used in semantic segmentation tasks. In these
metrics, ni j is the pixel number belonging to class i , which
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TABLE II

EVALUATION OF LANE-MARKING SEGMENTATION USING DIFFERENT BACKBONE NETWORKS FOR SEGMENTATION WITH ONE UPSAMPLING LAYER.
WITH VGG16 NETWORK, THIS IS EQUIVALENT WITH FCN32S. IN FINE-TUNING, THE PARAMETERS ARE INITIALIZED BY THE IMAGENET

PRETRAINED MODEL RATHER THAN RANDOM INITIALIZATION. IN THIS CASE, ALL OF THE LAYERS ARE RETRAINED.
MEAN IOU NUMBERS IN [%]. HIGHER VALUE IS BETTER. MAX STRIDE IS 32 PIXELS

has been predicted as class j , and ncl stands for the number
of classes with ti = ∑

j ni j representing the total number of
pixels belonging to class i . IoU means intersection over union,
i.e., it is proportional to the intersection between predictions
and ground truth.

We also use the dice similarity coefficient due to the heavy
unbalance in the data set. The number of pixels belonging to
each class does not have an effect on these two criteria. P and
T represent the prediction and ground truth, respectively. The
criteria are derived as follows.

1) Pixel Accuracy: ∑
i ni,i∑
i ti

. (12)

2) Mean Accuracy:
1

ncl

∑
i

ni,i

ti
. (13)

3) Mean IoU:
1

ncl

∑
i

ni,i

ti +∑ j n j,i − ni,i
. (14)

4) Frequency Weighted IoU:(∑
k

tk

)−1∑
i

ti ni,i

ti +∑ j n j,i − ni,i
. (15)

5) Dice Similarity Coefficient:
2 | P ∩ T |
| P | + | T | (16)

and recall and precision are calculated using the criteria

Recall := True Positives

True Positives + False Negatives

Precision := True Positives

True Positives + False Positives
. (17)

The baseline network of FCN32s with AlexNet as a back-
bone network is trained from scratch, and due to the small and
highly unbalanced data set, it classifies lane-marking pixels
as background in most areas, with only 51.0% mean IoU
accuracy.

Employing weighted loss has increased the performance
by almost 2% by penalizing the wrong classification of
lane-marking pixels more than the wrong classification of

background pixels, alleviating to some extend the challenge
posed by an unbalanced data set.

Before applying the customized loss function, fine-tuning
using a pretrained model trained on ImageNet [48] and data
augmentation are applied due to the small training data set
available.

1) Different Base Network Investigation: Results in Table II
show the performance of Aerial LaneNet in lane-marking seg-
mentation with different network architectures. VGG16 out-
performs AlexNet as the shallower network and slightly
GoogleNet. The high pixel accuracy of this system should be
investigated, as most of pixels belong to the background class
rather than lane markings. This phenomenon has two main
reasons: first the network is overfitting to the background class
due to the small-size data set and second due to the heavily
unbalanced data set. As expected, due to the highly unbalanced
data set, pixel accuracy and frequency weighted IoU are larger
than 99%. These parameters, as mentioned earlier, are not
suitable to evaluate the performance of a network using a
highly unbalanced task. That is why mean IoU and Dice are
more reliable criteria to evaluate an algorithm in such cases.

2) Effect of λ: The value of λlane, which is a hyperparame-
ter, should be tuned. There is no automatic approach to find
the best value for this parameter. One approach is considering
the default value of λlane = 389 as the ratio of background
to lane-marking pixels in the training set. Another method is
the grid search that can be applied to refine the default value.
We considered the pixel ratio in the test set as well as other
setups ranging from 1 to 1000. With this approach, we noticed
that the pixel ratio is not the best value to get the best results
(Fig. 12). Considering Table III, the best value is achieved
with 400 that is higher than the default one and lower than
418 as the ratio in the trainval set. Performance degrades using
308 as the ratio in the test set. This shows that the network
has learned this hyperparameter based on the training set. In
this case, more research can be devoted to find the best value
of λlane automatically.

3) Importance of Symmetric FCNN: As mentioned in
Section II, in order to extract higher level features as well
as making the network robust to noise in the training set,
a symmetric FCNN is designed. The improvement introduced
by this algorithm shown in Table IV is almost 3% in terms of
mean IoU. Adding more convolution, dropout, and upsampling
layers seem to have almost the same impact of around 1%
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TABLE III

NUMERICAL RESULTS OF FCN32S-ALEXNET USING DIFFERENT VALUES OF λLANE DURING TRAINING. THE BASE NETWORK IS VGG16

Fig. 12. Performance of FCN32s network with AlexNet as a backbone
network on different λlane values during training. The ratio between lane
marking and background pixels in train, trainval, and test sets are 389, 418,
and 308, respectively.

