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Aerial navigation in obstructed environments with embedded nonlinear

model predictive control

Elias Small, Pantelis Sopasakis, Emil Fresk, Panagiotis Patrinos and George Nikolakopoulos

Abstract— We propose a methodology for autonomous aerial
navigation and obstacle avoidance of micro aerial vehicles
(MAVs) using non-linear model predictive control (NMPC)
and we demonstrate its effectiveness with laboratory experi-
ments. The proposed methodology can accommodate obstacles
of arbitrary, potentially non-convex, geometry. The NMPC
problem is solved using PANOC: a fast numerical optimization
method which is completely matrix-free, is not sensitive to
ill conditioning, involves only simple algebraic operations and
is suitable for embedded NMPC. A C89 implementation of
PANOC solves the NMPC problem at a rate of 20Hz on board a
lab-scale MAV. The MAV performs smooth maneuvers moving
around an obstacle. For increased autonomy, we propose a
simple method to compensate for the reduction of thrust over
time, which comes from the depletion of the MAV’s battery, by
estimating the thrust constant.

I. INTRODUCTION

A. Background and motivation

The need for safe aerial navigation and increased micro

aerial vehicle (MAV) autonomy nowadays poses all the

more relevant and pressing research questions, as drones

make their appearance in numerous application domains,

such as the inspection of critical or aging infrastructure [1],

surveying of underground mines [2], visual area coverage

for search-and-rescue operations [3], precision agriculture [4]

and many others. In the majority of these applications, MAVs

have to navigate in obstructed environments, with static or

moving obstacles of arbitrary geometry in known, or partially

unknown surrounding environments.

Several methods have been proposed for navigation and

collision avoidance, such as potential field methods [5], [6]

and graph search methods [7]. Alongside these methods, non-

linear model predictive control (NMPC) is becoming popular

for the autonomous navigation of various MAVs including

fixed-wing aircrafts [8], [9] and multi-rotor vehicles [10].
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NMPC uses a nonlinear dynamical model of the system

dynamics to predict position and attitude trajectories from

its current position to a reference point, while avoiding all

obstacles on its way and minimizing a certain energy/cost

function. This way, a nonconvex optimization problem needs

to be solved at every sampling time instant in a receding

horizon fashion. Another approach to obstacle avoidance is

described in [11] where a high-level path planner generates

collision-free trajectories which are followed by an MPC

controller.

In [12], sequential quadratic programming (SQP) is used

to solve the NMPC problem for the navigation of a multi-

rotor MAV with a slung load, where the authors demon-

strated the effectiveness of NMPC, however, provided neither

evidence of the solution quality or solver performance, nor

an experimental verification. NMPC was used in [13] for

solving obstacle and collision avoidance for several MAVs

flying in formation, however again, only simulations were

done and the computation time was addressed.

Clearly, the presence of obstacle/collision avoidance con-

straints makes the MPC problems particularly hard to solve.

SQP is the method of choice in the literature [12], [13],

[14]. Its main disadvantage is the fact that it requires the

solution of a quadratic program (QP) at every iteration of

the algorithm, which requires inner iterations. SQP also

requires computing and storing of the Jacobian matrices of

the dynamics, and sometimes the Hessians when the Hessian

of the Lagrangian is used in the QPs. Furthermore, the

gradient descent method has been used to solve nonlinear

MPC problems for aerial navigation [14]. This method,

however, is sensitive to bad conditioning — indeed, problems

with long horizons tend to become ill conditioned — while

the convergence is expected to be slow.

B. Contributions

In this article we propose a control methodology for the

autonomous navigation of MAVs in obstructed environments.

We allow for the obstacles to have arbitrary nonconvex

shapes and, contrary to distance-based methods [15], we do

not require that the distance function between the MAVs and

each obstacle is available.

