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Abstract

Purpose of Review Currently, there is a large body of research on multi-agent systems addressing their different system

theoretic aspects. Aerial swarms as one type of multi-agent robotic systems have recently gained huge interest due to their

potential applications. However, aerial robot groups are complex multi-disciplinary systems and usually research works

focus on specific system aspects for particular applications. The purpose of this review is to provide an overview of the main

motivating applications that drive the majority of research works in this field, and summarize fundamental and common

algorithmic components required for their development.

Recent Findings Most system demonstrations of current aerial swarms are based on simulations, some have shown

experiments using few 10 s of robots in controlled indoor environment, and limited number of works have reported outdoor

experiments with small number of autonomous aerial vehicles. This indicates scalability issues of current swarm systems

in real world environments. This is mainly due to the limited confidence on the individual robot’s localization, swarm-level

relative localization, and the rate of exchanged information between the robots that is required for planning safe coordinated

motions.

Summary This paper summarizes the main motivating aerial swarm applications and the associated research works. In

addition, the main research findings of the core elements of any aerial swarm system, state estimation and mission planning,

are also presented. Finally, this paper presents a proposed abstraction of an aerial swarm system architecture that can help

developers understand the main required modules of such systems.

Keywords Aerial swarm · Multi-UAV systems

Introduction

Unmanned aerial vehicles (UAVs), informally known as

drones, have been receiving increasing interest in academic

research as well as industrial applications due to the increase

of sensing and compute capabilities and the decrease of

their form factors and price. In addition, the development

of several technologies such as on-board intelligence and

autonomous capabilities has increased the utilization of

UAV systems in more applications. As a result, different

types of unmanned aerial platforms are now being used in

applications such as aerial photography and remote sensing
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[1], infrastructure inspection [2, 3], payload transportation

[4], precision agriculture [5], surveillance [6], and search

and rescue missions [7], to name a few.

Small and light-weight UAVs, also known as micro aerial

vehicles (MAVs), have further stretched the boundaries of

their applications. In addition to their portability, smaller

UAVs have more agility which allows them to navigate

through narrow environments, and cause less damage to

their surroundings due to their light weight. The small

size of MAVs, however, limits their capabilities in terms

of less flight time, on-board sensing and compute power,

and payload, which, as a result, significantly reduces the

number of tasks that they can perform individually. This

has motivated the development of aerial swarms [8•, 9•] in

which multiple UAVs cooperate in large teams to overcome

the limitations of the individual robots. Robot swarms are

envisioned to be fully distributed systems where each robot

observes its local neighboring environment and coordinates

with other robots to execute local actions that collectively

lead to achieving an overall swarm goal. Indeed, this is
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a multi-disciplinary complex system that requires tight

integration of multiple subsystems such as global and

relative localization, safe trajectory planning , and swarm-

level task coordination.

In this article, we review the main motivating applica-

tions of aerial swarms, see Section 5, and a discussion of the

core elements of an aerial swarm system, see Section 5 . In

Section 5, we share some thoughts that can help advancing

swarm systems towards real-world applications, and a pro-

posed modular system architecture. Finally, our conclusions

are presented in Section 5.

Overview of Aerial Swarm Applications

Although single-UAV systems have been heavily studied in

the literature and their numerous applications already exist

as mentioned in the introduction, there are limitations that

can be overcome by using a group of aerial vehicles which

are discussed in this section.

Entertainment

Aerial drone shows are considered one of the most

successful entertainment applications of UAV swarms. In

2016, Intel made the first Guinness world record of most

UAVs airborne simultaneously with a formation of 100

drones equipped with LEDs 1, followed by another record of

500 drones in the same year 2. Ehang, a Chinese company,

made new records by performing a light show with 1000

drones in 2017 3, followed by another show with 1374

drones in 2017 4. The latest record of the largest drone show

was performed by Intel in 2018 with 2018 drones 5.

