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Road Detection in City Scale
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aSchool of Civil, Structural and Environmental Engineering, University College Dublin,

Ireland

Abstract

This paper presents a workflow including a novel algorithm for road detection
from dense LiDAR fused with high-resolution aerial imagery data. Using
a supervised machine learning approach point clouds are firstly classified
into one of three groups: building, ground, or unassigned. Ground points
are further processed by a novel algorithm to extract a road network. The
algorithm exploits the high variance of slope and height of the point data
in the direction orthogonal to the road boundaries. Applying the proposed
approach on a 40 million point dataset successfully extracted a complex road
network with an F-measure of 76.9%.

Keywords: aerial laser scanning, aerial imagery, data fusion, road
detection, machine learning, hybrid indexing

1. Introduction

Automatic road detection from remote sensing data is useful for many
real world problems such as autonomous navigation. Traditionally road de-
tection has relied heavily on satellite or aerial image interpretation. More re-
cently aerial laser scanning (ALS) has emerged as an alternative to the more
mature photogrammetry technology. Laser scanning, also known as Light
Detection And Ranging (LiDAR), is capable of accurately documenting real
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world geometries in three dimensions, whereas the input for photogramme-
try is two-dimensional data. Imagery data can be fused with LiDAR point
clouds to generate integrated datasets (e.g. (Dalponte et al., 2008)). In this
paper, road detection from ALS point clouds fused with orthophotos is ad-
dressed with a novel approach that involves an innovative data management
strategy essential to the workflow for high-resolution data.

2. Related Works

Various methods have been used for road extraction from laser scanning
data. They can be categorized as either (1) filtering, (2) clustering/segmentation,
or (3) machine learning. Most methods exploit laser reflectance, height, and
its derivatives (e.g. height variance) as the most important means for dis-
tinguishing road versus other data. Furthermore, while not always used, the
added benefit of combining LiDAR with aerial photogrammetry data has
long been recognized (e.g. (Hu et al., 2004)).

Prominent amongst the filter-based techniques for road extraction are
those by Alharthy and Bethel (2003), Clode et al. (2004), and Clode et al.
(2007). Alharthy and Bethel (2003) filtered point data sequentially use
a point’s distance to a Digital Terrain Model (DTM) and laser reflectance
strength before a connected component labelling is performed to group ad-
jacent, filtered points. Similarly, Clode et al. (2004) utilized a hierarchical
rule-based classification. In addition to the two features used in (Alharthy
and Bethel, 2003), a minimum limit of point density and morphological fil-
tering were employed. That research was later extended by Clode et al.
(2007) with a vectorization process performed on the extracted road points.

As part of the segmenting/clustering category, Choi et al. (2007) grouped
adjacent points incrementally based on the difference in the height and laser
reflectance between the points and their neighbours. Additionally road slope
was considered for detecting erroneous clusters. Another application of seg-
mentation for road detection was presented by Hu et al. (2004) where the
ALS and aerial imagery data were segmented separately. Optical imagery
was more successful distinguishing roads from trees and grasslands, while low
vegetated areas were distinguishable by their high laser reflectance. Build-
ings were recognized by their relative height. Post-segmentation, parking
lots remained attached to road areas and required a Hough transformation
to detect the straight road strips. Notably, this approach is applicable only
for grid-shaped road networks.
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Samadzadegan et al. (2009) published one of the few examples of a ma-
chine learning based road detection approach resulting in a correctness of
87.37% by fusing multiple classifiers. From height and intensity informa-
tion acquired by laser scanning, the authors generated several combinations
of classifiers. The best performing combination was selected via a genetic
algorithm.

In comparison to other fields such as building detection and tree species
classification from laser scanning data, automatic road extraction is a less
active research topic. The problem is still far from completely solved. This
paper contributes to the field by introducing a point cloud processing work-
flow and a new algorithm for extracting points on road boundaries from ALS
fused with aerial imagery data.