The NMPC optimization problem is solved with PANOC

[16], [17] — a recently proposed algorithm for noncon-

vex optimization problems, which is suitable for embedded

NMPC as it requires only simple and cheap linear operations

(mainly inner products of vectors) and exhibits fast conver-

gence. Unlike SQP, PANOC is matrix-free and only requires

the computation of Jacobian-vector products, which can be



computed very efficiently by backward (adjoint) automatic

differentiation. PANOC has been shown in [16], [17], [18]

to significantly outperform both SQP and interior-point meth-

ods. To the best of our knowledge, this is the first time that

a fast NMPC optimization problem is demonstrated on an

aerial platform, paving the way for future developments in

aerial robotics.
Our modeling approach has the strong merit of being

independent of the mass of the MAV, in contrast to existing

approaches that require the knowledge of the mass and other

parameters of the MAV [10], [11], [13]. Our approach is,

instead plug and play and easy to use and generalize as it can

be used without measuring the mass or tuning the available

thrust.
Evidence of the solution quality is provided by physical

laboratory experiments. A MAV is flown completely au-

tonomously in a laboratory equipped with a VICON motion

capture system. The proposed method uses a full position

and attitude model of the MAVs and is able to run onboard,

using 8-15% CPU of a single core on an Intel Atom Z8350.

As shown in Section V, the onboard controller is able to

successfully navigate the MAV around an obstacle running

at a sampling rate of 20Hz and a prediction horizon of 2 s.

II. MAV DYNAMICS

A. MAV kinematics

The model of a quadrotor MAV, discussed in [9], assumes

that there exists a low-level controller of roll, pitch, yaw

rate and thrust. This convention is common in MAV flight

controllers such as PixHawk, [19] and ROSFlight, [20]. The

high-level kinematics of the MAV is given by

ṗ(t) = v(t), (1a)

v̇(t) = R(θr, θp)
[

0
0
Td

]
+
[

0
0
−g

]
−

[
Ax 0 0
0 Ay 0
0 0 Az

]
v(t), (1b)

θ̇r(t) = 1/τr(Krθr,d(t)− θr(t)), (1c)

θ̇p(t) = 1/τp(Kpθp,d(t)− θp(t)), (1d)

where p(t) = (px(t), py(t), pz(t)) ∈ IR3 and v(t) ∈ IR3 are

the position and velocity of the MAV in the global frame

of reference, and θr ∈ IR and θp ∈ IR are the roll and

pitch angles, while θr,d ∈ IR and θp,d ∈ IR are the reference

angles sent to the low-level controller. Furthermore, Td ∈ IR+

is the z-axis thrust acceleration, while Ax, Ay , and Az are

the linear drag coefficients. The lower layer — the attitude

control system — is modeled by simple first-order dynamics

with time constant τr and τp and gains Kr and Kp for

the roll and pitch, respectively. Lastly, R(θr, θp) ∈ SO(3)
describes the MAV’s attitude and is defined by the classical

Euler angles in rotation matrix form as

R(θr, θp) = Ry(θp)Rx(θr),

with

Rx(θr) =

[
1 0 0
0 cos(θr) − sin(θr)
0 sin(θr) cos(θr)

]
,

Ry(θp) =

[
cos(θp) 0 sin(θp)

0 1 0
− sin(θp) 0 cos(θp)

]
.
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Fig. 1. This diagram represents the complete MAV system: pref is the
reference position sent to the NMPC controller, which calculates the desired
angles, θr,d, θr,d, and thrust, Td. The thrust estimator uses the measured
acceleration from the IMU, am, to yield an estimate of the thrust constant,

Ĉ, which is used to obtain the thrust control signal uT . x, is estimated
by the motion capture system and measured by the IMU which produces
p̂, v̂, θ̂r, θ̂p, which are sent to the NMPC module, and the linear acceleration
am which is sent to the thrust estimator.

Note that yaw is absent in this rotation matrix, as this

model operates in a yaw-compensated global frame, and the

position control of the MAV is therefore independent of its

yaw. Moreover, it is important to note that we have chosen

the acceleration, Td, to be the manipulated variable of the

system, rather than the corresponding force, for the model

to be mass-free. This has the strong merit of making the

controller robust to changes in the mass of the MAV, the

available thrust from the motors, and the loss of thrust over

time due to the decline of battery voltage.

