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In this paper, a system that allows applying precision agriculture techniques is described. The application is
based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in
order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this
work is practical experimentation with an integrated tool. Contributions in different fields are also reported.
Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among
the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal
path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust
flight control based on the use of a control law that improves the maneuverability of the quadrotors has been
designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task
negotiations to final performance. These experiments also allowed testing control robustness under different
weather conditions. C© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

The concept of precision agriculture (PA) has emerged in re-
cent years as a farming management strategy. Several defi-
nitions have been proposed (Srinivasan, 2006). In brief, the
concept of PA is to use information technologies to collect
and process data from multiple sources for improving the
understanding and management of soil and landscape re-
sources in order to handle crops in a more efficient way. It
allows not only assisting farmers to take decisions but also
automating some basic farming tasks. Automation applied
to agricultural tasks is still in an early stage, mainly due to
difficult working conditions, such as irregular terrains, dif-
ferent soils, unstructured environment, and harsh environ-
mental conditions (temperature, rain, humidity, dust, etc.).
Remote sensing (RS) techniques are basic components of
PA. One of the most often applied RS techniques is aerial
imagery, but its main weakness is limited availability in the
narrow time windows for the images to be obtained. In fact,
farmers are interested in recollecting and analyzing data of
particular growth stages that can last as short as a few days.

A multimedia file may be found in the online version of this article.

Currently, there are three main ways for obtaining
aerial images: satellites, planes, and unmanned aerial ve-
hicles (UAVs). Using satellite images has an extremely high
cost for small farmers and has very low availability, mainly
due to the small number of satellites and the dependency
on the weather when it covers the area of interest. For these
reasons, satellite images become unpractical. Until recently,
commercial flights have been the most feasible way for ob-
taining aerial images; nevertheless they are still very costly
and have low availability due to the small number of com-
panies dedicated to this activity. Moreover, they are highly
dependent on the weather.

The reduction in the cost of high-precision GPS re-
ceivers and the development of small integrated inertial
sensors have boosted the creation of the several companies
dedicated to developing small UAVs. Initially, UAVs were
based on helicopters, but most of them are now based on
quadrotors, because they have a more simple mechanics
and therefore are more robust.

Aerial imagery is mainly employed in field obser-
vation and map generation by using images that con-
tain information about the biophysical parameters of the
crop field (Burgos-Artizzu, Ribeiro, Tellaeche, Pajares, &
Fernández-Quintanilla, 2010; Curran, 1985). Two typical
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applications are weed detection with high-resolution re-
quirements and hydric stress determination using lower
resolution.

Typically, maps are built by stitching a set of georef-
erenced images through mosaicking procedures. The high-
precision positioning of the UAVs and the capability of
performing hovering while delivering high-resolution cam-
eras (i.e., color or multispectral cameras) make them the
most suitable choice for performing mosaics. Neverthe-
less, the most relevant drawback of this solution is the
limited autonomy of the mini aerial vehicles. This limita-
tion bounds the area that can be covered by an individual
robot. Consequently, in order to cope with the typical size
of crop fields, either multiple flights or a group of robots is
required.

In this paper, a feasible solution for performing aerial
imaging applied to PA by using a fleet of UAVs is pre-
sented. This paper provides a unified view of the modules
and the field work that we have been carrying out in mul-
tirobot task planning, path planning, and UAV control.

1.1. The Approach Proposed and Paper Outline

The system provides a decoupled solution, because the
methodology employed can be easily divided into two
steps. Figure 1 is the global system flowchart. Initially, the
target workspace is defined in the crop field by using geo-
referenced points. It is subsequently provided to the area-
partitioning step. The resulting subareas are discretized ac-
cording to the required spatial resolution. Path planning
is then executed for each subarea. Finally, individual flight
plans are sent to the quadrotors in order to be performed.
The main issues of the proposed solution are as follows:

• Task subdivision and allocation. This is a classical
problem in multirobot coordination. Given a global task
T0 and R robots, the problem is how to partition T0 into
R nonoverlapping subtasks and how to assign subtasks
to the robots for their execution. As a contribution of this

work, the proposed tool simultaneously provides solu-
tions for the two mentioned problems in a distributed
way applied to UAV restrictions: each robot is aware
of its own characteristics and status but does not know
anything about those of its teammates. In this approach,
the original task T0 is the area to be surveyed, which is
divided into subareas through a negotiation process in
which each robot claims covering as much area as possi-
ble. This solution is reviewed more deeply in Section 2.

• Path planning. Once the subareas are assigned, each
robot is in charge of accomplishing its covering mission
by following a path. This path typically consists of a set
of waypoints that have to be computed. A waypoint is a
position where a sample (i.e., an image) has to be taken.
To solve this problem, coverage path planning (CPP)
techniques are used. CPP is a subfield of motion plan-
ning that addresses the problem of determining the com-
plete coverage path for a robot in the free workspace.
CPP algorithms for UAVs are few. In this work, a prac-
tical implementation was successfully carried out. The
path planning issue is studied in detail in Section 3.

• Aerial vehicles’ control. Although accuracy in control-
ling the position and velocity under wind disturbances
usually is the most demanded feature of flight control
systems (FCS) for UAVs’ outdoor operation, attitude sta-
bilization is essential, especially in quadrotors. Along
these lines, a new control law called backstepping+FST
controller has been developed in prior work. It con-
siders all the nonlinearities of the system (i.e., Cori-
olis, gyroscopic forces, etc.), improving on the atti-
tude stabilization in comparison to classic proportional–
integral–derivative (PID) algorithms. The proposed al-
gorithm introduces a desired angular acceleration func-
tion within the control law that takes into consid-
eration the effects of the angular rate variation and
their impacts in terms of maneuverability (abrupt an-
gular rotation at high speeds) and disturbance rejec-
tion (fast control response). Control performance has
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Figure 1. Overall system flowchart.
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turned out to be excellent, and it is simple enough to be
embedded into the onboard computer of the Humming-
bird quadrotor used. The flight control solution is dis-
cussed in Section 4 and Appendix A.

After overviewing the motivation and main contribu-
tions of the paper, the rest of this section is devoted to re-
viewing the literature related to each of the fields previ-
ously mentioned. Then Sections 2–4 describe in detail the
main technological issues that compose the overall system.
Section 5 summarizes the experiments performed during
test campaigns on real crop fields, providing a unified vi-
sion of the three subproblems and their application to the
context of remote sensing in precision agriculture. Finally,
Section 6 discusses the results and experience gained.

1.2. Related Work

Multi-UAV systems is a relatively young field of research
(Ollero & Maza, 2007). Owing to their complexity, the ma-
jority of the works reviewed concentrate on one topic,
either planning (Gancet, Hattenberger, Alami, & Lacroix,
2005a, 2005b; Lacroix, Alami, Lemaire, Hattenberger, &
Gancet, 2007; Lemaire, Alami, & Lacroix, 2004), perception
(Tisdale, Ryan, Kim, Tornqvist, & Hedrick, 2008), or naviga-
tion (Chen, Dawson, Salah, & Burg, 2006), it being difficult
to find a paper that provides a unified view from the theo-
retical foundations to practical experimentation. This paper
is intended to provide such a view, highlighting the need
for integration of different knowledge areas. In this section,
the most relevant works that are related to the topics in-
volved in this paper are briefly summarized.