In such performances, each drone is usually a simple

UAV platform (e.g., a quadcopter) equipped with an

on-board flight controller, GPS sensor for positioning,

customized LEDs, and a communication module to

communicate with the ground station. The ground station

is used to pre-compute the required individual missions

(collision-free trajectories in open 3D space) of all drones

during the show. Then, each mission is uploaded to the

corresponding drone which is executed by the on-board

1Intel, https://www.guinnessworldrecords.com/news/brand-or-agency/

2016/1/intel-stuns-during-ces-keynote-with-record-for-most–

drones-airborne-simultaneousl-411677
2Intel, https://www.guinnessworldrecords.com/news/2016/11/intel-

launches-500-drones-into-sky-and-breaks-world-record-in-spectacular-

style-449886
3Ehang, https://www.ehang.com/news/249.html
4Ehang, https://www.bbc.com/news/av/technology-43981145
5Intel, https://newsroom.intel.com/news/intel-breaks-guinness-world-

records-title-drone-light-shows-celebra-

tion-50th-anniversary/#gs.ibk3px

flight controller. The ground station also continuously

monitors the swarm status during the show and provides

controls for any required emergency actions.

While solving a multi-stage optimization problem in

a distributed setting can lead to optimal solution, these

methods are often not feasible for aerial swarms because

of the computational and communication requirements of

these methods. There has to be a trade-off between real-time

performance of an algorithm and optimal performance [10].

For instance, MPC-based srs presented a method of multi-

robot goal assignment based on linear sum assignment

algorithm, and time parameterized collision-free trajectories

in obstacle-free space. This work was extended by authors

in [11] to further optimize the goal shape, the scale, and

location of the goal formation.

There are also some research works which extend the

conventional aerial choreography to allow user interaction.

For example, [12, 13] show some methods to interpret

online user commands to real-time feasible behaviors of

quadrotor groups in theatrical performance.

Security and Surveillance

It is now a matter of time for drones to be deployed at

scale for industrial and commercial security around the

world. Due to the rapid advances in drone-related and AI

technologies and the noticeable decrease in price, several

of-the-shelf drones can now easily be integrated with on-

board monitoring sensors such as RGB and thermal cameras

for aerial monitoring surveillance. Surveillance drones

introduce several advantages over traditional methods (fixed

CCTV cameras and human patrols), such as extending

the monitored areas as well as reducing risks and costs

associated with human patrols. Single drones have been

already used as electronic eyes in manual and automated

operations. Drone swarms have further extended advantages

as they can cover much larger areas in shorter times.

With the ability of having on-board intelligence, UAVs

not only are able to collect intelligence information about

automatically detected and identified objects, but are also

able, as a fleet, to self-coordinate their tasks and collaborate

in order to accomplish surveillance tasks such as optimal

area coverage given vehicle and sensors constraints [14, 15],

convoy protection to a group of ground vehicles [16], and

persistent surveillance [17, 18].

The rapid advances in UAV technologies along with

their affordability comes with increasing risks of malicious

and unauthorized use. There are over 250 recorded UAV

incidents all over the world ranging from an unauthorized

UAV use over private properties to drone attacks over

critical assets [19].

Several technologies have been developed to help

providing counter-drone solutions that are able to detect
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unauthorized drone operations and provide mitigation

methods. A counter-drone system usually consists of

two main subsystems, UAV detection and tracking, and

mitigation or neutralization systems. Detection and tracking

can be accomplished by individual sensor technologies such

as radio frequency (RF) detection and spoofing, RADAR,

optical sensors (RGB and thermal cameras), and acoustic

sensor, and can also be done by fusing the aforementioned

technologies in order to maximize detection and tracking

accuracy. Mitigation and neutralization methods can be

performed using GPS jamming, RF hijacking, high-power

laser shooting, or the use of a drone system carrying a

net gun for intruder capturing and retrieval. In the case of

multi-UAV threats, the previous technologies become less

efficient. Therefore, there has been increasing interest in

developing multi-UAV pursuit systems.

Although swarm-based anti-UAV systems have not been

commercially realized yet, there are several research efforts

in that regard. For example, multi-agent pursuit-evasion

games [20] are a common method to describe such prob-

lems. Research works try to pursue this problem using

3 main approaches, namely, in game theoretical [21],

optimization-based [22], and reinforcement learning [23]

frameworks. Another important aspect in such problems is

the decision making architecture, centralized vs. decentral-

ized. In centralized control settings, a single control station

is responsible for computing actions for all agents which

are then communicated to agents for execution. However, in

decentralized control settings, robot actions are computed

on-board which avoids the single-point-of-failure issue in

the centralized settings. Most of the research work results

of this problem are based on simulations. Only few research

works reported experimental results and test beds using real

multi-UAV systems such as [24, 25].