B. Adaptive acceleration control

In order for our design to be independent of the physical

characteristics that determine the available thrust accelera-

tion, a simplified version of [21] is used to continuously

estimate the MAV’s maximum available thrust. Following

[21], the force, F , that is exercised by the propellers, is given

by

F = CTu
2
T , (2)

where CT is the thrust constant and uT ∈ [0, 1] is a

unitless normalized thrust control signal. The thrust constant

may change during flight due to, for instance, the battery

drain and the proximity of the MAV to the ground. This is

why identifying a constant is not sufficient to track thrust

references. The issue is that there is no sensor in the system,

which measures the generated force, however, the IMU can

provide a measurement of the linear acceleration, albeit

noisy. Then, by dividing the thrust model by the mass of

the MAV, m, the resulting model is based on acceleration:

a =
F

m
=
CT

m
u2T = Cu2T , (3a)

where C , CT/m is the special thrust constant of the vehicle.

Now the acceleration is measurable, together with noise, and

uT is what is sent to the low-level controllers, hence now



we merely need to design an observer to estimate C. Since

C is a slow moving parameter, we use the simple model

Ċ = σ2
Cw, (3b)

where w is a zero-mean white noise1. Equations (3a) and

(3b) define a nonlinear dynamical system with state variable

C, input uT and output y(C, uT ) = Cu2T . We estimate

C by means of an extended Kalman filter (EKF). EKF is

chosen because it is simple to tune, it allows to specify an

initial estimated variance, and converges fast in the first few

iterations.

In addition, we employ an outlier rejection scheme based

on bounds of the direct estimate C̃ ∈ [1g, 10g], which is

defined as

C̃ =
am
u2T

. (4)

This is calculated for each IMU acceleration measurement

am, which implies that each acceleration measurement is

inspected to enforce that no outliers are allowed to update

the filter. These bounds result from the fact that an MAV

must be able to generate at least 1g of thrust to take off and

it is assumed that it cannot generate more than 10g of thrust.

The bounds on C̃ are inherited by the estimates Ĉ yielding

a simple constrained estimation scheme.

Once the thrust constant is estimated, an acceleration

reference can be converted to the thrust control signal uT ,

by solving equation (3a) for uT , resulting in

uT =

√
Td

Ĉ
, (5)

A depiction of how the thrust constant estimation is tied to

the overall scheme can be found in Fig. 1.

C. Overall system dynamics

The state of the controlled system is defined to be x(t) =
(p(t), v(t), θr(t), θp(t)) and the manipulated input is u(t) =
(Td(t), θr,d(t), θp,d(t)). The system is equipped with a VI-

CON motion capture system which measures the full odom-

etry of the system and provides the corresponding estimates

of the full state of the MAV as x̂ = (p̂(t), v̂(t), θ̂r(t), θ̂p(t)).
Overall, the system dynamics can be concisely written as

ẋ(t) = f(x(t), u(t)), (6)

where f is implicitly defined via (1).

III. NONLINEAR MPC FOR OBSTACLE AVOIDANCE

A. Navigation in obstructed environments

We assume that an MAV needs to navigate towards a

reference position pref ∈ IR3, while avoiding a set of q(t) ∈
IN moving obstacles {Oj(t)}j∈IN[1,q(t)]

.

We select nmav corner points on the MAV and position a

ball with radius rball centered at each such point so that the

whole vehicle is contained in the union of these balls. We

1Equation (3b) is a stochastic differential equation which is meant in
the sense dC = σ2

CdBt, where Bt is the standard Brownian motion [22,
Sec. 5.1].

Ex

Ey

Ez

Bx

By

Bz

Θ
c1

c2
c3c4

Fig. 2. A quadrotor and an spherical obstacle O(t) (colored solid ball) and
its enlargement Θ(t). We have selected four corner points, c1, c2, c3, c4
on the MAV. The red lines indicate the earth-fixed frame of reference,
(Ex, Ey , Ez), and the blue ones the body-fixed frame, (Bx, By , Bz).

assume that the coordinates of the corner points in the global

frame of reference are given by cι(p(t)), for ι ∈ IN[1,nmav].