3. Proposed Method

3.1. Data processing workflow

Figure 1: General workflow
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The proposed road extraction workflow is depicted in Figure 1. ALS point
clouds and orthophotos are fused together to form coloured point clouds,
which are then loaded into an Oracle database and indexed by a hybrid
quadtree-kdtree indexing. Next, additional features such as normal vector,
local surface roughness, and HSL (Hue Saturation Lightness) colour are
computed. A supervised classification continues the workflow. The process
classifies points as (1) ground, (2) building, or (3) unassigned. Road curbs
and other obstacles bounding road regions are detected before a quadtree
based region growing algorithm is applied, which connects an initial seed
point to other ground points, if an obstacle-free path exists that connects
the seed to the new points.

3.2. Data and data management

Figure 2: ALS, aerial imagery data and the fusion result

For the purpose of this paper, 0.5 km2 in the port of Zeebrugge, Bel-
gium was selected as represented by ALS data with a nominal density of 65
points/m2 (Figure 1a&c) and associated colour orthophotos with a 5 cm res-
olution [originally presented in 3 bands red-green-blue (RGB)] (Figure 2b).
The imagery and ALS data were acquired simultaneously so that they match
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when fused together (Figure 2d), except for some fast moving objects such
as cars on highways. As per the normal practice, the ALS and orthophotos
were provided as separate tiles, (each 500 m × 500 m). The ALS data were
in an ASCII format containing only laser intensity and point coordinates.
Other point attributes such as the time stamp and return number (usually
associated with ALS data) were not available. The orthophotos were given
in geo-referenced tiff format.

Figure 3: Hybrid 2D quadtree - 3D kd-tree indexing

The large nature of the data precludes storing the entire point cloud
within the main memory for most conventional computers. So an out-of-core
data management solution coordinating data input and output between main
memory and disk is required. Handling spatial objects is necessary since data
retrieval based on spatial conditions (e.g. range search and neighbour search)
is typical, frequent, and computationally demanding. In this study, all steps
(except the file-based data fusion) were conducted within a database environ-
ment. A hybrid quadtreekdtree indexing (Figure 3) was implemented atop a
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flat table storing LiDAR points to enable fast all-nearest-neighbour (ANN)
computation on the points. At the top level, point data were partitioned
into multiple 125 m × 125 m tiles using a Hilbert code implementation. Tile
size was selected based on the amount of memory dedicated for the index
(e.g. approximately 120 megabytes/tile). Under each tile, a 3D kd-tree was
built. The kd-tree includes points in a buffer around the tile, plus the points
within this tile itself to avoid discontinuity around the tile boundaries. The
kd-trees were made reusable by being serialized and stored as binary large
objects in an indexing table. Each was retrieved and de-serialized back to
the main memory, once a search within its extent was invoked. This hybrid
indexing well adapts to the spatial distribution of ALS data [i.e. dominantly
horizontal (2D) at the global level and fully 3D at the local level]. Within
a tile, ANN queries are fast because its associated 3D index resides in the
main memory. This implementation is not yet generic, nor optimal, but did
sufficiently support all spatial queries performed in this study.

4. Point Cloud Classification

To reduce computational efforts, a less expensive point classification is
performed on the entire cloud before a more demanding road extraction pro-
cess is applied only to the ground points. A supervised approach is employed
to classify the point cloud into one of three groups: building, ground or unas-
signed. The classification process involves three main steps: (1) compute
point features, (2) select optimal feature vector, and (3) classify the entire
data with the best performing classifier. The Weka toolkit was utilized to
create classification models in this study (Hall et al., 2009).

After being fused with orthophotos, the point cloud possesses two raw
(i.e. from sensor) attributes: intensity and RGB colour values. Addition-
ally, there are several secondary features possibly derived from the point
coordinates and the two initial attributes that can be beneficial for point
classification. In this study, the following features were investigated: (1)
height: z value of the point, (2) imagery intensity described in two colour
spaces, (3) laser intensity, (4) height variation maximum variation of z values
within a spherical neighbourhood N of the given point (5) surface roughness
indirectly represented by the quadratic mean of orthogonal distances of all
points in N to a plane P fitting to all points in N , and (6) normal vector
of P , represented as (nx, ny, nz) in a Cartesian co-ordinate system or (θ, φ)
in a radial coordinate system. An iterative Principle Component Analysis

6



(Deschaud and Goulette, 2010) was implemented with a weighting factor in-
versely proportional to the point-to-plane distance to improve plane fitting.