TABLE IV

IMPACT OF ADDED CONVOLUTIONS, DROPOUT, AND UPSAMPLING

LAYERS TO SHAPE SYMMETRIC FCNN ON THE AERIALLANES18
DATA SET. THE BASE NETWORK IS VGG16

point on the mean IoU. This indicates that even though
deeper network could basically improve the performance,
the major problem is not their depth. An observation of
symmetric FCNN networks shows that even if the network
is deep, the algorithm has some difficulty to segment small
lane markings. Due to the nature of low-frequency spectral
analysis of FCNN, lane markings are smoothed and removed
after convolution and average pooling operations. To address
this problem, wavelet transform of the input image is inserted
into the network.

4) The Effect of DWT: A multiresolution analysis using
different levels of wavelet transform augments the perfor-
mance by considering lane-marking objects at different scales.
Table V indicates that a combination of the first four DWT
decomposition levels results in the best performance, con-

Fig. 13. Evaluation of the Aerial LaneNet network with total recall and
precision values for each test image.

firming our motivation for multiresolution analysis. In our
experiments, we noticed that the addition of a fifth level
worsens the results, which could be due to small-size lane
markings, since most of their details have already been
discarded.

In order to further improve the performance, we replaced
the VGG16 base network with the ResNet-101 [14] network,
which has a better performance on the ImageNet data set in
comparison with VGG16. We inserted DWT levels after the
first pooling layer in stage 1 and after the first convolution
layer with a stride of 2 in each stage from stage 2 to stage 4.
We did not insert DWT’s fifth level to stage 5 due to our
observation in the DWT’s fifth-level insertion after the last
pooling layer in VGG16 (see Table V).

As wavelet transform decomposition is made of horizontal,
vertical, diagonal details, as well as an approximation compo-
nent, the investigation is carried out to investigate the effect
of each component.

5) Effect of DWT Components: According to Table VI,
horizontal and vertical components have considerably more
impact than the other two. Although the diagonal component
also increases mean IoU by almost 2% points, it has less effect
than the rather horizontal and vertical components of almost
5%. This indicates that the majority of lane markings are
present in the horizontal and the vertical DWT components.
The approximation part, however, worsens the performance.
This could be due to the fact that this part does not carry sparse
information about lane marking as other parts. Experiments
with orders of Daubeschies wavelet transforms higher than 1
have resulted in a lower performance of 1.45 mean IoU for
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TABLE V

EVALUATION OF AERIAL LANENET FOR FUSION OF EACH LEVEL OF DWT TO SYMMETRIC FCNN WITH COST-SENSITIVE LOSS FUNCTION.
IN ADDITION, THE COMPARISON BETWEEN FCN-8S [20] WITH AND WITHOUT FIRST-LEVEL DWT IS PROVIDED

TABLE VI

EVALUATION OF IMPACT OF DIFFERENT DWT DECOMPOSITIONS IN THE FIRST LEVEL ON LANE-MARKING SEGMENTATION, INCLUDING HORIZONTAL,
HORIZONTAL AND VERTICAL, HORIZONTAL, VERTICAL, AND DIAGONAL DETAILS AS WELL AS ALL OF DECOMPOSITIONS

CONSISTING OF APPROXIMATION PART. THE BASE NETWORK IS VGG16

TABLE VII

EVALUATION OF FUSION OF DWT WITH SYMMETRIC FCNN IN

DIFFERENT LOCATIONS. THE BASE NETWORK IS VGG16.
THE FUSION IS CONCATENATION IN ALL CASES

TABLE VIII

CONFUSION MATRIX OF AERIAL LANENET WITH THE BEST

PERFORMANCE USING THE VGG16 BASE NETWORK. MATRIX SHOWS

THE NUMBER OF SAMPLES FOR EACH CLASS PREDICTED BY THE

SYSTEM. DUE TO THE UNBALANCED MULTICLASS PROBLEM,
PERCENTAGE NUMBERS FOR EACH CLASS SHOW THE

NORMALIZED RECALL RATES. CONFUSION MATRIX

SHOWS THE NUMBER OF CORRECT AND WRONG
CLASSIFIED PIXELS ALONG WITH

NORMALIZED VALUES

TABLE IX

AERIAL LANENET COMPARISON WITH THE STATE-OF-THE-ART
ALGORITHMS. ALL NUMBERS ARE IN [%]

db2, which could be due to less appearance of the lane marking
in higher Daubeschies orders.