In order for the MAV to not collide with the obstacles, we

shall require that

cι(p(t)) /∈ Θj(t) :=Oj(t) + B(rball)

enlarged obstacle

, (7)

for all j ∈ IN[1,q(t)], ι ∈ IN[1,nmav], where B(rball) is a ball

centered at the origin with radius rball. The set Θj(t) is an

enlarged version of the original obstacle Oj(t). The concept

is illustrated in Fig. 2.

It is assumed that the selected corner points, cι(p(t)), for

all ι ∈ IN[1,nmav] are such that the set

⋃

ι∈IN[1,nmav]

cι(p(t)) + B(rball)

contains the whole MAV.

We introduce the stage cost function ℓ : IRnx × IRnu ×
IR+ → IR+ and the terminal cost function ℓf : IRnx×IR+ →
IR+ which penalize the deviation of the system state from a

reference state. Typical choices are

ℓ(x, u, t) = ‖x− xref(t)‖2Q + ‖u− uref(t)‖2R, (8a)

ℓf (x, t) = ‖x− x
ref(t)‖2Qf

, (8b)

where Q ∈ IRnx×nx , R ∈ IRnu×nu and Qf ∈ IRnx×nx are

positive semi-definite matrices and xref is the reference state

which has the form xref = [pref 01×nx−3]
⊤.

The nonlinear model predictive control problem for navi-

gation in an obstructed environment consists in solving the

following problem



minimize J = ℓf (x̄(T ), T )+

∫ T

0

ℓ(x̄(τ), ū(τ), τ)dτ

(9a)

subject to x̄(0) = x̂, (9b)

˙̄x(t) = f(x̄(t), ū(t)), (9c)

ū(t) ∈ U(t), (9d)

cι(p̄(t)) /∈ Θj(t), j ∈ IN[1,q(t)], (9e)

ι ∈ IN[1,nuav], t ∈ [0, T ]

where ū(t) = (T̄d(t), θ̄r,d(t), θ̄p,d(t)) and x̄(t) = (p̄(t), v̄(t),
θ̄r(t), θ̄p(t)), for t ∈ [0, T ] are the predicted input and state

signals.

In this formulation we have assumed that the future tra-

jectories of all obstacles are exactly known and independent

of the trajectory of the controlled vehicle. If this is not the

case, we have to formulate appropriate robust or stochastic

variants of the above obstacle avoidance problem.

The control action is exercised to the system via a zero-

order hold element, that is, ū(t) = ūk for t ∈ [kTs, (k +
1)Ts), where Ts is the sampling period. We assume that

T = NTs for some N ∈ IN. Then, the cost function in (9a)

can be written as

J = ℓf (x̄(T ), T ) +

N−1∑

k=0

∫ (k+1)Ts

kTs

ℓ(x̄(τ), ūk, τ)dτ. (10)

Since it is not possible to derive analytical solutions of the

nonlinear dynamical system (9c), the system trajectories as

well as the cost function J along these trajectories has to be

evaluated by discretizing the system dynamics and integrals.

By doing so, the system state trajectoriy x̄(t) is evaluated at

points x̄k = x̄(kTs) as follows

x̄k+1 ≈ fk(x̄k, ūk),

and

J ≈ ℓN (x̄N ) +

N−1∑

k=0

ℓk(x̄k, ūk).

Any explicit integration method such as the fourth-order

Runge-Kutta or Forward Euler lead to high quality ap-

proximations of MAV trajectories. This way, the original

continuous-time optimal control problem is approximated by

a discrete-time one which is solved at every time instant in

a receding horizon fashion.

B. Penalty functions for obstacles of general shape

Each obstacle is described by a set of mj(t) nonlinear

constraints of the form

Θj(t) = {p ∈ IR3 | hij(p, t) > 0, i ∈ IN[1,mj(t)]}, (11)

where hij : IR3 × IR+ → IR+ are C1,1 functions. This

approach allows one to describe obstacles of very general

convex or nonconvex shape. For example, by choosing func-

tions hij to be affine in p, we can model any polytopic object.

