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Aerial obstacle detection with 3D mobile devices
J.M. Sáez, F. Escolano, M.A. Lozano

Abstract—In this paper, we present a novel approach for
aerial obstacle detection (e.g. branches or awnings) using a
3D smartphone in the context of the visually impaired (VI)
people assistance. This kind of obstacles are especially challenging
because they cannot be detected by the walking stick or the
guide dog. The algorithm captures the 3D data of the scene
through stereo vision. To our knowledge, this is the first work
that presents a technology able to obtain real 3D measures with
smartphones in real time. The orientation sensors of the device
(magnetometer and accelerometer) are used to approximate the
walking direction of the user, in order to look for the obstacles
only in such direction. The obtained 3D data are compressed and
then linearized for detecting the potential obstacles. Potential
obstacles are tracked in order to accumulate enough evidence
to alert the user only when a real obstacle is found. In the
experimental section, we show the results of the algorithm in
several situations using real data and helped by VI users.

Index Terms—Computer Vision, Visually Impaired, Mobile
Vision.

I. INTRODUCTION

A. Contextualization

BLINDNESS is considered the major sensory disability (it

is estimated that 80% of the human sensorial information

is provided by sight), which determines to a large extent the

life of a person, the interaction with the environment and with

the society, and so on. A report of the WHO [1] indicates that

there were 285 million VI people in the world in 2010. These

amount includes different scales of visual impairment, where

the severe is blindness (visual acuity below 5%). This group

represents a 13.6% of the VI (39 million people in the world).

One of the daily challenges faced by a blind person is the

autonomous movement. Regarding global orientation, there

are different GPS-based systems available in the market with

specific cartographies and a voice interface that solve this

problem (e.g. the Kapten system [16]). As for the detection

and obstacle avoidance, classic systems such as the walking

stick and the guide dog are the most used.

Despite there exist technological advances in this field [2]

[4], they have not became daily use tools for this community.

This is due to the fact that the classic systems achieve their

goals successfully and the new developments are bulky and

uncomfortable, hindering the social integration of the user. In

addition, these devices often send acoustic signals via ear-

phones, which deprives the blind user of his main information

source: the sound.

In recent years, the development of efficient computer-

vision algorithms for solving specific tasks for the blind or the

VI, including low vision, has emerged as a challenging field of
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scientific development. Fortunately the fast rate of appearance

of novel and helpful devices (e.g. smart phones) has opened

a new technological landscape: some researchers are intensely

working towards complementing the traditional cane, which

is usually considered the most practical tool for this persons,

with additional wearable devices based on computer vision.

B. Mobility in open spaces

Large open spaces are a challenging context for the VI.

They are low-structured environments such as parks where

VIs have a limited number of structured references. In these

environments the traditional cane is also of limited help, and

most of the sensorial references are auditive (traffic on the

left/right, child playing, people chatting).

In the literature, we found some notable examples of

mobility developments for the VI. Some of them refer to

text reading in the street (identifying street names and/or bus

lines). There are two main approaches to identify patches of

the image containing text: learning-based [8] and grouping-

based [9]. The latter method has been recently extended for

dealing with severe blur [11]. Factor graphs are also applied

to another important topic in mobility: crosswalks protocols.

In [10], for finding the best alignment between the user and

the crosswalks, audio feedback is exploited to align the VI

properly. In [12] 360◦ panoramas have been incorporated

and converted to an aerial view of the nearby intersection

for a later integration with Google Maps satellite imaginery.

Since, in general, GPS has a limited reliability because of

the potential proximity of buildings, images become the most

reliable source of information. For instance, in [13] vision is

used for guiding VI to a target.

Fig. 1. Examples of aerial obstacles.

Another application for VIs in the context of mobility

deals with aerial obstacle avoidance. These obstacles have no

projection on the floor (typically tree branches, awnings, or

similar elements). Some examples of this kind of obstacles are

shown in Fig. 1. In [14], our experience in stereo-based SLAM
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has provided a method for finding stereo maps with a stereo

camera carried by a human user [15]. Having a short-term map

computed on-the-fly we are able to classify obstacles in front

of the user as aerial or not-aerial. In this paper we propose to

adapt this kind of application to mobile devices (smartphones).