To analyse the influence of the above features, several combinations (termed
feature vectors) were investigated (FV0 to FV5 on Table 1). FV6 and FV7
compared the differences caused by the various ways of representing normal
vectors and colours. Performance of each feature vector was evaluated by a
training-and-evaluating process. Sixteen different regions selected from the
original data covering approximately 16% of the study area, were manually
labelled. Two-thirds of the labelled data were used to build a J48 deci-
sion tree classifier with a Weka machine learning toolkit (Hall et al., 2009).
Classifier accuracy was estimated against the remaining labelled data. The
classification performance of each feature vector is plotted on Figure 4 with 4
measures: F1 score for ground (blue), building (red), and unassigned points
(green) and the number of correctly classified instances (CCI) including all
three classes (purple). The F1 scores computed for each class are the har-
monic means of precision and recall while evaluated against the testing sets,
F1 = 2(precision× recall)/(precision+ recall).

Table 1: Combinations of point features for classification

H NV SR II LI HV Comments

FV0 ● ● ● Most important features
FV1 ● ● ● Exclude core features
FV2 ● ● ● ● ● ● Best combination

FV3 ● ● ● ● ● Influence of II
FV4 ● ● ● ● ● Influence of LI
FV5 ● ● ● ● ● Influence of HV
FV6 ● ❍ ● ● ● ● (nx, ny, nz) vs. (θ, φ) NV
FV7 ● ● ● ✧ ● ● RGB vs. HSL colour

● feature included for classification

❍ switch normal vector from spherical to Descartes coordinate system

✧ switch colour from HSL to RGB space

height (H), normal vector (NV), surface roughness (SR), image intensity

(II), laser intensity (LI), height variation (HV), point density (PD)

Based on Figure 4, the most important features for point classification
were height, normal vector, and local surface roughness. The CCI was 80.1%
when the three core features were used (FV0) but dropped to 72.3% when
excluded (FV1). The absence of image intensity, laser intensity and height
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variation reduced the CCI by 2.3%, 0.8% and 0.9%, respectively (FV3, 4 &
5). Representing normal vectors in a radial form (θ, φ) was better for clas-
sification than Cartesian coordinates (nx, ny, nz) (FV2 vs. FV6) due to the
trivial lengths of normal vectors, which can be discarded when the vectors
are represented in a spherical system. In Cartesian coordinates, the lengths
are blended into all three variables (nx, ny, nz), which complicates the prob-
lem without improving classification levels. The more robust HSL colour was
better than RGB (81.7% in FV7 vs. 79.7% in FV2) as previously noted by
Sithole (2008). Ground point classification rates were significantly higher
than the other two classes (blue vs. red and green columns in Figure 4),
because of feature consistency. The best performing feature vector was iden-
tified as height, normal vector (θ, φ), roughness, HSL colour, intensity and
height variation. To exploit all manually labelled data, all are used to build
a new classifier. The final classifier classified the entire dataset (Figure 5).
Points classified as ground were further processed for road extraction.

Figure 4: Performance of the feature vectors in Table 1
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Figure 5: Classification result

5. Road Extraction

Laser intensity has been used successfully for distinguishing road surfaces
from other materials (e.g. (Hu et al., 2004), (Alharthy and Bethel, 2003),
and (Clode et al., 2004)). Asphalt, appears within a very distinctive range
in the laser intensity spectrum. However, in this study the roads were made
from various materials without sufficiently distinguishable intensities (Fig-
ure 2c). Thus, a new method was needed. The proposed method has two
main steps: (1) identifying road curbs and obstacles bounding road regions
based on spatial distribution of point data, and (2) extracting road points
using a quadtree-based region growing algorithm considering intensity and
colour conditions.