Fig. 3. Level sets of slices of the function ψΘ(t) on the plane

{(px, py , pz) ∈ IR3 | pz = 0} for (Left) a ball-shaped obstacle and (Right)
a nonconvex obstacle. The obstacles are circumscribed by light gray mesh
lines.

Functions of the form hj(p, t) = 1− (p− p0(t))
⊤M(t)(p−

p0(t)) can be used to model ellipsoidal objects or elliptic

cylindrical ones. Polynomial, trigonometric and other func-

tions can be used to model more complex geometric shapes.

For simplicity, in this section we focus in the case where

there is one obstacle, that is q(t) = 1, which we denote by

Θ(t) = {p ∈ IR3 | hi(p, t) > 0, i ∈ IN[1,m]}. The constraint

cι(p(t)) /∈ O(t) is satisfied if and only if hi0(cι(p(t)), t) ≤ 0
for some i0 ∈ IN[1,m], or equivalently, if

ψΘ(t)(cι(p(t))) = 0, (12)

for all ι ∈ IN[1,nuav], where ψΘ(t) : IR
3 → IR+ is the function

defined as

ψΘ(t)(p) :=
1
2

m∏

i=1

[hi(p, t)]2+. (13)

Such functions are illustrated in Fig. 3. Function ψΘ(t) takes

the value 0 outside the enlarged obstacle Θ(t) and increases

in the interior of it as we move away from its boundary.

Function ψΘ(t) is differentiable with gradient

∇ψΘ(t)(p) = 1Θ(t)(p)

m∑

i=1

hi(p, t)
∏

j 6=i

(hj(p, t))2∇ph
i(p, t),

where 1Θ(t) is the characteristic function of Θ(t) with

1Θ(t)(p) = 1 if p ∈ Θ(t) and 1Θ(t)(p) = 0 otherwise.

Functions ψΘ(t) can be used to impose the obstacle

avoidance requirements as soft constraints. To this end, we

eliminate the nonconvex constraints cι(p̄(t)) /∈ Θj(t) and

introduce the modified stage and terminal cost functions

ℓ̃(x̄, ū, t) = ℓ(x̄, ū, t) +
∑

ι,j

λj,ιψΘj(t)(cι(p̄(t))), (14a)

ℓ̃f (x̄, ū, t) = ℓf (x̄, ū, t) +
∑

ι,j

λfj,ιψΘj(t)(cι(p̄(t))), (14b)

where λj,ι and λfj,ι are positive weight coefficients. The

overall model predictive control (MPC) problem becomes



minimize
ū0,...,ūN−1

ℓ̃N (x̄N ) +

N−1∑

k=0

ℓ̃k(x̄k, ūk) (15a)

subject to x̄0 = x (15b)

x̄k+1 = fk(x̄k, ūk), k ∈ IN[0,N−1] (15c)

ūk ∈ Uk, k ∈ IN[0,N−1] (15d)

where Uk = U(kTs). The optimization is carried out over

finite-dimensional vectors ū = (ū0, . . . , ūN−1) ∈ IRn with

n = nuN .

C. Single-shooting problem formulation

We shall cast optimization problem (15) in the following

compact and simple form

minimize
ū∈U

φ(ū; x̂, pref( · )), (16)

where U = U0 × U1 × . . . × UN−1 and φ : IRn → IR+ is

a C1,1 function. To this end, we need to eliminate the state

sequence in (15c). Let us introduce a sequence of functions

Fk : IRn → IRnx for k ∈ IN[0,N ] defined recursively by

F0(ū) = x̂, (17a)

Fk+1(ū) = fk(Fk(ū), ūk). (17b)

This way, x̄k = Fk(ū). Then, problem (15) is written as in

(16) with

φ(ū) = ℓ̃N (FN (ū)) +

N−1∑

k=0

ℓ̃k(Fk(ū), ūk). (18)

This is known as the single shooting formulation [16].