In this regard, the main limitation to overcome is that SLAM-

based short-term maps are too computationally demanding for

a practical use, especially when real-time constrains arise. The

structure of the environment could be also estimated through

a monocular-based approach (see for example [3] where a

monocular SLAM system is integrated into a smartphone).

These approaches are suitable because all the smartphones

integrate a camera. However, the range information extracted

with this kind of algorithms is up to scale. In other words,

the relative scale of the data depends on the nature of the

environment. Then, the scale of the data changes as the

environment changes. In practice, this kind of algorithms only

works in limited space environments.

C. Goals

The main goal of our proposal is to develop a mobile appli-

cation that acts as a walking stick or a guide dog complement.

It does not replace these elements, but it solves their main

problem, that is, their inability to detect aerial obstacles. In

the case of walking sticks, this limitation is obvious. Dogs

cannot be trained to detect theses obstacles, because they are

not aware of the height difference between them and their

owners.

One of its main advantages is that the application is embed-

ded into a smartphone, obtaining a comfortable and discreet

system that favors the user social integration. Furthermore, the

smartphone is also able to notify the presence of an obstacle

by means of acoustic signals (through the phone speaker, not

earphones) or vibrations. The latter option makes the system

less noticeable and does not deprive the user of the sense of

hearing.

Our approach is based on distance measures taken from the

environment within a range of several meters. These measures

are obtained from a stereo pair of images. Hence this software

requires a hardware capable of obtaining the scene in stereo.

Within these devices, we find the 3D phones that are endowed

with a parallax-barrier glasses-free 3D screen and a double

back camera (see Fig. 2). The purpose of these cameras is

merely multimedia, but this equipment brings the opportunity

of applying stereo vision on mobile devices (see Fig. 3). From

the observation of the pair of images provided by the double

camera, the scene can be partially reconstructed in 3D. This

reconstruction includes the obstacles in front of the user and

their distances.

In addition to the observation of the stereo pair of images,

the application uses data from different sensors, such as

magnetometers and accelerometers. These sensors provide the

global orientation of the device, which is key to solve the

direction in which the user is walking. With this information

at hand we estimate the volume in which the obstacles should

be detected.

This system has been developed for the Android platform,

because other platforms (like iOS) do not have currently

Fig. 2. Smartphones endowed with 3D camera. HTC EVO 3D (left) and LG
Optimus 3D (right).

Fig. 3. Reference and depth images (top left), and some views of the resulting
3D scene (bottom right).

available 3D devices. Nevertheless, it could be ported to any

other platform whenever the required hardware is available.

II. AERIAL OBSTACLE DETECTION

The pipeline of our obstacle detection approach consists of

four phases: (i) capture a stereo pair of images, (ii) obtain a

set of 3D points using a dense stereo algorithm, (iii) build a

histogram of 3D points in the direction in which the user is

walking, and (iv) check for obstacles in the histogram.

A. Scene reconstruction

Let (ILt , I
R
t ) be the stereo pair of images provided by

the camera at instant t. Our goal is to obtain a set of 3D

points Pt = {p1, p2, ..., pN}, where pi = (xi, yi, zi) in metric

coordinates with respect to the optical center of ILt .

Mobile devices equipped with a 3D camera provide a pair

of rectified and pre-aligned images, so that the epipolar line

of every pixel in the left image correspond to the same row

in the right one. This fact allows us to apply a dense stereo

algorithm [5] to obtain a disparity map Dt from the pair of

images.

The device also provides the extrinsic data from its stereo

camera: focal distance f (in pixels) and baseline B (in meters).