1.2.1. Related Work in Task Subdivision and Allocation

Cooperative applications can be roughly divided into two
classes (Parker, 2003): tight cooperation requires a contin-
uous coordination between the robots, and loose cooper-
ation requires coordination at the beginning of the mis-
sion for planning a division of labor, or when replanning
is required. This work falls in the second class. Market-
based (Dias & Stentz, 2003) and auction (Gerkey & Mataric,
2002) techniques are commonly used in this class of prob-
lems. One of the most popular protocols for task assign-
ment is the Contract Net (Smith, 1980), and many algo-
rithms (Botelho & Alami, 1999; Dias & Stentz, 2003; Gerkey
& Mataric, 2002; Golfarelli, Maio, & Rizzi, 1997; Stentz &
Dias, 1999) have been proposed based on this protocol. In
all market and auction–based approaches, each robot has
cost and revenue functions that are used to compute the
expected gains and losses for performing (sub)tasks. In this
work, an instance of the planning and task decomposition prob-
lem is at hand. This is usually approached in one of two
ways: allocate-then-decompose and decompose-then-allocate. As
pointed out by Dias, Zlot, Kalra, and Stentz (2006), “by de-
coupling the decomposition and allocation problems, these

approaches do not consider the complete solution space
and may find highly inefficient solutions.” In the works
of Zlot and Stentz (2005, 2006), the trading of whole task
decomposition trees is proposed in order to solve the two
problems simultaneously. Auctions can be initiated by any
agent to (re)allocate subtasks at any time, and the task is
partitioned into subtasks by the auctioneer agent. In this
way, their approach achieves a dynamic allocation that im-
proves the solution at any reallocation. A drawback of this
approach is that an auctioneer must propose a complete
partition of the task; thus the task partitioning step is ac-
tually centralized.

Another limitation of such approaches is that robot
preferences are considered only in the assignment stage,
when the robots decide whether to accept (or opt for) a
task. A task partitioning algorithm not taking this into ac-
count may produce solutions that are not feasible, leading
to an incomplete task execution, because no agent will bid
for certain task(s). Such features do not suit the needs of an
approach that should consider robot capabilities already at
the task partitioning stage. This feature is important espe-
cially when dealing with heterogeneous vehicles, in either
mobility and/or equipment, as in the case of the work de-
scribed in this paper.

Our negotiation protocol performs a simultaneous task
subdivision and allocation in a distributed way, taking into
account robot preferences and without the need for explor-
ing whole task decomposition trees in order to find a good
allocation.

Negotiations have been widely studied in the con-
text of socioeconomic studies using, among others, game
theory (Osborne & Rubinstein, 1994). The main problem
with game theory approaches is that the theoretical results
obtained refer to simplified models that are not immedi-
ately applicable to complex applications. The protocol we
propose is based on Rubinstein’s alternate-offers protocol
(Rubinstein, 1983). Because such a protocol is based on
a unidimensional good, a search mechanism for the best
(counter)offer had to be devised for the protocol to be ap-
plied in real multidimensional tasks.

1.2.2. Related Work in Multicoverage Path Planning

The problem of finding a robot path that covers a given
workspace in an optimal way has been extensively studied
by several authors. The schemes proposed to solve the CPP
problem are in general oriented to online CPP (Choi, Lee,
Baek, & Oh, 2009; Choset, Acar, Rizzi, & Luntz, 2000; Oh,
Choi, Park, & Zheng, 2004; Wong & MacDonald, 2003) or
offline CPP (Moon & Shim, 2009; Oksanen & Visala, 2009;
Weiss-Cohen, Sirotin, & Rave, 2008). Online approaches
are usually sensor-based navigation schemes in which the
robot has to cover an unknown environment. The typical
offline approaches are those in which the robot has to cover
an area whose map is available to the path planner. The
map gives representation of the area boundaries and the
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obstacles therein. The two schemes have also been simulta-
neously presented, where the robot has an a priori knowl-
edge of the environment but also relies on obstacle avoid-
ance behavior (Luo & Yang, 2008).

The environment is in general mapped in a cellular
decomposition or grid, following the taxonomy proposed
by Choset (2001). Cellular decomposition approaches al-
ways give an exact representation of the robot workspace,
where the robot can cover cells with back-and-forth mo-
tions. On the other hand, grid-based approaches give an
approximated representation of the workspace. The cellu-
lar decomposition approaches normally take root from the
trapezoidal decomposition approach proposed by Latombe
(1991). In addition to the Boustrophedon cellular decompo-
sition, an improved Boustrophedon cellular decomposition
with critical points can be found, in which cells are defined
by using critical points of Morse functions, bioinspired
(e.g., ant colony, genetic algorithms), and also by topologi-
cal navigation with natural landmarks (Choset et al., 2000;
Wong & MacDonald, 2003). Grid-based solutions are prob-
ably the most common, and the methods employed fall into
spanning trees, neural networks, genetic algorithms, and
general heuristic searches (Choi et al., 2009; Oh et al., 2004;
Weiss-Cohen et al., 2008).

The majority of the works reviewed were developed
for ground robots, and their extension to other types of ve-
hicles is not discussed. Additionally, most of them have
presented only simulation results with little experimental
testing under real platforms. The requirements for aerial
vehicle coverage applied to remote sensing in a farmland
environment are different from those for ground robots.
First, an aerial vehicle almost always is able to move in
any direction without damaging the crop and, depending
on the flight altitude and spatial resolution required, to deal
with wider areas and therefore augmented cell dimensions.
Furthermore, because not all regions are suitable for take-
off or landing with aerial robots, the trajectory must ensure
starting and ending points in places that fulfill all the re-
quirements, such as safety margins, sufficient space for op-
eration, pick up and drop ability, and accessibility.

Maza and Ollero (2007) present a polygonal area de-
composition applied to inspection with a team of aerial
robots. The area is divided into subareas by using a sweep-
line approach, and then the subareas are assigned to the
robots based on their relative capabilities. Each individual
robot computes the waypoints needed to perform a back-
and-forth pattern with a minimum number of turns. If a
robot turns out to be inactive, the algorithm is computed
again. However, the solution proposed considers just con-
vex areas without obstacles. Moreover, such an approach
is mainly focused on the robot assignment problem rather
than the CPP problem.

In Moon and Shim (2009), a study of two algorithms
to address area coverage with UAVs for crop dusting pur-
poses is presented. The first algorithm is denoted as a grid

point–based algorithm and the second a modified Boustro-
phedon algorithm. The first one proposes an approach to
discretize an area through points. Then a procedure that se-
lects points inside the sampled set is employed to obtain a
coverage trajectory. The resulting area coverage path is re-
produced as a spiral. The approaches proposed by the au-
thors are mainly dedicated to area decomposition and sam-
pling. Although the first approach presents a simple way
to sample an area, the solution provided to compute the
coverage trajectory is not subject to any constraints. More-
over, the trajectory obtained is reproduced as a spiral from
outside to inside, which can be a problem in large areas if
the UAV runs out of fuel. The second approach is based on
a well-known exact cell composition method that employs
simple back-and-forth motions to cover the decomposed
subareas. In any case, the provided results are referred only
to simulations. Finally, the authors also mention the use of
multirobot systems; however no results were provided.

Jiao, Wang, Chen, and Li (2010) also report aerial CPP.
The authors propose an exact cell decomposition method to
break down a polygonal area into subareas by employing a
recursive greedy algorithm. Each subarea is covered with
back-and-forth motions along the vertical direction of each
convex subarea span. The shortest path through the cells to
be covered is determined through an undirected graph, in
order to reduce the number of turns. This work does not
consider obstacles, and it is assumed that the aerial vehi-
cle flies just over a convex polygon area. Additionally, is
not clear what type of aerial vehicle is intended to be used
in this approach. The proposed method was tested only in
simulation.