5.1. Detection of road curbs and obstacles

Road curbs and obstacles were defined as objects preventing vehicle pro-
gression due to height or slope variation within a finite spatial extent (e.g.
a 1 m radius circle). Figure 6a shows an example along a road cross-section
at position A within Figure 5. Small features (e.g. curbs) are visible due to
the high data density. The method computes two features: directional slope
variation, ∇slope(pi), and directional height variation, ∇height(pi). Each
are computed for every single point pi within the ground points.
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Figure 6: Directional slope and height variation computation

Firstly neighbouring points N within a spherical neighbourhood of pi
are partitioned into two point groups NA and NB by a vertical plane P
containing pi and making an angle of β with the X axis (Figure 6). PA and
PB are defined as the best fit planes to the points in NA and NB. With
a given value of β, ∇slope(pi) is defined as the angle between PA and PB,
whereas ∇height(pi) is the height difference between the vertical projections
of pi on PA and PB. Finally, the maximum directional slope and height
variations over β, ∇maxslope(pi) and ∇maxheight(pi) are determined.

Figure 7 presents the results of ∇maxslope and ∇maxheight for a seg-
ment of ground points. Road boundaries are clearly distinguishable and
better than using the residual value (see Section 3.1) (Figure 7c) or the non-
directional height variation approaches (Figure 7d). Points having∇maxslope >
8o and ∇maxslope > 5cm were considered as obstacles and were used as in-
put to a region growing road extraction as presented in the next section.
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Thresholds were selected empirically.

Figure 7: Directional slope and height variation versus conventional height variation and
residual

5.2. Quadtree-based region growing

A region growing algorithm was combined with a rasterization for per-
formance enhancement as seen in (Vo et al., 2015) to extract road points
(Figure 8). An initial seed, namely any pixel (i.e. quadtree node) located
inside the road network, is manually specified (e.g. the plus mark in Fig-
ure 8b). Around the seed, a buffer approximating a required clearance for
one vehicle is constructed (e.g. 0.75 m radius circle). Every pixel within
the buffer, as well as all points enclosed in the pixel, is labelled as road, if
the buffer is obstacle free. The newly detected road pixels are set as new
seeds for the next iterations, if they satisfy additional intensity and colour
conditions (i.e. intensity < 550 and hue ∈ (0.18, 0.3)). Intensity and colour
of a pixel are set as the maximum intensity and the average HSL of all points
contained in the pixel. These criteria assist in distinguishing road from grass,
even though they are insufficient by themselves for direct road extraction.
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Figure 8: Road extraction result

6. Discussions and Concluding Remarks

Most of major road segments were identified, except those blocked by
speed bumps or other obstacles (e.g. location C&D in Figure 8). Even
though relaxing the slope and height variation thresholds would extend the
region growing beyond these obstructions, the potential for false detection
might increase. Most misclassification was attributable to large parking lots
(e.g. location A in Figure 8). Evaluation against a manual result showed
a precision of 66.1%, recall of 91.9% and an F1 score of 76.9%.While the
LiDAR point cloud provided the highly accurate dense 3D data, enabling
detection of fine features such as road curbs or barriers, colour from the
orthophotos increased the point cloud classification accuracy by 2.3%, equiv-
alent to adding approximately 920,000 points. Orthophoto based colour and
laser intensity also helped exclude grassy areas (e.g. B1 and B2 in Figure 8a).

While minimizing computational cost is not the aim of this study, the
processing time for each single module in the chain is presented in Figure 1
(with the total of 18.5 hours). Notably, the classification step improves per-
formance but is not compulsory, and further optimization alleviating the
costs is possible. The proposed approach is more widely applicable than
many other studies in this field, as it does not require a digital elevation
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model or a two-dimensional road map as input. The initial seeding point
could be automated, as well as thresholds for directional slope and height
variation. The results showed all locations accessible from the initial seed
point. Such map would be more useful for autonomous navigation than tra-
ditional maps.
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