UAV groups are also useful in surveillance applications

where large areas can be searched and covered in shorter

times compared to single UAV use. Examples of research

works in this area can be found in [26] where a full system

of multiple quadrotors capable of planning an autonomous

surveillance mission is presented, and in [6] where authors

presented a multi-UAV system for optimal sensor coverage

and with vision-based relative localization.

Collaborative Transportation

Aerial payload transportation has been receiving increasing

attention especially in the logistic sectors for package

delivery applications 6. Several companies have already

used single UAVs for small package delivery such as

Flirty with its first FAA-approved autonomous urban drone

6Delivery Drones, https://en.wikipedia.org/wiki/Delivery drone

delivery in the USA in 2016 7, Amazon [27] making its first

delivery using a drone in the UK in 2016, and Wingcopter

drone delivering COVID-19 test kits in Scotland in 2020 8,

to name a few. Currently, single UAVs can carry relatively

small packages due to payload and energy constraints. As a

result, heavier payloads would require a larger and heavier

UAV that is difficult to deploy due to safety and regulation

constraints.

On the other hand, larger payload can be transported

using a group of small UAVs which has been demonstrated

in several research works. For example, an early research

work in [28] presented methods of controlling a group of

quadrotors to grasp and transport a rigidly attached payload

with known mass. The presented control laws of each

quadrotor are decentralized given that each quadrotor knows

its fixed relative position and orientation with respect to the

body and payload goal in terms of hover position or desired

trajectory. Although the controllers were decentralized, the

required state estimation of quadrotor positions and velocity

is done in a centralized way using an overhead motion

capture system. For transporting a certain class of flexible

structures (e.g., flexible ring) using multiple UAVs, but still

rigidly attached to the UAVs, authors in [29] presented

methods to estimate payload deformation and stabilize it

in 3D using a centralized LQR controller. The quadrotor

positions and velocities were also accurately provided by a

motion capture system.

Most of the works in this area present experimental

results that leverage the accurate state estimation of

transnational and rotational states, which are provided by

overhead motion capture systems. Motion capture systems

are usually suitable for indoor settings such as laboratories.

In outdoor settings, however, state estimation of full six

degree-of-freedom rigid body models is more difficult.

With the advances of onboard compute power, several

visual- and inertial-based state estimation methods have

been developed which provide good estimation performance

for real outdoor application including multi-UAV payload

transportation. For example, authors in [30] presented a

system of multiple small quadrotors that carry an attached

rigid rod and navigate using only onboard RGB camera and

an IMU sensors.

Environmental Monitoring

There are potential advantages in using groups of UAVs

in environmental monitoring applications. For example,

authors in [31] presented a multi-UAV system for real-time

flood monitoring and tracking which is usually not a very

accurate task to accomplish using conventional forecasting

7Flirtey, https://www.flirtey.com/
8Wingcopter, https://wingcopter.com/
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methods. Each UAV carries a set of disposable sensors that

can be carried by flood streams and provide communication

to UAVs to estimate flood direction and velocity. Other

research works related to environmental monitoring such

as pollution level monitoring and assessment of forest

environments can be found in [32, 33].

Flying Cellular Networks

Although using UAVs for image and video acquisition is

currently the most popular application, developing the so-

called flying cellular networks [34] has been receiving an

increasing attention. On one hand, UAVs can be equipped

with cellular communication modules in order to extend

their operation range, therefore significantly improving

their service. On the other hand, UAVs can offer a unique

opportunity to deploy flying base stations that can be

dynamically located in 3D in order to boost coverage and

optimize user experience [35].

One of the main challenges to this kind of application

is the UAV’s limited endurance as a typical electric UAV

would require recharging every hour or so. This problem

can be overcome by utilizing tethered UAVs (TUAVs), see

[36] and [37]. A TUAV receives continuous power and

high bandwidth communication through a tether connected

to a base station. Interestingly, tethered drones for this

application outperforms free-flying UAVs especially for 5G

networks as the 5G equipment are heavier and consumes

more power than 4G.