Therefore, the analysis of the literature has shown that
multirobot CPP using UAVs is not mature yet, and con-
tributions to enhance vehicle autonomy, efficiency, and ro-
bustness are required. In fact, no reports have shown that
it had been put into practice in real agricultural scenarios.
Therefore, according to this necessity, this work proposes
that a grid-based approach, due to an exact cell decomposi-
tion [such as a trapezoidal decomposition (Latombe 1991)],
is inefficient for aerial coverage, mainly because the dimen-
sions of the samples acquired have to be homogeneous.
It should also be highlighted that the proposed approach
deals with both regular and irregular polygonal shapes, in-
cluding nonconvex shapes. An effort has been made to min-
imize the number of turns that the aerial robot has to per-
form so as to decrease the time required to perform the mis-
sion and energy consumption. Finally, this approach also
ensures nonoverlapped paths with predefined takeoff and
landing positions.

1.2.3. Related Work in Aerial Vehicle Control

Within the technological challenges of precision agricul-
ture, the most important of concern to flight controllers
are precision and robustness (Oetomo, Billingsley, &
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Reid, 2009). UAVs were studied in the context of agri-
cultural applications in Schmale, Dingus, and Reinholtz
(2008). However, most of them include consumer-off-
the-shelf basic linear position controllers (e.g., PID) that
lack high-position accuracy when the vehicle maneuvers
at high speeds including in strong wind disturbances
(Bouaballah, 2007).

In this work, the aerial vehicle control goal is to ap-
ply a novel controller that ensures robustness and relia-
bility within the framework of crop field aerial sampling.
Issues such as maneuvering at speeds up to 30 km/h in-
cluding wind-speed disturbances about 10 m/s are ex-
perimentally analyzed. A novel nonlinear control method-
ology, initially developed in prior work (Colorado, 2010;
Colorado, Barrientos, Martinez, Lafaverges, & Valente,
2010), is now deployed into the onboard computer and
applied to a new quadrotor model. As a first attempt,
an integral backstepping methodology was implemented
to achieve attitude stabilization (Olfati-Saber, 2001). How-
ever, after several control tests, reliable attitude stabiliza-
tion was not achieved when the quadrotor speeded up.
Thus, we integrated a new term within the original back-
stepping control law called the desired angular acceleration
function that considers the effects of angular rates and ac-
celerations. A brief introduction of this controller, called
backstepping+FST, is presented in Section 4, and experi-
mental results of precise vineyard area coverage are con-
signed to Section 5.

2. TASK SUBDIVISION AND ALLOCATION

2.1. Problem Statement and Assumptions

In this work the objective is to partition an area into sub-
areas.1 This is an instance of a more general task partition-
ing problem that we have generalized in prior work. We
refer the interested reader to Rossi, Aldama, and Barrientos
(2009) for a detailed explanation.

In the context of aerial surveying, we consider as task
the object to be divided, i.e., the area, and we are inter-
ested in partitioning a given target area and assigning sub-
areas to the agents. A task T (x), where x is a k-dimensional
vector of parameters, has to be divided into R subtasks:
T (x) = {T1, . . . , TR}, R being the number of agents. Each
subtask Ti , i = 1..R, can be described by a set of parame-

ters xi , T (x) = {T
(x1)
1 , . . . , T

(xR )
R }.

In general, a good subdivision is such that there is
minimum overlapping between subtasks (ideally null) and
such that the union of the subtasks covers the original task.

1In many cases crop fields have a rectangular or trapezoidal shape.
However, more irregular shapes can be found, e.g., in vineyards,
one of the target cultivations of our work. This motivates the need
for providing a general algorithm that can work for any area shape
and not be limited to simple and regular shapes.

That is,

Ti ∩ Tj = ⊘, ∀i, j = 1 · · · R and
R
⋃

i=1

Ti = T , (1)

where the operators ∩,∪ are to be defined according to the
meaning of the task. In the case of areas, their geometric
meaning is straightforward.

2.2. Evaluation of a Task

During the negotiation, each robot has to evaluate the cost
and reward of a given task. To this aim, it has to take into
account its internal parameters to evaluate the cost of exe-
cuting the task, the start-up cost (for instance, to reach the
execution site), specific constraints (e.g., forbidden zones,
turn angles, sensors), and the general reward associated
with the task, expressed as a reward function g. Given the
complete task T0, the evaluation function gi of subtask Si

for agent i takes the form of a weighted sum of terms such
as dimension of the task (e.g., area, length, number of tar-
gets), distance from the initial position of the robot to the
task execution starting point, and penalties for overlapping
subtasks and for the part of Si outside T0 (Table I). The last
two factors are important as they balance the importance of
avoiding overlapping and not going outside mission lim-
its. In this application, we used the following formulation,
where α, β, γ, φ are mission-dependent parameters:

gi (Si ) = α · dim(Si ) − β · dim(Si \T0) − γ ·
∑

j �=i

g(Si ∩ Sj )

− φ · dist(posi , sitei ). (2)

2.3. Task Negotiation

A given task T0 can be executed by a team of R robots after
performing a suitable subdivision of the task and assigning
the subtasks to the robots. Our aim is to perform these two
actions simultaneously and in a distributed way. In our sys-
tem, the number of subtasks is determined by the number
of robots willing to participate in the negotiation.

Table I. Factors taken into account when evaluating a
(sub)task, which can change according to the specific
application.

Factor Description

dim(Si ) Area of the task
dist(posi , sitei ) Distance to task initial point
dim(Si \T0) Area of the part of the task exceeding the

target task
∀j �=i : dim(Si ∩ Sj ) Tasks overlapping
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Figure 2. Connection protocol (left) and negotiation loop (right). The negotiation loop can be interrupted at any moment due to
an abort message of one part or a timeout when waiting for an offer (not shown in the sequence diagram for clarity).

We assume that the robots are willing to perform as
much as they can of the given task (hence maximizing their
reward), the only limitations being their available resources
(endurance, computation power, battery consumption,
etc.). Thus, in a negotiation, each agent will try to maximize
its reward by (i) trying to get a subtask as big as possible
and (ii) minimizing overlapping with other agents’ tasks.

The negotiation protocol is an extension of the
alternate-offers protocol proposed by Rubinstein (1983). The
advantage of such a protocol with respect to the contract
net protocol is that in the contract net the auctioneer agent
has to split the task into subtasks before placing the sub-
tasks in the market, whereas in Rubinstein’s protocol the
splitting is done during the negotiation. Additionally, each
agent needs just to know whether the others agree with the
share proposed for itself and nothing else.

In the alternate-offers protocol, each agent starts
proposing the biggest possible share for itself and reduces it
until the counterpart finds it acceptable. In this way a good
near-optimal solution, although not optimum in general,
can be achieved. The responder can agree with a subdivi-
sion, or disagree with it, and in this case it has to propose a
counteroffer. The protocol assumes a negotiation cost called
discount factor, by which it decreases its offers at each round,
starting by claiming the whole good. Such a protocol has in-
teresting theoretical properties: it guarantees a termination
and can forecast the final agreement, which will be a per-
fect equilibrium in the sense of game theory. An extension
of the protocol has been necessary because it is not imme-

diately applicable to the multidimensional case. A detailed
description of the process is outside the scope of this paper.
We refer the reader to Rossi et al. (2009) for a more complete
explanation.

Figure 2 (left) shows the connection protocol. Agents
are invited by the starter agent in turn, and the list of agents
willing to participate is sent, in turn, to all participating
agents in order to establish direct connections. In case of
a lost connection during the connection stage and during
negotiation, timeouts are used to interrupt the process. In
case an interruption occurs, the protocol is restarted from
scratch. Figure 2 (right) shows the communication protocol.
Only two agents are depicted for clarity. The starter agent
starts the negotiation, sending a request to the teammates
(only one is depicted). In case the responder accepts to par-
ticipate, a bargain loop is entered where the two parties al-
ternately receive an offer, evaluate it, and decide whether
to accept it, and in this case formulate a counteroffer. Note
the search step performed at each new offer received and
generated. The loop can be interrupted in any moment if
one of the parties decides to unilaterally abort the negoti-
ation in case a timeout occurs while waiting for a message
or in case the mission is interrupted by the command and
control station. When an agreement has been reached, the
result is a subdivision of the original task and at the same
time an assignment of the subtasks.