IV. FAST ONLINE NONLINEAR MPC USING PANOC

Problem (16) is in a form that can be solved by PANOC

[16]. In particular, the gradient of φ can be computed

using automatic differentiation [23] which is implemented

by software such as CasADi [24]. PANOC finds a ū⋆ ∈ IRn

which solves the optimality conditions

Rγ(ū
⋆) = 0, (19)

where Rγ : IRn → IRn is the fixed-point residual operator

with parameter γ > 0 defined as

Rγ(ū) = ū− Tγ(ū), (20)

where Tγ : IRn → IRn is the projected gradient operator

Tγ(ū) = ΠU (ū− γ∇φ(ū)). (21)

PANOC combines safe projected-gradient updates ūν+1/2

with fast Newton-type directions dν computed by L-BFGS

while it uses the forward backward envelope (FBE) function

ϕγ as a merit function for globalization given by

ϕγ(ū) = φ(ū)− γ
2 ‖∇φ(ū)‖

2+ 1
2γ dist2U (ū−γ∇φ(ū)). (22)

The forward-backward envelope is an exact, continuous

and real-valued merit function which shares the same (lo-

cal/strong) minima with (16). That said, Problem (16) is

reduced to the unconstrained minimization of ϕγ .

PANOC is shown in Algorithm 1. L-BFGS uses a buffer

of length µ of vectors sν = ūν+1−ūν and yν = Rγ(ū
ν+1)−

Rγ(ū
ν) to compute the update directions dν [16], [25,

Sec. 7.2]. The computation of dν requires only inner products

which amount to a maximum of 4µn scalar multiplications.

In particular, following [26], the L-BFGS buffer is updated

only if sν⊤yν/‖sν‖2 > ǫd‖Rγ(ū)‖.
Overall, PANOC uses exactly the same oracle as the pro-

jected gradient method, that is it only requires the invocation

of ΠU , φ and ∇φ. Lastly, owing to the FBE-based line

search, PANOC converges globally, that is, from any initial

guess, ū0. The algorithm terminates once the infinity norm

of the scaled fixed-point residual, rν :=Rγ(ū
ν), drops below

a specified tolerance. Note also that a Lipschitz constant of

∇φ does not need to be known in advance — a Lipschitz

constant is evaluated with a simple backtracking.

Algorithm 1 PANOC algorithm for nonlinear MPC

Input: Initial guess ū0 ∈ IRn, Current state x ∈ IRnx ,

Estimate L > 0 of the Lipschitz constant of ∇φ, L-BFGS

memory length µ, Tolerance ǫ > 0, Max. iterations νmax

Output: Approximate solution ū⋆

Choose γ ∈ (0, 1/L), σ ∈ (0, γ2 (1− γL))
for ν = 0, 1, . . . , νmax do

Compute ∇φ(ūν) // Using automatic differentiation

ūν+1/2 ← Tγ(ū
ν) // Projected gradient step

rν ← ūν − ūν+1/2 // Fixed-point residual

if ‖rν‖∞ < ǫ, exit // Termination criterion

// Evaluate a Lipschitz constant for ∇φ (and γ, σ):

while φ(ūν+1/2) > φ(ūν)−∇φ(ūν)⊤rν + L
2 ‖r

ν‖2 do

Empty the L-BFGS buffers

L← 2L, σ ← σ/2, γ ← γ/2
ūν+1/2 ← Tγ(ū

ν)
dν ← −Hνr

ν using L-BFGS

ūν+1 ← ūν − (1− τν)r
ν + τνd

ν , where τν is the largest

number in {1/2i : i ∈ IN} such that

ϕγ(ū
ν+1) ≤ ϕγ(ū

ν)− σ‖rν‖2

V. EXPERIMENTAL VALIDATION

For the experimental validation of the proposed control

scheme, an inverted quadrotor using the ROSFlight [20] low-

level controller was used for all trials, shown in Fig. 4.

The onboard computer used is an Aaeon Up Board with

an Intel Atom x5-z8350 processor with four 1.44GHz cores

and 2GB of RAM. The board runs Ubuntu Server 16.04.