Several organizations have made efforts into realizing

this potential application. For example, in 2014, DARPA,

one of the research arms of the US military, announced

the establishment of a program called Hotspot to develop a

swarm of drones that could provide one gigabit per second

communications for troops operating in remote areas [38].

Also, Google is working on a project called SkyBender

that experiments with a group of solar-powered UAVs to

test millimeter-wave radio transmissions, a technology that

could theoretically transmit gigabits of data every second,

up to 40 times more than today’s 4G LTE systems [39].

Core Elements of a Swarm System

A group of robots can exhibit a swarm behavior by

integrating coordination mechanisms in their controls.

The multi-agent systems literature provides numerous

tools and algorithms for coordinated motion, including

formation control [40], consensus [41], rendezvous [42],

and flocking [43]. For instance, Reynolds simulated the

flocking behavior at the individual level with three rules:

collision avoidance (staying out of the collision zone

of the nearby peers), velocity matching (achieving the

same velocity in the limit), and flock centering (moving

cohesively) [44]. By integrating environmental factors into

the model, more comprehensive swarm models can be

realized. Coordination methods can be thought of as tools

for a general module of swarm-level mission planning.

Swarm missions can be formation control, pursuit-evasion

problems, and optimal coverage, to name a few. Swarm

mission planning requires another module for swarm-level

state estimation in general and localization in particular. In

this section, swarm localization and planning methods are

discussed.

State Estimation and Localization

To apply coordination algorithms on robot swarms, each

robot must possess a sense of situational awareness by

perceiving its environment continuously. In aerial robot

swarms, this requirement corresponds to acquiring the state

variables of neighbor robots such as position, velocity,

and attitude. However, exchange of such data among

swarm members entails for designing localization and

communication mechanisms and may lead to a high

computational demand as the swarm size increases.

Localization refers to estimating a robot’s position in

a given map of the environment. As the robot travels in

the environment, it associates the collected sensory data

with the possible locations in the free space of the map.

Since this method leads to multiple hypothesis, Bayesian

filtering methods are usually applied to estimate the robot

position. Although single robot localization has been well

understood as one of the main research fields in robotics,

only primitive results have been proposed for the multi-

robot localization to date. The multi-robot localization

objective has unique demands. First, one is interested in

the relative quantities among the robots instead of the

positions of the individual robots. For instance, formation

control algorithms employ relative positions between robots

to achieve a desired formation shape. Second, the search

map is usually the complete 2D or 3D space in a multi-

robot setting as opposed to a constrained map. Third, the

multi-robot localization setting usually lacks a reference

landmark and is treated independent of the environment.

These unique challenges emphasize the complexity of the

problem and call for advanced techniques beyond the

classical localization solutions.

In indoor environments, motion capture (mocap) sys-

tems can provide a precise localization solution for multi-

robot systems (Fig. 1-left). In this approach, a set of

infrared camera modules connected to a ground station

calculates and broadcasts the positions of all robots in

the system’s coverage area. Therefore, they enable the

demonstration of swarm coordination and intelligence by

the use of centralized algorithms [45, 46]. From a practical
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Fig. 1 (Left) Indoor localization solution: A set of motion capture

cameras or wireless devices compute and broadcast the drones’ posi-

tions via a ground station. (Right) Outdoor localization solution:

Each drone fuses several sensor measurements such as GPS, camera,

and ultrawideband to compute the relative positions to its neighbor

drones

perspective, distributed coordination algorithms offer more

flexible, robust, and resilient robot swarm realizations com-

pared to the centralized approaches. Since such algorithms

are based on local interactions in the corresponding swarm

graph, they impose onboard sensing and communication

capabilities on each individual robot. Although a mocap

system can be employed to mimic distributed implemen-

tations, e.g., by restricting the information flow according

to the distributed rules, its immobile infrastructure restricts

the swarm’s freedom. Essentially, aerial robot swarms are

expected to function in unstructured environments as well.

In outdoor environments, a naive attempt would be

employing onboard GPS sensors for swarm coordination.

However, most commercial GPS sensors provide absolute

position data within three meters accuracy, which may not

be sufficient for operations where the drones fly close

by. Thus, either wireless communication among swarm

members [47] or onboard sensor fusion [48] can be used

to improve the positioning accuracy. Besides, the swarm

must behave robustly in case of GPS signal degradation,

e.g., in tunnels or buildings. Therefore, swarm robots should

have the onboard capabilities to handle such challenging

scenarios (Fig. 1-Right).