When there are three or more agents, the protocol can
be extended in negotiation rounds in which, in turn, each
agent claims a part of the task. After each round, if all the
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agents are satisfied the negotiation ends; otherwise another
round is started. To avoid biasing the process in favor of the
first agents, a new starter is chosen at each new round, in
rotation. In this case, there is no theoretical result that guar-
antees convergence of the negotiation. However, numeri-
cal simulations with up to seven agents have demonstrated
that an agreement is always found. Current work on this
topic is devoted to a characterization of the convergence
time as a function of the number of agents.

2.4. Communication and Computational
Cost Issues

A final remark must be made regarding the communication
topology implied by the algorithm. In this work, we have
assumed that all-to-all communications are available in or-
der for the negotiation to take place. All-to-all communica-
tions are not strictly required, because in the negotiation
rounds it is sufficient to establish a communication ring.
Communications shall be available only during the nego-
tiation itself and are not needed during the execution of the
tasks the robots have agreed upon.

Bandwidth restrictions are not significant, as the
amount of information exchanged is not a critical issue for
our protocol. As an example, a polygon of 12 points is de-
scribed by 24 floating point numbers. Assuming 4 bytes per
number, a total of 96 bytes (plus headers) are sent at each of-
fer. Taking into account the number of agents (three to five)
and the typical number of negotiation rounds needed (30–
50), a total amount on the order of kilobytes for the whole
process can be estimated.

Computational costs are centered on the proposal eval-
uation and counterproposal update steps. Such costs de-
pend on the application at hand. In this case each evalu-
ation consists of computing polygon intersections and area
calculations. A whole negotiation takes the order of sec-
onds. In any case, we underline that in a distributed ap-
proach such as the one we propose, each agent performs
such computation only for its share, whereas in approaches
that need to compute a complete solution, this cost must be
multiplied by the number of robots of the team or by the
number of subtasks that form the complete task.

3. PATH PLANNING

3.1. Problem Statement and Assumptions

The multi-CPP problem is formalized by assuming that
there is a top-level procedure that handles the area division
and the robot assignments. A cost-efficient multirobot CPP
should result in a coverage path for every robot, such that
the union of all paths is equivalent to the overall workspace
coverage and the total coverage time to completion is
minimized.

Let us consider an area A ⊂ ℜ2 decomposed in a finite
set of regular cells C = {c1, . . . , cn} such that

A ≈
⋃

ci∈C

ci . (3)

Let S be a finite set of subareas and L a finite set of line
segments that divide A. Therefore A = S ∪ L, where

S =
⋃

si∈S

si and L =
⋃

li∈L

li . (4)

In an aerial robotic–based coverage mission, the fol-
lowing constraints must be considered subject to the vehi-
cle characteristics:

• Nt : Number of turns, i.e., number of times the vehicle
rotates around the z axis (yaw angle movements)

• Nr : Number of times the vehicle covers a previously cov-
ered cell (revisited cells)

• t : Coverage time to completion of a single subarea s
• T =

∑

ti∈T ti : Coverage time to completion of the
areas S

Let t∗i = min{ti} be the optimal time for covering area si .
Then the optimal time to completion of S, T ∗ is achieved
when all subarea coverage takes the minimum time:

T ∗ ⇔ t∗∀s ∈ S. (5)

Let us consider a coverage path P to be optimal if it implies
the minimum number of turns Nt and of revisited cells Nr .
As explained later in this section, an algorithm that guar-
antees that no cell is visited twice has been adopted, i.e.,
that Nr = 0. Thus, P∗ ⇔ min{Nt }. Clearly, t∗i is achieved
with the minimum number of turns. Consequently, t∗i ⇔

P∗. Then

T ∗ ⇔ P∗∀s ∈ S, (6)

3.2. Area Sampling

The workspace is split through an approximate cellular de-
composition. Following the taxonomy proposed by Choset
(2001), the workspace is sampled like a regular grid. This
grid-based representation with optimal dispersion is ob-
tained by dividing the space into cubes and placing a point
in the center of each cube. Therefore it can be defined as a
kind of Sukharev grid.

The centroid of each cell is considered a waypoint, and
the cell base size (i.e., width and height) matches the size
of the image to be acquired. It should be pointed out that
each aerial robot has to fly at a certain constant height in
order to ensure a specific resolution and the image sensor
field of view (FOV) has to be enough to cover each cell (see
Figure 3). For this reason, the flight altitude has to be set de-
pending on the camera carried by the robot, with the posi-
tive side effect of reducing the danger of collisions between
vehicles. Although an approximate cell composition has the
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Figure 3. Area sampling schematic. The required resolution
and the FOV of the cameras determine cell size.

drawback that in general border cells may be partially occu-
pied cells that must be visited, an exact cell decomposition
such as the trapezoidal one is inefficient for aerial sampling
because we are interested in acquiring an equally sized set
of images.

3.2.1. Border Representation

Because the area partitioning algorithm works in a contin-
uous space, borders (line segments) that define the subar-
eas in the grid-based environment must be recomputed.
In the grid environment, we represent lines using the Bre-
senham’s line algorithm (BLA) (Bresenham, 1965), which
belongs to the family of line drawing algorithms used in
computer graphics. The procedure to approximate line seg-
ments in discrete graphical data structures such as rectan-
gular grids of pixels is denoted as rasterization, whose goal
is to find the best approximation of a line segment given the
inherent limitations of a raster environment, considering a
set of constraints to be optimized (e.g., pixel proximity with
the ideal line, continuity, and uniformity) (see Figure 4).

3.2.2. Subarea Identification

The procedure to individuate the subareas in the grid-based
environment is a recursive flood-fill algorithm. The algo-
rithm picks an empty cell (i.e., a cell not marked as occu-
pied) and floods in four direction while there are empty
cells, and each cell flooded is marked as occupied. When

Figure 4. Illustration of the solution based on rasterization.

the flood cannot go further, the algorithm is restarted. This
procedure is repeated until all nodes of the grid are marked
as occupied.

3.3. Coverage Path Planning

The CPP algorithm is performed for each subarea. We
have developed an algorithm based on a wavefront plan-
ner (LaValle, 2006) that works by propagating a wave front
from the goal cell through all free grid cells bypassing all
obstacles. A distance transform is applied over the grid
by employing a breadth-first search (BFS) on the graph in-
duced by the neighborhood adjacency of cells. Hence, the
coverage path can be easily found from any starting point
within the environment to the goal cell by choosing the
nearest neighbor cell in gradient ascendant order, opposite
to the conventional method.

The variables of interest in CPP are Nt and Nr (see Sec-
tion 3.1): a good path has a minimum number of turns and
avoids visiting previously covered cells. Aerial robots have
a certain endurance at a constant velocity, which is consid-
ered a constraint (not a cost). Therefore, given an area, the
cost to minimize is the coverage time, which fully depends
on the number of turns and the revisited cells.

Because the number of cells in the grid-based
workspace is known in advance, a simple way to ensure
coverage completeness without revisited nodes is to use
the deep-limited search (DLS), limiting the search depth
to the maximum number of vertexes. During the gradient
tracking, the algorithm can find more than one neighbor to
choose from, with the same potential weight. A backtrack-
ing algorithm builds a tree with all coverage path candi-
dates and retrieves the one with the minimum number of
turns.

4. AERIAL VEHICLE CONTROL

The last issue to be faced after the area has been partitioned
and assigned and paths have been computed is the control
of the vehicles.