The field robotics lab at Luleå University of technology is

equipped with a Vicon motion capture system featuring 20

infrared cameras that track the odometry of the MAV; this

data is used by the NMPC controller for navigation.
The NMPC module runs simple C89 code which was

generated by nmpc-codegen — an LGPLv3.0-licensed

open-source code generation toolkit which is available at

github.com/kul-forbes/nmpc-codegen.
An upright cylindrical obstacle, O, is placed so that its

vertical symmetry axis runs through the origin (0.0, 0.0, 0.0)

github.com/kul-forbes/nmpc-codegen


Fig. 4. The inverted quadrotor used in the experiments, which is specifically
designed to have a small x/y footprint of 34 cm by 34 cm, a height of
12 cm, and weight of 1.02 kg, to be suitable for indoor flight.

of the global coordinate frame in the flying arena at field

robotics lab (FROST). The cylinder, O, has a radius of rcyl =
0.45m and height zcyl = 2m. The obstacle is described

by the functions h1(p, t) = r2 − p2x − p2y , h2(p, t) = pz
and h3(p, t) = zcyl − pz . A single corner point is used

which is positioned at the center of the MAV; the enclosing

ball as in Fig. 2 has a radius of rball = 0.24m. In order

to account for possible small constraint violations due to

the fact that obstacle avoidance constraints are modeled via

penalty functions, we consider an additional enlargement of

0.06m. As a result, the enlarged cylinder, Θ(t), has a radius

of 0.75m and height 2.3m. The weights of the obstacle

constraints, λj,ι and λfj,ι, in Equation (14) were all set to

10000, and the continuous-time system was integrate with

the forward Euler method.
The flight test performed for avoiding the obstacle con-

sisted of alternating between two position references on

opposite sides of the obstacle. The two position refer-

ences given alternately were, in meters, (−2.0, 0.0, 1.0) and

(2.0, 0.0, 1.5). These references were sent when the MAV

was close to its previous reference position. The exact time

the references are changed can be seen in Fig. 6.
NMPC runs at 20Hz with a prediction and control horizon

of 40 steps, meaning the solver predicts the states of the

system 2 s into the future. The solver occupied between 8%
and 15% of CPU on an Intel Atom Z8350 — an indication

of the solver’s computational efficiency.
Fig. 5 shows the actual path flown by the MAV during

the test where the positioning data is taken from the motion

tracking system and has sub-millimeter accuracy. The path

is also shown in Fig. 6 where we plot the MAV’s position

versus time. The MAV does not have time to settle at the

reference altitude as a new reference is sent to the controller

before the position completely converges.
As the MAV passes the obstacle it violates the obstacle

constraint, as shown in Fig. 7, which is expected from the

penalty formulation. The maximum violation is 2.86 cm,

which is below the extra enlargement of 6 cm of the obstacle.
Fig. 8 shows the control signals (roll, pitch, and normal-

ized thrust references) commanded by the NMPC. The roll
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Fig. 5. Path of the UAV autonomously taking off, traveling between
the two reference positions pref,1 = (−2, 0, 1) and pref,2 = (2, 0, 1.5),
and landing. An upright cylindrical (enlarged) obstacle of radius 75 cm is
positioned so that its axis runs through (0, 0, 0).
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Fig. 6. Smooth navigation of the MAV in space: the position of the vehicle
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Fig. 7. Distance of the center of the MAV from the center of the enlarged
cylinder, Θ. The solid grey line indicates the border of the cylinder at a
radius of 75 cm.

and pitch angles are bound between −0.5 rad and 0.5 rad;

these bounds are active as shown in Fig. 8. This further

motivates the use of NMPC, allowing for bounds to be

directly included in the problem formulation.

The control signals could be made less aggressive by

penalizing the rate of change of the input in (15), that is,

by adding a penalty of the form ℓ∆ = ‖ūk − ūk−1‖
2
R∆

for a

symmetric positive semidefinite matrix R∆ ∈ IRnu×nu . Nev-



ertheless, the maneuvering of the MAV is smooth as shown

in Figs. 5, 6 and 7 and a video of the experiment which can

be found at https://youtu.be/E4vCSJw97FQ.

−20

0

20

θ
r
,d
(t
)

−20

0

20

θ
p
,d
(t
)

0 10 20 30 40

0.3

0.4

0.5

0.6

Time (s)

u
T
(t
)

Fig. 8. Control signals sent from the solver to the low-level controller
during the experiment. The angles are in degrees for ease of reading.