The 3D scene can be reconstructed combining this information

with the disparity map Dt. For each pixel i in the disparity

image whose value is not unknown, a 3D point pi = (xi, yi, zi)
can be obtained as follows:

zi =
fB

Dt(ui,vi)
, xi =

uizi
f

, yi =
vizi
f

, (1)

being ui, vi the coordinates of the pixel in the 2D disparity

image (with the origin of coordinates in the image center).
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B. Distance histogram from 3D data

Let ~Vt be the direction in which the user is walking at

instant t. Only the obstacles found in this direction should be

considered, and therefore 3D data obtained in the previous step

should be filtered to remove side obstacles. Unfortunately, ~Vt is

not always the direction the smartphone is pointing to. On the

one hand, we have to consider that the device lays on the user’s

chest, so that it has a pitch angle αt that differs between users.

On the other hand, a swing movement is produced as the user

walks. This produces a yaw angle βt that is always changing.

Therefore, the direction ~Vt is not constant with respect to the

device and should be estimated.

Vector ~Vt can be estimated from (αt, βt). The global

orientation of the device (αg
t , β

g
t , γ

g
t ) (pitch, yaw, roll) is

obtained from the coordinate system defined by the accelerom-

eter/gravity reading ~Gt, the magnetometer reading ~Mt and

the cross product ~Gt × ~Mt ( ~Gt and ~Mt are approximately

orthogonal). The value of αt can be determined directly by

the device sensors. To make ~Vt parallel to the floor, global

pitch should be set to: αt ← αg
t .

If the movement of the user were straight (e.g. the move-

ment in a vehicle) αt would be enough to obtain ~Vt. However,

the swinging movement of the user causes βg
t to change

constantly. Thus, βt has to be estimated from a set of N
previous readings of βg

t−1, β
g
t−2, ..., β

g
t−N . The estimation of

βt is the difference between βg
t and the expected value of the

set of previous readings. Considering that this distribution is

bimodal, a k-mean algorithm [6] with k = 2 is applied to

separate them into the subsets βA and βB , having βA ∪βB =
βg
t−1, β

g
t−2, ..., β

g
t−N . The estimation of βt is then obtained as

βt = βg
t − {E(βA) + E(βB)}/2.

Given the estimations of (αt, βt) the walking direction

vector ~Vt can be built. Around the axis determined by the

center of our reference system and ~Vt we place a parallelepiped

of size 1m × 1m × 4m corresponding to the extrusion of

the user’s torso in the walking direction (see Fig. 4). This

parallelepiped is used to register the subset of 3D points

P ⋆
t ∈ Pt that will intersect with the user’s torso if the

movement continues in the estimated direction. These points

represent the possible obstacles for the user.

To interpret the obstacles, the parallelepiped is quantized

in different bins, representing a discrete set of distances from

the user position. We divide the parallelepiped in sections of

s metres in depth (s = 0.05m in our setup), and count how

many 3D points belong to each block. This is represented by

a histogram Ht. Each bin Ht[i] represents the fraction of 3D

points contained between the planes s(i)~Vt and s(i+ 1)~Vt of

the parallelepiped. Ht represents a one-dimensional distribu-

tion of obstacles in the walking direction.

It is worth to remark that Pt has a projective nature, given

that it is provided by a stereoscopic system. The higher

the distance of observation, the higher the point sparseness.

The trend of the degree of sparseness follows an exponential

increase with respect to distance. This implies that cells Ht[i]
will present a decreasing density as i increases, which is due

to the anisotropic error distribution but not to the obstacles.

To deal with this problem, a unitary square Ci is created for

Fig. 4. We need to know the direction in which the user is walking to detect
the obstacles, that may not match with the pointing direction of the camera.

each bin Ht[i] at distance s(i)~Vt. The square is projected on

the reference image, and we take the size Si of the projection.

These sizes have the same projective nature than Ht[i], but in

inverse order. Thus, we can obtain a linearized version of the

histogram as follows: H⋆
t [i] ← Ht[i]/Si. The values of the

histogram are also affected by the 3D occlusions of the points

(each point of Ht[i] projects a 3D shadow over the following

bins that decreases their densities). However, in our problem

the key obstacles are the closest ones, that are the least affected

by this fact.

C. Obstacle detection from distance histogram

Each cell in H⋆
t represents a possible obstacle. A single

observation may present obstacles at different distances. Hence

it follows that H⋆
t is multimodal. Mean-Shift [7] is then used

to separate it into different distributions, by using a uniform

K-unit kernel. From the set of obtained centers, we keep the

most significant ones at instant t, that is Ot = o1, o2, ..., oN .