Although nonlinear controllers have been used for
some time for controlling quadrotors, poor analysis has
been conducted on specifically improving attitude control
while the aircraft is maneuvering at moderate speeds and
performing aggressive changes in orientation. To improve
on this, we have adopted the Frenet–Serret (FS) formula-
tion as a set point function of the aircraft angular veloc-
ity and acceleration. A complete and detailed description
of the six-dimensional algebra operators, notation, and ba-
sic concepts of rigid body dynamics applied to quadrotors
modeling is outside the scope of this paper. The reader is re-
ferred to Section 3.2 of Colorado (2010)2 and previous work

2Available for download at http://oa.upm.es/3493/2/TESIS
MASTER JULIAN COLORADO B.pdf.
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in Colorado et al. (2010) for a better understanding about
backstepping+FST derivation.

In summary, the backstepping+FST method focuses
on controlling the torque components of τcm: roll τφ , pitch
τθ , and yaw τψ . This section briefly shows roll-control
derivation for τφ . The first step is to define the roll track-
ing error e1, and its dynamics (derivative with respect to
time):

e1 = φd − φ,

ė1 = φ̇d − ωx .
(7)

A Lyapunov function3 positive definite, V (e1) = e2
1/2,

is used for stabilizing the tracking error e1. The virtual con-
trol law for stabilizing the angular speed tracking error is
then defined as

ωd
x = c1e1 + φ̇d + λ1

∫

e1, (8)

with e2 = ωd
x − ωx . Including e2 in Eq. (8) and differentiat-

ing with respect to time (note that ωx = φ̇),

ė2 = c1ė1 + φ̈d + λ1e1 + φ̈. (9)

Replacing ė1 = −c1e1 − λ1
∫

e1 + e2 in Eq. (9) and with
Jx−cm,T the scalar component of the x-axis moment of in-
ertia of the vehicle,

ė2 = c1

(

−c1e1 − λ1

∫

e1 + e2

)

+ φ̈d + λ1e1 + J−1
x-cm,T uφ .

(10)
Note in Eq. (10) that uφ = τφ . Solving uφ using ė2 = −e1 −

λ2e2, the control law is

uφ = Jx−cm,T

[

e1
(

c2
1 − λ1 − 1

)

+ e2(−c1 − λ2)

+ c1λ1

∫

e1 − φ̈d

]

. (11)

Likewise, for pitch and yaw stabilization,

uθ = Jy−cm,T

[

e3
(

c2
2 − λ3 − 1

)

+ e4(−c2 − λ4) + c2λ3

∫

e3 − θ̈d
]

,

uψ = Jz−cm,T

[

e5
(

c2
3 − λ5 − 1

)

+ e6(−c3 − λ6) + c3λ5

∫

e5 − ψ̈d
]

. (12)

Finally the terms φ̈d , θ̈d , and ψ̈d in Eqs. (11) and
(12), respectively, are replaced by the desired angular ac-
celeration functions obtained using the FS formulation in

Eqs. (13). The term ω
{R}
{i} is a ℜ3x3 resultant rotation matrix

that describes the vehicle’s trajectory orientation in terms of

3Lyapunov stability analysis of the backstepping+FST controller is
detailed in the cited work (Colorado, 2010, Section 4.3.5).

the FS frame transformation (see Colorado et al., 2010, for
more details):

φ̈d = atan2
(

ω
{R}
{i}23, ω

{R}
{i}33

)

,

θ̈d = atan2

(

ω
{R}

{i}13,

√

(

ω
{R}
{i}23

)2
+

(

ω
{R}
{i}33

)2
)

,

ψ̈d = atan2
(

ω
{R}

{i}12, ω
{R}

{i}11

)

.

(13)

Figure 5 shows the modeling and control workflow.4 The
system-control module is composed of a cascade-mode
configuration of altitude, position, and attitude controllers
coded onboard the vehicles. Appendix A shows a compar-
ison between backstepping+FST and a PID control.

The next section details experimental results con-
ducted on both Hummingbirds and AR100 quadrotors. The
analyzed data will show that our assumption of improving
tracking speed is achieved by the introduction of the angu-
lar acceleration function (based on FST) within the original
backstepping control law. Those functions consider the ef-
fects of the vehicle linear speed and acceleration, thus en-
suring accurate and fast response to abrupt angular rate
change, making attitude and position control more reliable
when the quadrotor is maneuvering at high speeds (includ-
ing strong wind disturbances).

5. EXPERIMENTAL RESULTS

In this section, the results of missions performed in a vine-
yard farming site using the aforementioned system are pre-
sented. The goal of the experiments is twofold:

1. To provide a useful field report in terms of using
this system as a practical approach for aerial sampling
in precision agriculture involving a complex scenario
(vineyard). Because vineyards are normally located in
hilly regions, their shape can be quite irregular. In this
case, area partitioning might not be trivial, and a sophis-
ticated area partitioning algorithm like the one we are
adopting provides a useful tool.

2. To demonstrate the simplicity and robustness of the sys-
tem architecture in terms of flight control and accuracy
of crop field sampling.

First, we illustrate three different examples of the re-
sults of the task partitioning and path planning steps on
vineyards, in order to provide numerical results and illus-
trate their outcome on different instances. The fields are
located in Belmonte de Tajo, southeast of Madrid, Spain.5

Figure 6 shows the three vineyards and the results of the

4Aerodynamics, dynamics modeling, and backstepping+FST con-
trol derivation can be found in Colorado et al. (2010) and Colorado
(2010) with more detail.
5The authors gratefully acknowledge the courtesy of Bodegas
Andres Morate (http://www.andresmorate.com/) for providing
their vineyards for experimentation.
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Figure 5. Modeling and control workflow.

area partitioning (left) and the corresponding paths gener-
ated (right). Table II summarizes the results in terms of ne-
gotiation round taken, elapsed time for the path planning
step, number of turns, and quality of service obtained (see
below for a definition).

The vineyard-field chosen for the field tests was
Field 1. Its location is depicted in Figure 7, with the area
to be covered delimited by a thick line. This crop field sce-
nario has an approximate size of 327 × 195 m.

To evaluate the experimental results according to the
goals previously mentioned, we introduce a set of metric
variables. These metrics are conceived in order to analyze
the performance of the vehicles during and after the mission.
Tables III and IV summarize these metrics: TM is the total
mission time, including deployment and setup time; TL is
the setup time; TC is the total flight time; TE is the time the
vehicles are actually flying between waypoints; TĒ is the
time the UAVs spent hovering over a waypoint; and P is
the length of the coverage path.

Table II. Summary of the results for task partitioning and
path planning.

Negotiation Total path Total no. Quality of
Field rounds planning time (s) of turns service (%)

1 36 0.19 37 72
2 43 0.22 42 81
3 49 0.31 36 80

Table III. Metrics during mission flight.

Variable Description

PE Position error tracking
HE Altitude error tracking
VW Wind disturbance

Table IV. Metrics after mission flight.

Variable Description

TM Mission time of completion
TL Grounded time
TC Coverage time of completion
TE Effective time of coverage
TĒ Noneffective time of coverage
P Coverage path

Finally, because subarea borders will not be sampled,
an end user–oriented metric called the quality of service in-
dex is measured, which indicates the percentage of the
field actually surveyed. An upper bound (UB ) of unvisited
cells can be estimated for the security strips as follows. For
simplicity, let the area be discretized in an N × M grid,
N < M . The maximum number of border lines is equal to
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Figure 6. Area subdivision and multi-CPP on different vineyard parcels. Left: Orthophoto illustrating the subdivided area. Right:
Discretization and area coverage paths.
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Figure 7. The vineyard crop field object of the field tests. Its location is 40◦11′24.68′′N, 3◦28′56.09′′W.