As shown in the second subfigure of Fig. 9, once the

reference changes, the solver reaches the maximum number

of iterations (200 iterations) and the solution it returns is

of poor quality (fourth subfigure of Fig. 9). This happens

because at each time instance, the solver is initialized with

the previously computed optimal trajectory. Upon a reference

change, the initial guess is rather far from optimal and this

necessitates more iterations for convergence. Nonetheless,

this inaccuracy is eliminated at the next time instant — 0.05 s
later — where the solver is provided a good initial estimate

and converges within the prescribed tolerance, ǫ = 10−3.

This way, NMPC is executed at 20Hz. As shown in the

third subfigure of Fig. 9, at one time instant, the solution time

exceeds the maximum allowed time. This is accommodated

by delaying the dispatch of the control action by few ms and

has no practical effect.
The infinity norm of the fixed-point residual is below ǫ

at all time instants with the exception of four instants from

the change of reference. Lastly, the average iteration time in

every time step is shown in the third subfigure of Fig. 9, and

ranges from 80µs to 350µs where the variability is because

of the different number of line search iterations.
The parameters used in the dynamics of the MAV used in

the experiment are shown in Table I. These values were cho-

sen empirically (based on accurate values for other MAVs)

and are not fine-tuned via experiments; this accentuates the

fact that the closed-loop and the overall obstacle avoidance

scheme is robust to errors in the determination of these

parameters.
The tuning parameters used by the NMPC are R =

diag(2, 10, 10), Q = diag(3I2, 12, I3, 3I2), and Qf =
10Q, and the prediction horizon is T = 2 s. For the EKF
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Fig. 9. Solver diagnostics: (Top) Number of iterations required for
convergence. Observe that at reference changes, the initial guess is rather in-
accurate and the solver requires more iterations, (Middle-top) time required
by PANOC to find an optimal sequence of control actions, (Middle-bottom)
average time taken per internal iteration, and (Bottom) infinity norm of
the fixed-point residual, ‖Rγ(ū)‖∞, which serves as an indicator of the
solution quality.
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Fig. 10. Control signals sent from the solver to the low-level controller
during the experiment.

for estimating the special thrust constant we have

P0 = 100, QT = 10−3, RT = 1,

where P0 is the initial variance for Ĉ, QT is the process

https://youtu.be/E4vCSJw97FQ


TABLE I

MAV PARAMETERS — VALUES IN SI UNITS

parameter value parameter value
Ax 0.1 τr 0.5
Ay 0.1 Kr 1
Az 0.2 τp 0.5

Kp 1

variance in (3b), and RT is the measurement variance.
A separate experiment was carried out where the MAV was

given a position reference to hold for as long as the battery

could deliver power safely. This experiment was conducted

to demonstrate the thrust constant estimation described in

Section II-B and the results are presented in Fig. 10. As the

battery drains, the special thrust constant is decreasing and

the control signal is adapted to keep the MAV hovering at

a constant altitude. A video from the experiments presented

here is found at https://youtu.be/E4vCSJw97FQ.

VI. CONCLUSIONS

We presented an obstacle and collision avoidance method-

ology coupled with an adaptive thrust controller that leads

to increased autonomy and context awareness for MAVs.

Obstacle avoidance is addressed with an NMPC controller,

which is solved using PANOC — a simple and fast algo-

rithm, which involves simple algebraic operations and, unlike

SQP, does not require the solution of linear systems at each

step. Experiments were performed with the solver running

onboard a MAV which maneuvered gently around a virtual

obstacle with a smooth trajectory. The MAV passed the edge

of the virtual obstacle with a minimal constraint violation,

as expected from the solver.
Moreover, experiments were performed to demonstrate

that our thrust estimation method successfully compensates

for the reduction of thrust over time, making the control

scheme applicable to any MAV platform. Future work will

focus on experiments in presence of moving obstacles with

uncertain trajectories using stochastic [27] and risk-averse

[28], [29] variants of MPC.
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