The initial set of potential obstacles Ot may contain some

phantom data due to the noise in the 3D reconstruction

step. A robust set of obstacles O⋆
t is obtained by consider-

ing only the obstacles detected in the last M observations

Ot−M+1, Ot−M+2, ..., Ot. An obstacle oi ∈ Ou matches an

obstacle oj ∈ Ov if the distance between them in the histogram

is less than K units, in consonance with the size of the

Mean-Shift kernels. This guarantees that pairs of centers close

enough will be discarded.

Given the set of obstacles O⋆
t , the one o⋆n with the lowest

index n (the nearest one to the user) is selected, whose distance

is d(o⋆n) = n · s. If this distance is below a given threshold

(in our case 2 meters) then it is considered a potential threat

and an alert signal (sound or vibration) is generated with a

frequency inversely proportional to the distance d(o⋆n). Closer

obstacles cause a higher alert frequency.

III. APPLICATION INTERFACE

The usability of this application is directly related to its

portability, because the device must hang from the user’s
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neck with the camera facing forward and the screen on the

chest to activate the obstacle detection mode (see Fig. 11

left). Once the proximity sensor detects the device is in this

position, the screen is locked and the obstacle detection begins.

The detection finishes by flipping the device, or simply by

separating it from the chest.

The obstacle detection is performed up to four meters

forward, within the space corresponding to the user’s torso

(a volume of 1.0× 1.0× 4.0 meters is estimated), correcting

the swing movement produced when the user walks. The user

receives obstacle alerts when they are closer than two meters

in the walking direction.

The application presents an accessible interface, designed

for blind users and it is based on three gestures: vertical swipe

to change the menu item, horizontal swipe to explore the

different values for the current item, and touch to select the

current value. After each gesture, the device pronounces the

current selection by voice synthesis, to let the user know the

actions that have been executed. For example, in Fig. 5(left)

the setting Mode is currently selected. An horizontal swipe

changes this setting from pause to obstacles or telemeter. A

vertical swipe moves to the Warnings setting.

Fig. 5. Look of the user interface.

The interface allows us to configure different features:

Mode, that could be obstacles (for walking assistance), teleme-

ter (for free environment exploration) or pause; Alerts, that

may be beep (acoustic signal) or vibration; Volume, that sets

the volume of the system; Voice, that sets the speech velocity;

Language, that sets the languaje of the application (English ,

German, French or Spanish); About and Exit.

IV. EXPERIMENTS

In this section we present some tests about the most critical

aspects of our proposal.

A. Implementation details

Besides the drastic changes that we have performed in the

approach, the implementation has also suffered big changes

with respect to [14], according with the new platform. Both

3D smartphones (see Fig. 2) are based on Android, whose

principal language is Java. Nevertheless, we have used Qt1

for Android (also known as Necessitas), a C++ based SDK

that generates the code directly on Android native, which

1qt-project.org

is more suitable for real-time applications. Also, we have

used OpenCV4Android2, the well known Computer Vision

library [17], for image manipulation. In order to speed up

some parts of the algorithm we have used parallelization

strategies (through threading) that exploit the device Dual

Core processor, as well as vectorization strategies with Neon

Intrinsics (a set of instructions similar to Intel SSE integrated

with the ARM architectures). These tools are justified by the

computational requirements of the problem and the limitations

of the platform.

B. Measure accuracy

In this first experiment we evaluate the accuracy of the

distance estimation in our proposal. We have taken 19 3D

images of a wall perpendicular to the focal axis of the camera.

These images have been taken at distances from 0.35m to

3.95m, every 20cm. For each image a set of 3D points is

obtained. Given that the only element of the image is a wall,

all the 3D points should be placed at the same z coordinate,

corresponding to the distance from the camera to the wall.

Fig. 6. Accuracy of the scene reconstruction. Top: First, second and third
quartile of the 1D depth distribution of each image. Bottom: Some examples
of wall images at different distances.