Figure 8. The aerial vehicles flying over the agricultural scenarios.

the number of robots R. The maximum length of a line is
equal to the diagonal. In a discrete world, the length in cells
of the diagonal is equal to M ; hence,

UB =
R · M

N · M
=

R

N
. (14)

We refer to the value UB/(N · M)(%) as a quality of service
index. In our experiments, N = M = 10; R = 3, and a maxi-
mum of 30% of the cells will be security zone and therefore
will not be visited (actual values range from 20% to 30%; see
Table II). Note that in crop field sampling, 100% sampling
is not needed. Conventional sampling methods currently
used are based on far lower sampling rates.

5.1. Platform Overview

Experiments were carried out using a team composed
of three quadrotors: (i) two Hummingbird quadrotor
platforms6 and (ii) the AR100 platform.7 Prior to the
description of the experimental setup, this section briefly

6Ascending Technologies GmbH, http://www.asctec.de/.
7AirRobot GmbH & Co. http://www.airrobot.de/.

introduces some description of the platforms employed.
Both platforms are shown in Figure 8.

The mainframe of the Hummingbird is composed of
an AutoPilot board that includes (i) a LPC2146 ARM high-
level (HL) processor, (ii) a triple-axial compass for mea-
suring the vehicle’s heading, (iii) as inertial measurement
unit (IMU) and pressure sensor from attitude and alti-
tude measurements, (iv) a GPS unit for geolocalization, and
(v) low-level X-BLCD brushless motor controllers. Using
the Software Development Kit (SDK) provided by Asctech,
our backstepping+FST runs onboard the HL processor us-
ing a sample rate of 30 samples per second. The GPS po-
sition loop is set at 1 Hz, whereas the IMU loop is set at
100 Hz (the maximum transfer rate of the IMU data can be
set to 1 kHz using the serial interface). All data generated
by the IMU are sent to the ground PC station via wireless
data link (XBee 2.4-GHz module) for data analyses and user
visualization purposes.

The AR100 also provides a three-axis gyroscope, three-
axis accelerometer, three-axis magnetometer, GPS, and a
barometer. Moreover, it has a servo mounted in the main-
frame, which enables a commercial zoom digital camera
to be tilted up to 100 deg. This instrumentation ensures
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Table V. Aerial fleet parameters.

AR100 Hummingbird

Diameter (m) 1.0 0.63
Weight (kg) 1.32 0.6
Payload (kg) 0.25 0.2
Autonomy (min) 20 25
Wind load (m/s) 8 8
Max. velocity (km/h) 50 50

platform stabilization, manual control, and waypoint nav-
igation, as well the dispatch of the commands from a soft-
ware mission planner set in the ground station, which en-
ables the operation of the robot at a higher level.

A summary of the technical data of the two platforms
appears in Table V.

The ground station is composed of the communication
devices and a graphical user interface (GUI) for real-time
information of the mission. For the AR-100 quadrotor, a
graphical interface was developed to fulfill the needs of
a friendly-user experience. On the other hand, the Hum-
mingbird already provides a GUI that enables some ba-
sic functionalities for mission supervision. Figure 9 shows
the base station for the experimental setup and the GUI of
both quadrotor platforms (left for the AR-100, right for both
Hummigbirds).

In terms of communication architecture (see Figure 10),
the base station computer receives and send data to AR100
through a RS-232 downlink and uplink that operates be-
tween 2.3 and 2.5 GHz. The quadrotor can also be teleoper-
ated through a radio control (RC) system that relies on nine
available channels and operates at 35 MHz. Additionally, a
video transmission downlink at 688 MHz is also set to re-
ceive video images acquired by the digital camera. For the

Figure 9. Ground-PC station and the GUI provided to the user.
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Figure 10. Air–ground communications architecture.

Hummingbird, the vehicle sends and receives data through
the base station through a X-Bee Datalink that operates at
2.4 GHz, as previously mentioned. In terms of user super-
vision it is important to highlight that the mission can be
manually aborted using the GUI. For this reason, two pro-
cedures can be followed: (i) the quadrotor has to remain
in hovering maneuver waiting for manual flight or (ii) the
quadrotor will return to the home point (beginning of the
mission) autonomously.

5.2. Experimental Setup

Recalling the workflow of Figure 1, the steps followed in
order to performed a survey mission are as follows:

1. The operator defines the target mission field by selecting
the area’s vertices on a georeferenced image.

2. The vertices are passed to the negotiation algorithm,
which produces the area subdivision and assignment
(at this stage, the characteristics of the robots employed
such as endurance and the cameras’ FOV are hard coded
in the workflow).

3. The subareas are discretized and then the areas’ bounds
are computed, taking into account the required resolu-
tion and camera parameters.

4. Cells containing obstacles (e.g., water well, irrigation
systems) and subareas bounding cells are marked as no-
fly zone.

5. Coverage paths for each subarea are calculated.
6. Flight plans (list of waypoints) are sent to the robots.

7. Mission is simulated (optional step using a Matlab-
based simulator depicted in Figure 11).

8. Mission starts.

Given the limited sensing and processing capabilities
of the robots employed, direct perception for avoiding col-
lisions during flight is not feasible. On the other hand, com-
munication of the positions is not feasible because vehicles
do not have direct communication during the mission, and
indirect communication through a base station is not rec-
ommended due to a high risk of radio interference.

Thus, with simplicity and effectiveness in mind, colli-
sion avoidance is achieved through two basic principles:

• Different vehicles fly at different altitudes.
• Subarea bounds define a security zone: vehicles are not

allowed to enter it.

5.3. The Vineyard Field Experiments

5.3.1. Experimental Setup and Preflight Phases

Experiments were performed in a vineyard field, char-
acterized by its irregular layout and its variable altitude
profile. The target of this experiment was to verify the
system under PA common conditions, so adverse situa-
tions were set up: rough terrain irregularities with differ-
ent slopes, uneven perimeter, and different wind conditions
could be found depending on the subarea and the altitude
considered. It should be also highlighted that the perimeter
configures a nonconvex area, so as to validate the approach
presented.
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Figure 11. Steps performed for a real mission.

This complex environment was inscribed in a rectan-
gle [see Figure 12(a)]. Therefore, the workspace for this ex-
periment was defined as a 63,765-m2 rectangular area (see
Figure 7), where general parameters are set up as follows:

• Field size: 330 × 200 m
• Grid size: 10 × 10 cells
• Cell size: 32.7 × 20 m

According to the workflow, the first step in the pro-
cess is to divide the workspace into as many adjacent ar-
eas as quadrotors available. Figure 6 (top, left) shows the
three subareas resulting from this step. Next, flight plans
are generated [Figure 6 (top, right)]. Table VI summarizes
the results of this step. When a mission has been simulated
and the parameters for the CPP have been validated [Fig-
ure 12(b)], configuration data are sent to the corresponding
drones. The strings containing the waypoints for each mis-
sion are loaded into the scheduler of the drones, waiting for
the mission start signal.

Table VI. Details of the results obtained from multi-CPP on
the vineyard parcel chosen for the field tests.

Area 1 Area 2 Area 3

Turns 9 8 20
Computation time (s) 0.15 0.02 0.02

Note that the actual target workspace consisted of 65
of the 10 × 10 cells of the area, 12 of which would not be
sampled because they formed the subarea boundaries [cf.
Figure 6 (top)]. Thus, the quality of service in this experiment
has been 72% (18% of the area was not sampled).

5.3.2. Flight Results

During the experiments, flight parameters were moni-
tored and logged. Results allowed us to compare not only
the performance of each individual drone, but also the
global behavior of the system when facing hard conditions.
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Figure 12. Detailed experimental workflow results of three quadrotors performing vineyard field sampling and coverage. Labels
AV-1 and AV-2 correspond to the Hummingbird UAVs, AV-3 to the AR100 UAV.

Figure 12(c) shows the results of one test mission flight. In
the following, we analyze the outcome of this test.