Fig. 14. Evaluation of the Aerial LaneNet network on each test image with
mean IoU, dice, and recall and precision values for each class.

6) Varied Possible Fusions: As shown in Fig. 8, Table VII
reports the result of different DWT fusions with symmetric
FCNN. We have considered three different fusion locations.
The fusion can be either after the pooling layers or convolution
layer or before the pooling layers. Before the first pooling
layer, due to dimension incompatibility, the fusion is not
possible. Results in Table VII show that placing the fusion
right after the pooling layers results in the best performance.
The reason for this phenomenon could be the extraction
of high-level features by the subsequent convolution layers.
On the contrary, the fusion of DWT decomposition before
pooling layers leads to a decrease in mean IoU. This could
be due to the reason that DWT representation is pooled
by the next pooling layer that smooths the representation.
However, this degradation is not significant, as lane-marking
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Fig. 15. Examples of results using the Aerial LaneNet approach with the best performance. (Left column) Input images. (Middle column) Ground truth.
(Right column) Images are predictions.

Fig. 16. Qualitative comparison of Aerial LaneNet with ground truth and the state-of-the-art algorithms DeepLabv3 and DeepLabv3+. (a) Input patch.
(b) Ground truth. (c) DeepLabv3. (d) DeepLabv3+. (e) Aerial LaneNet.

pixels have higher values compared with neighboring pixels,
and in max-pooling operation, the maximum value is
chosen.

7) Confusion Matrix Investigation: In order to evaluate true
and false positives/negatives in our method as well as precision
and recall, we have considered the confusion matrix of the
configuration for the best performance. Table VIII indicates

that in spite of a heavily unbalanced data set, the system
is able to achieve a lane-marking pixel (pixelwise) accuracy
of 71.55%.

In spite of different illumination conditions introduced by
shadows, different shapes, and sizes, the network is able to
classify background pixels with 0.1% false positive compared
with 99.8% true negative pixels. This indicates how robust the
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Fig. 17. Test image with overlaid prediction and ground truth. Ground truth that has not been predicted has been illustrated with dark blue and prediction
is depicted with pink.

system is in the presence of the very complex background and
objects similar to lane marking. However, the false negatives
are still high.

The majority of false negative cases come from straight
and dot-shaped lane markings. In the straight lane markings,
the output width of the system is almost in all of cases
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Fig. 18. New test patch images taken in different days, GSD, and camera angles in comparison with the AerialLanes18 data set. Each patch has been shown
with the corresponding lane-marking segmentation.

narrower than ground truth. This indicates that this architecture
is not able to segment boundaries accurately. Although a
morphological operation could increase the performance in

this case dramatically, it is not interesting from a research
point of view and we do encourage other researchers not to
use it in next studies on this data set for benchmarking.
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Fig. 19. New test patch images taken in different days, GSD, and camera angles in comparison with the AerialLanes18 data set. Lane-Marking prediction
has been overlaid on patches in order to illustrate the localization accuracy of the Aerial LaneNet network.

As mentioned, dot-shaped objects yield a considerable num-
ber of false negatives. These objects are as small as 5×5 pixels,
which makes them difficult to segment. However, as we do not
have access to the information of which pixel belongs to which
class in the current annotation, we cannot report a number in
this case.

Another and important source of false negative is shadows.
As shadows occur rarely, the network has not been able to
learn shadows to segment lane markings accordingly. Regard-
ing rare objects, such as “BUS” signs, speed limits, disabled
parking places, turn signs, and so on, the same phenomenon
is happening. These classes do not occur often, and as in
deep convolutional neural networks, a big number of training
samples are needed to train the network; the performance in
these cases is not high.

8) Comparison With the State of the Art: We also compared
Aerial LaneNet with FCN-8s, DeepLab [21], UNet [23], and
the state-of-the-art method DeepLabv3 [34]1, and its newer
version DeepLabv3+ [35]1 in Table IX. Interestingly, there is
a big gap between DeepLabv3+ and DeepLabv3. The reason
is that DeepLabv3 uses monotonically increasing atrous rates,
in which in spite of being effective to obtain large recep-
tive field to segment large-size objects, it severely damages
information from small objects, such as lane markings. In
contrast, DeepLabv3+ uses a multiscale encoder containing
atrous convolutions to obtain a multiscale contextual informa-
tion, and in the decoder part, a simple yet effective module
refines the segmentation outputs to improve the boundary
segmentation. The qualitative comparison has been provided
in Fig. 16. The multiscale processing helps the DeepLabv3+
to achieve significantly better results than its previous version.
This is mostly due to the decoder part that improves the
boundary region segmentation. However, it does not have a
satisfactory performance on tiny lanemarkings despite its very
good performance in the terrestrial images. The results shows

1https://github.com/tensorflow/models/tree/master/research/deeplab

that recovering high-frequency information of image pixels
by inserting DWT into different levels of CNNs leads to a
considerably better performance of 4% mIOU in comparison
with the DeepLabv3+ algorithm. Aerial LaneNet outperforms
all of these networks in Table IX, showing the high accuracy
of our method.