The results are shown in Fig. 6. Columns represent the

images taken at each distance. For each image a 1D depth

distribution has been obtained, and its first, second (median)

and third quartiles are displayed in the figure.

It can be seen that as depth increases, the distribution

becomes sparser and more noise is introduced. Our system

discards measures larger than 4m due to the exponential

growth of noise with the distance. In case of short distances,

bellow 2m, it provides accurate measures (with a low error).

We can also see that the standard deviation of the set of points

increases as we increase the distance to the obstacles.

C. Histogram linearization

In this experiment we explore the projective nature of the

histogram. We have taken 3 observations of a single object (a

fire extinguisher) at different distances. For each observation

2opencv.org
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we obtained its distance histogram Pt. Fig. 7(top) shows the

raw histogram of each observation represented in different

colors, and Fig. 7(bottom) shows the linearized histograms P ∗

t .

The horizontal axis represents the histogram bins (we consider

a total distance of 4 meters, and each bin is taken every 5cm,

so that we have 80 bins). The vertical axis represents the

number of points in each bin (or the result of the linearization,

in the linearized version).

Fig. 7. Raw Pt (top) and linearalized P
∗

t
(bottom) version of distance

histograms obtained from 3 observations of a single object at different
distances.

We can see that the raw histogram presents a variable

density depending on the distance to the object, due to the

effect of the projective geometry (the closer is the object, the

wider is its area). Therefore, the value of the histogram bins

can not be directly compared, which makes Mean-Shift not

applicable. In the linearalized version the densities of different

observations of a single object achieve (approximately) a

balance.

D. Obstacle tracking

In this experiment we evaluate the robustness of the ob-

stacle detection over time in two different environments: a

park (Fig. 8) and a corridor (Fig. 9). In these figures the

horizontal axis represents the time, and the vertical axis is

the distance histogram. That is, each column represents the

distance histogram of each sequence frame (processed at 9fps
approximately), so that we can observe the evolution of the

histogram over time.

The blue line represents the threshold we use to notify the

user about the presence of an obstacle (2m in our setting).

The histogram represents 4m in total. The red points represent

the obstacles that have been detected as real, that is, means

obtained by Mean-Shift at a lower distance that the specified

threshold and with tracking information enough to be consid-

ered a real obstacle and not a phantom.

In the first environment (Fig. 8) a tree is avoided. Note that

once the tree has been avoided, it stops detecting this obstacle.

In the second environment we first get close to a wall, and then

we move away from it. We can see this reflected in the shape

of the plot.

Fig. 8. Obstacle tracking in a park environment. The horizontal axis represents
time. Each column displays the distance histogram for each frame.

Fig. 9. Obstacle tracking in a corridor environment. The horizontal axis
represents the time. Each column displays the distance histogram for each
frame.

E. Multimodal histograms

Our obstacle detection approach uses Mean-Shift because

the distance histogram is multimodal and may contain different

distributions. This experiment aims to test the robustness of

our approach and it consists of analyzing a sequence where

a shelving is always observed at the back of the scene (see

Fig. 10).

Fig. 10. Mean-Shift results. First and fourth rows: Only one obstacle is
detected (either shelving or stuffed elephant). Second and third rows: Two
obstacles are detected (shelving and stuffed elephant).

In the first frame, only the shelving is observed, so that

it is represented by a single distribution in the histogram
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(the result of Mean-Shift is displayed in red). In the second

and third frames a stuffed elephant appears at the front of

the scene. It shares the scene with the shelving in the back,

which yields a second distribution. We can see that Mean-

Shift correctly detects both distributions. In the last frame, the

stuffed elephant covers all the projection (we only consider

the parallelepiped corresponding to the user’s torso extrusion).

Therefore, only a single distribution is obtained.

F. Tests with VI users

The last experiment consists of several tests with blind

users. In Fig. 11 we can see the people that have collaborated

in this experiment: Maria Dolores (left) and Yolanda (right).

Maria Dolores works in ONCE foundation as a psychologist.