The main requirement that aerial vehicles must accom-
plish for a reliable imaging survey is to have an accurate
three-dimensional (3D) positioning and be able to perform
smooth trajectories. This is important because the vehicles
have to acquire a set of georeferenced images that will be
postprocessed by an image mosaicking procedure in order
to build a map from the crop field surface. Owing to its
relevance on this mission, the first parameter analyzed
is altitude. Altitude accuracy plays an important role in
imaging surveys, because the image samples must be taken
from the ground at a determinate constant altitude. The
relationship between the camera FOV and the aerial vehicle
height above the ground is given by τd/τh = Id/l, where
τd , τh, Id , and l stand, respectively, for cell dimension,
aerial vehicle height, image dimension, and focal length of
the camera.

In Figure 13 (right) the altitude evolution for each
quadrotor during the flight is shown. On the left, the corre-
sponding Cartesian paths are plotted. As expected, the flat-

ter surface provides better results (see plot for quadrotor 1,
Figure 13, right, top). Altitude control also has a direct ef-
fect on battery evolution, reducing peaks and maintaining
a more stable discharging process. The mean altitude had
a maximum error of 3.35%, as shown in Table VII, which
is acceptable for an outdoor mission in which the platforms
are constantly subject to prevailing winds.

Errors in altitude location are not directly related
to accuracy in navigation over the XY Cartesian plane.
Figure 14 shows the results obtained in position tracking.
Compared to the paths shown in Figure 14 (bottom), where
real paths are superimposed on the theoretical paths on
workspace assignment, maximum errors are related to sud-
den variations in the quadrotor’s yaw axis (orientation).
The best example comes from the tracking error on zone 1.
In this flight, note an error increase of almost six times in
four moments (tA = 0.05 min, tB = 0.65 min, tC = 1.2 min,
tD = 1.4 min) when the quadrotor faces acute angles. This
is also confirmed by the relation between the number
of turns performed and the average position error. The
subarea with more turns (zone 3), and consequently with
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Figure 13. (Experimental) Cartesian path (left) and altitude tracking and power consumption during flight (right).

more yaw drifts, presents a position error greater than the
area with fewer turns (zone 2) (see Table VII). Table VII also
permits a first comparison between our backstepping+FST
controller and the commercial PID-based controller of the
AR100 UAV. The PE error for UAVs 1 and 2, adopting our
controller, is smaller than the error for UAV 3. UAVs 1
and 3 have a similar error, but note that UAV 1 was flying
at a higher speed. This comparison is done on different
paths and different areas. Appendix A illustrates a more
fair comparison between the two controllers under equal
conditions.

As far as flight speed accuracy is concerned, prelim-
inary tests have been done through simulations, with the
purpose of helping the design and tuning process of the
AV controllers. During the simulations the vehicles were
subject to wind speeds of 10 m/s in both the x axis and the
y axis. The vehicle dynamics during the simulations per-
formed well. However, real performance was not as good
as expected. The reason for this behavior is the winding
streams the vehicles are exposed to. Such winds are typi-
cal in hilly zones and can achieve peaks much greater than
10 m/s.8. For the purpose of our mission this drawback
can affect a system in two ways: when a vehicle is hover-
ing over a waypoint, because the drone must maintain its

8On one occasion, a strong wind stream lifted one vehicle to >100-
m altitude. The vehicle eventually landed some 500 m away from
the base station.

Table VII. Summary of the metrics measured during the
flights; flight took place on March 21, 2011, 15:20 hours,
Spanish time.

href h hE Vref V Vw
a PE

b

UAV no. (m) (m) (%) (m/s) (m/s) (m/s) (%)

1 20 20.67 3.35 5 3.22 13 2.3
2 30 28.95 3.50 5 2.97 13 1.5
3 30 28.69 4.30 5 2.41 13 2.5

aWind speed measured at base station.
bError accurately measured using Vincenty (1975) formula.

position to provide a clean and accurate image, and when
flying between waypoints, because the vehicle shall per-
form a smooth trajectory in order to optimize flight time
and power consumption.

Figure 15 shows a comparison between the simulated
and measured velocity profiles generated by the controllers
during the test mission.

Another important detail in a coverage mission is the
overall time of completion. Overall completion time can be
decomposed into coverage time and setup time. Moreover,
coverage time can be decomposed into effective and nonef-
fective time.

The coverage time is the neat time devoted to the
purpose of the mission. However, to accomplish such a
mission, there is an often underestimated and seldom
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Figure 14. Position tracking during flights. Labels tA, tB , tC , and tD refer to peaks of the tracking error.

Figure 15. Simulation (left) vs. experimental results (right) of velocity tracking.

Journal of Field Robotics DOI 10.1002/rob



Barrientos et al.: Aerial Remote Sensing in Agriculture • 685

mentioned factor, the human efforts for mission setup. Al-
though the AVs are full autonomous platforms, each one
must have an experienced pilot and/or a ground base op-
erator who supervises the mission. In this sense, we are
adopting a configuration similar to the one proposed in
Murphy and Burke (2008), in which a pilot is in charge
of supervising (and, if necessary, teleoperating) the UAVs
and a mission specialist is in charge of supervising the
mission. The typical and safer modality is to have two
persons in charge for each drone. The pilot is responsible
for supervising the mission from the ground and switches
from the automatic to manual mode in case there is some
system failure or emergency. The base-station operator is
in charge of supervising the mission at the highest level
(i.e., monitoring all the navigation data in real time). Al-
though there is no specific security legislation applied to
mini aerial vehicles, this measure is mandatory for safe
experimentation.

The mission presented here was carried out by three
pilots and two base-station operators. Table VIII shows the
time dedicated before and after the mission with the AVs.
This includes preliminary flights and communication tests
(e.g., ensuring that the corresponding ground stations are
correctly receiving and sending data). It is interesting to ob-
serve that the setup time increases with the area of coverage
(i.e., geographic area).

As mentioned before, the coverage time is composed
of an effective and a noneffective time. The effective time is
the absolute time the aerial vehicle is moving between way-
points until the final coverage trajectory is performed. The
noneffective time is the overall time hovering over the way-
points. The results obtained also show that both effective
and noneffective times increase with the number of way-
points per subarea.

The results of the field tests performed can be summa-
rized as follows:

• The accuracy of the navigation in the X–Y plane is af-
fected by the kinds of turns.

• The coverage time increases with the number of turns
and the number of waypoints (however, note that the
number of turns is not necessarily related to the number
of waypoints).

• Depending on the region where the mission will take
place, peak wind stream velocities must be quanti-
fied and taken into account for good speed tracking.
Simulation and tuning of the controllers shall take these
into account.

• Around 50% of the overall mission time was devoted to
system assessment and setup.

• Even if highly autonomous UAVs can be currently ob-
tained off the shelf, efforts are still needed as far as us-
ability and safety for their effective use for commercial
applications, especially when multiple UAVs are to be
employed.

Table VIII. Summary of the metrics measured after the flight.

UAV TE TĒ TC TL TM Pa Batteryb

no. (s) (s) (s) (s) (s) (m) (%)

1 141 42 183 282.76 465.76 373.74 7.64
2 151 45 196.43 81.85 278.28 339.75 8.399
3 213 75 288.02 313.25 601.27 650.52 12.39

aInformation obtained from a georeferenced image with a preci-
sion of ±3 m.
bRelative battery consumption.

6. DISCUSSION AND CONCLUSIONS

In this paper, a practical solution for performing aerial
imaging applied to precision agriculture by using a fleet of
UAVs has been presented. This paper provides a unified
view of the work we have been carrying out in different
fields: multirobot task planning, path planning, and UAV
control.