9) Qualitative Analysis: In Fig. 13, recall and precision
values for each test image are reported. These values are
consistent and there is not a big difference between recall
and precision. In Fig. 14, mean IoU and dice for each test
image as well as recall and precision for each class have been
reported. As for total recall and precision values, these criteria
are consistent among test images. Recall and precision values
for each class have also been computed.

One can notice that precision and recall for background
class is very high, which is due to the unbalanced task: there
is a big gap between recall and precision for the lane-marking
class and for the background class. In order to evaluate
the results qualitatively, Fig. 15 illustrates the lane-marking
segmentations of different patches of size 1024 × 1024 pixels
compared with the ground truth. The left images are input test
patches. The middle patches are the ground truth. The patches
on the right are the corresponding predictions. Fig. 15 shows
a very good performance in the segmentation of both straight
and dashed lines in highways. It is very interesting that in
some cases, the network has localized correct lane marking,
which is not even annotated in the ground truth. However,
there are also some failure cases. In the same figures, one
can note that shadows, narrower straight lines, very small
lane markings, and similar objects in the background are
the main reasons for false negative and positive outputs.
Fig. 15(a) shows that the shadow caused by a truck has caused
degradation in lane-marking segmentation. Objects with a
similar appearance still are a challenge, e.g., the roof structures
at the bottom-left part of the image in Fig. 15(b), which
look similar to lane markings, have been classified as lane
marking. Also, in the same image, when it comes to smaller
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lane-marking objects, the network is not performing as good.
In spite of these failure cases, the overall performance proves
the concept of effective semantic segmentation of lane marking
using enhanced FCNNs with DWT information. In Fig. 17,
predictions have been overlaid on the original test images
after stitching prediction patches together. In these images,
predicted lane-marking pixels and undetected ones are reported
in red and blue, respectively. In shadow areas, the network has
difficulties to segment lane markings.

10) Cross-Domain Generalization: In order to evaluate the
robustness of our algorithm to variations: GSD, camera angle
view, and illumination conditions, we have considered multiple
flights on different days, altitudes, and angles with the DLR
3K camera. Results are reported in Fig. 18.

We have overlaid predictions on the test patches of a
new data set in Fig. 19. The performance shows a good
generalization capability of the network, which appears robust
to most of the challenges mentioned earlier such as small size,
different camera angles, and presence of objects similar to lane
marking such as lanes in soccer fields.

V. CONCLUSION

In this paper, we have introduced a reliable and fast algo-
rithm to segment very small objects, such as lane markings
in aerial imagery with high accuracy and robustness. We
presented the Aerial LaneNet network based on the idea of
enhancing FCNNs with wavelet transformation coefficients for
pixelwise semantic segmentation, which enables a full-spectral
and multiscale analysis resulting in the considerable improve-
ment compared with our FCNN based-line network. We have
shown that although using subsampling layers or atrous convo-
lutions to obtain large receptive fields yields a very good per-
formance in terrestrial images, they cause a vital data lost for
pixelwise semantic segmentation of tiny objects, which leads
to a considerable performance degradation. Therefore, the lost
information should be either injected into the network or be
kept by removing subsampling layers to recover the lost data.
In this paper, we selected the first strategy showing impressive
performance improvement in comparison with the state-of-the-
art methods. We conclude that for tiny object segmentation,
both high- and low-frequency information of pixels should be
analyzed, while CNNs perform mostly low-frequency analysis
due to using pooling and convolution layers. The limitations
of Aerial LaneNet are in shadow areas, semantic signs on
the roads, as well as washed out lane markings. We also
introduced the AerialLanes18 data set the first high-quality
aerial lane marking data set as a benchmark in this domain.
Using different levels of wavelet decomposition leads to a
multiresolution data analysis which is important in extracting
lane markings, as objects appear at different scales. In the
future, we will investigate improving the performance by
processing shadow areas differently.
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