She is blind since she was 20 years old. She has an almost

null residual vision (between 2% and 3%). She is only able

to perceive light or darkness. Yolanda works as a counselor

in a secondary school. She is psychologist too. She was born

blind and does not have any residual vision.

Fig. 11. Test users: Maria Dolores (left) and Yolanda (right)

Fig. 12 shows a test with Maria Dolores. There is a palm

tree leaf within the path. She walks slowly because she is not

following a margin (she is walking in an open space). Some

pictures of the scene taken from outside are shown in the

first row of the figure, and the application visual-log is shown

in the second row. In the visual-log we can see the distance

histogram over the image. In the left row the obstacle has been

detected. In the central row a notification is sent, because the

obstacle is closer than 2 meters. In the right image the obstacle

has been avoided.

Fig. 12. First test with Maria Dolores. See the text for details.

A second test with Maria Dolores is shown in Fig. 13. In

this case is following the curb with the cane, hence she walks

faster. In the path there is a fuzzy object: a bush. This kind

Fig. 13. Second test with Maria Dolores. See the text for details.

of obstacles could not be detected by other sensors like sonar-

based ones. The figure has the same format than the previous

experiment: scene from outside (top) and visual-log (bottom),

before (left) and after (right) avoiding the obstacle.

Fig. 14. Test with Yolanda. See the text for details.

Fig. 14 shows a test with Yolanda similar to the previous

one. She is walking following the curb with her cane, and the

application detects a the branch of palm tree. The displayed

data follows the format described above.

All the experiments have been executed in a LG Optimus

3D Max smartphone (the results obtained with HTC EVO

3D are similar), which is endowed with a 1.2GHz Dual

Core processor. The resolution of the captured images is

360× 240 (we need a pair of images). The 1520mAh battery

provides an operation time of about 132 minutes with the

application running. Therefore, the application should be used

only sporadically, in unknown environments.

The application is able to process an average of 9.17fps.

Thus, the average lag of an obstacle alert is about 109ms.

The walking velocity of a person is usually in the range

between 4km/h (slow) and 6km/h (very fast). A blind person

is usually slower than the lower limit. If we suppose a velocity

of 4km/h (1.11m/s), with a processing time of 109ms per

frame, and taking into account that the average reaction time

of a person is 750ms, then the elapsed time since the obstacle

appears until the user reacts is 859 ms. In the worst case, the

user walks 0.95m from the instant in which the obstacle comes

into the field of vision. Therefore, there is a margin of 1.05m
to avoid the obstacle. For this reason the alert threshold is set

to 2m, but the obstacle tracking is performed from 4m.

Dolores and Yolanda are our usual collaborators, but we

have tested the approach with many other volunteers of the
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blind community. Here we summarize the feedback that we

recovered from 9 users that have tested the prototype. All of

them consider that the problem we are facing represents a

handicap in their lives, and a solution like this proposal could

improve their quality of live. Seven of them agree with using a

smartphone, that could be reused for other useful tasks, while

2 of them prefer an ad-hoc cheaper platform. With respect to

the interface and the accessibility of the application, most of

them agree that it is easy to use (8 of 9). We have observed

that all users get a full control of the application in a guided

session of around 10 minutes. Finally, the best result that we

have observed (that we cannot show with data) is the great

sensation that they experience in the first use, when they can

sense the distances to the objects without touching them.

V. CONCLUSIONS AND FUTURE WORK

It is worth to highlight that the technology presented in this

paper is new for this kind of devices. Until now, smartphones

were not able to extract real measures from the environment.

This application extracts about 30, 000 real environment mea-

sures per frame at 9fps in commercial devices.

The major limitation of this technology is the dependency

on a hardware that must incorporate a 3D camera. Our future

work includes adapting this application to monocular devices.

A way to do this is to incorporate a catadioptric device that

splits a single camera observation into two separated ones.

Another alternative consists on rethinking the algorithm with a

Structure From Motion (SFM) approach instead of the Stereo

one. This change could affect many parts of the approach,

because the 3D results of the SFM algorithms are up to scale,

that is, we only know the relative scale (depth) of a point with

respect to the other points in the image, but the absolute scale

is unknown and continuously changing.
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