A simple and efficient strategy for the coverage of a
crop field using aerial robots for data collection has been
presented. The approach proposed includes two steps: in
the first step a given area is subdivided by the team robots
and each robot is assigned a subarea. In this phase the
robots are aware of each other and carry out this task
cooperatively. The second phase handles the workspace
sampling and the coverage planning. In this phase the
robots are unaware of each other and parallel path plan-
ners compute the coverage path for each robot. Finally,
a robust flight controller drives the AVs through the
mission.

The area partitioning and assignment distributed algo-
rithm is capable of taking into account the characteristics of
different vehicles, a feature useful in the case of heteroge-
neous fleets. The methodology employed for path planning
guarantees finding an optimal solution if one exists, provid-
ing coverage paths with minimal turns to the aerial robots,
ensuring that cells are not visited twice, and including fixed
and known obstacle9 avoidance.

The planning step introduces security boundaries be-
tween subareas assigned to the vehicles. These should be
carefully optimized in order to ensure suitable quality of
service and at the same time guarantee the security and
safety of the platforms. A way to get rid of the safety strips
that are mainly responsible for reducing the area covered
would be to take into account the cell dimensions in re-
lation to the AVs’ position accuracy and the probability
of having two or more than two AVs flying at the same
time in adjacent cells, analyzing the flight plans prior to the

9For instance, irrigation systems or other obstacles such as
machinery.
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beginning of the mission. In other words, a mission val-
idation step, using the optional simulation tool, could at
the same time eliminate the need for no-fly security strips
and ensure collision-free missions. Alternatively, achieving
100% coverage will involve the integration of temporal con-
siderations in the planner in order to always respect a safety
area around the UAVs, for instance using a validating plan-
merging operation (Gravot & Alami, 2001).

As shown by the field tests, reducing the number of
turns is extremely important because turns affect both mis-
sion time and, more important, the precision of the 3D po-
sitioning. We can also conclude that, contrary to what was
expected, position error is less affected by the speed of the
vehicle.

As far as control is concerned, it was possible to assess
the performances of the backstepping+FST technique
adopted by the Hummingbird robots (in substitution
for their original one) in comparison with the AR100
controller. The backstepping+FST technique has shown
better robustness against large disturbances as model un-
certainties were canceled thanks to integral action and the
incorporation of FS theory. Precision during tracking was
also improved. This feature clearly plays an important role
in open fields, where the vehicles are exposed to rapidly
changing conditions.

The field tests have also shown that local conditions (in
this case, the different slopes) must be carefully taken into
account because they can generate wind streams far more
rapid than the maximum wind velocities used in simula-
tions and measured at the base station. This is especially
true in wide areas. This aspect did not appear in other field
tests (e.g., cornfields, tests not reported here) due to the
simpler orography of the terrain.

Although not applied yet, orography information can
be incorporated in the planning stage, by adding preference
terms to the cost model of the vehicles during the negotia-
tions. Information regarding particular terrain-dependent
wind conditions in given regions would be treated in the
same way as in no-fly zones: vehicles would be denied to
fly over regions where expected winds would overcome
their limitations.

In general the operation protocol workflow has
worked well, providing a smooth tool from area definition
to mission execution. The decoupled area partitioning and
path planning steps allow for different partitioning to be
generated and examined by the operator prior to mission
execution. Also, after path planning has been performed,
the mission simulator allows simulating and validating the
mission beforehand.

However, we would like to point out that even with
a well-structured operations protocol and with highly au-
tonomous robots (capable of taking off, performing the
mission, and landing back to base autonomously), the re-
sources needed for deploying the robot team and setting up
the whole system play an important role. As far as human
factors, with three UAVs at least four persons are needed

for a safe mission: one backup pilot for each vehicle plus
one mission supervisor at the base station. As far as mis-
sion time is concerned, deployment time was about 50% of
total time for a single mission.

This is only partially due to the fact that the system is
not currently thought out for the end user, and its operation
has to be done by technical staff. Much work will be needed
in order to provide a simple and safe system to be operated
directly by farmers, especially in terms of a unified, friendly
GUI that provides task definition and mission execution
monitoring by untrained persons. For this reason, our view
is that a multi-UAV system as a farming tool such as the one
presented here would be better exploited commercially by
a company providing services (system plus technical staff)
to different farmers in the same area.

Finally, it is important to remark upon the unified vi-
sion provided by this work. In the literature a number of
papers can be found that regard either task planning path
planning or UAV control, but few works provide a com-
prehensive analysis of a whole system, from the theoretical
study of the individual technical issues to a complete field
experimentation.

7. APPENDIX A: BACKSTEPPING+FST CONTROL

To assess the assumption of improving flight control us-
ing the backstepping+FST, this appendix shows simula-
tion tests related to the accuracy of the aforementioned
controller against a PID control in terms of disturbance
rejection (strong wind). Many commercial autopilots use
PID methodology that is capable of controlling the sys-
tem during certain conditions, such as hovering or flight
without the presence of strong perturbations. However,
as experimentally demonstrated in Bouaballah (2007) and
Olfati-Saber (2001) and also in previous work (Colorado,
2010), PID controllers are capable but not efficient in
stabilizing the aircraft (in terms of attitude control) when
nonlinearities produced by Coriolis accelerations play a
significant role. This is produced when large disturbances
cause changes in velocity that result from rotation. PID con-
trollers have proven to be well adapted to the quadrotor
when flying near hover, but the backstepping+FST is ca-
pable of faster attitude stabilization mainly because of the
introduction of the terms φ̈d , θ̈d , and ψ̈d within control
laws (11) and (12) respectively, which consider the effects
of abrupt angular changes while flying a moderate speeds
(FS foundation).

Figure A.1 shows the cornfield scenario. Flying at rela-
tively high altitude (considering the sizes of the AVs), wind
strength and gusts play a fundamental role. Hence, one of
the main goals, as far as control is concerned, is to analyze
how the controller is capable of stabilizing the system when
strong wind disturbances are addressed.

For this experiment, the commercial PID-based au-
topilot of the Hummingbird quadrotor is compared with
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Figure A.1. (Simulation) control performance in terms of position tracking under strong wing perturbations. Backstepping+FST
against PID.

Table A.1. Summary of the metrics measured during simulation.

href h hE Vref V Vw
a PE

b

No. (m) (m) (%) (m/s) (m/s) (m/s) (%)

PID 1 20 20.04 0.2 2 2.3 10 2.5
2 20 20.12 0.6 5 4.8 10 8
3 20 20.2 1 10 9.8 10 23

BS+FST 1 20 20.04 0.2 2 2.05 10 1.2
2 20 20.08 0.4 5 5.2 10 3.8
3 20 20.17 0.85 10 10.3 10 6.7

aWind speed introduced as a force disturbance.
bAverage tracking error.

the backstepping+FST approach by measuring the posi-
tion tracking of the trajectory within the circle. In addition,
Figure A.1 also details the results of the Hummingbird fly-
ing at 20-m altitude and average linear speed of 5 m/s.

On average, the PID obtains maximum position tracking
errors up to 8%, backstepping+FST about 3.8% under the
presence of strong wing perturbations (wing velocity up to
10m/s). More details are given in Table A.1.
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8. APPENDIX B: INDEX TO MULTIMEDIA
EXTENSIONS

The video is available as Supporting Information in the on-
line version of this article.

Extension Media type Description

1 Video Steps performed for mission
setup and experimental flights
on the vineyards

The video accompanying this paper illustrates the
steps performed during the experiments on the vineyards,
the UAVs in flight, and the final result of the mission. The
target region is shown, along with its geographical coor-
dinates. Then the task partitioning and allocation process
is shown, where three polygons, representing desired re-
gions, evolve during the negotiation. The final agreed par-
tition is shown along with the routes computed by the path
planner. Next, the UAVs in action on the field are shown.
Finally, the performed trajectories are superimposed on an
image of the field to summarize flight results.
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