With the ultimate goal of providing a flexible localization

solution, researchers have designed several onboard local-

ization frameworks for aerial swarms. Onboard localization

frameworks can be divided into two categories: distance-

based and vision-based. Vision-based architectures rely on

onboard camera sensors to detect the neighbor robots [49–

52]. A common practice is to place patterns or ultraviolet

lights on the robots that can be detected by basic computer

vision algorithms. Recently, with the significant devel-

opments in the speed and performance of computational

boards, embedding the computationally demanding deep

learning algorithms in small boards on drones has become

possible. Primary results were demonstrated on a two-

drone system integrating the you only look once (YOLO)

algorithm in [53, 54]. Although remarkable performance

was obtained with the vision-based approaches, vision-

only algorithms have structural drawbacks. For instance,

the swarm configuration is constrained by the cameras’

field-of-views, which entails to maintain a suitable config-

uration during operation. Furthermore, the detection perfor-

mance is prone to ambient conditions and, for the learning-

based detection approaches, to the size of the training

dataset.

Collaborative simultaneous localization and mapping

(C-SLAM) algorithms can provide a viable coordination

mechanism if a reliable communication framework among

swarm members is guaranteed [55]. They achieve both

the localization and mapping objectives in a swarm at

the expanse of additional computation and communication

burden. The fundamental requirement of communication

with a central station continuously poses a challenge in real

world implementations, which was recently addressed in

[56].

Distance-based onboard localization architectures rely

on the inter-robot distances which can be acquired by

wireless communication devices such as ultrawideband

(UWB), radio frequency, or Bluetooth modules. Research
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in this direction have focused on estimating the relative

positions to neighbor robots in a robot’s local (body)

coordinate frame by utilizing Bayesian filtering methods

[57–61]. The relative positions are calculated based on

various geometric or optimization methods and filtered to

obtain a precise estimation. Particularly, omnidirectional

UWB sensors eliminate the FOV limitation and ambient

condition requirements of the vision-based approaches,

see Fig. 2 for a depiction of an outdoor experiment of

two drones in a leader-follower configuration using UWB

sensors only for localization. Also, the UWB device can be

modified to produce the bearing angle toward the neighbor

robots as well [62]. On the other hand, UWB sensor

implementation poses new challenges such as non-line-of-

sight measurements and accurate calibration.

The idea of improving the performance of multi-robot

localization by integrating the inter-robot communications

motivated the development of the cooperative localization

concept [63–65]. In such a framework, all robots run

a common filter such that once a robot receives a

measurement, the measured data together with some

filter parameters are transmitted to the other robots.

Cooperative localization proves how communication among

team members can enhance the localization performance,

and the entire algorithm can be designed in a centralized

or distributed way. However, as a natural outcome of

the additional communication layer, the processing burden

increases with the size of the swarm [63].

Swarm Path Planning

Path planning for aerial swarms is an active area of

research in robotics as well as control community [66].

Numerous approaches exist in the literature for driving a

robotic swarm from some initial configuration to a desired

configuration. In one approach, all the robots comprising

a swarm are considered as a team. In the team-based

approaches, the path planning problem is formulated as

a multi-stage optimization problem in which the global

objective function is defined as a sum of local cost functions

that are typically convex [67–69]. In this setup, the local

cost function corresponds to a robot but it depends on

the state of the entire system, which implies that the

actions of all the robots are dependent on each other.

An optimal solution to this global optimization problem

consists of optimal trajectories for all the robots in the

network.

The global optimization problem can be solved by a

centralized authority, which then communicates optimal

action trajectories to individual agents. The optimization

problem can also be solved in a distributed manner. For

distributed computation of optimal solutions, each robot

starts with a local estimate of a globally optimal solution.

Then, the robots exchange their local estimates with each

other via communication. Finally, each robot updates its

local estimate by using this information and solving a

local optimization problem, and the process is repeated.

If this communication is among all the robots, then the

centralized setup is recovered. Typically, each robot is

only allowed to communicate with a subset of other

robots. If the multi-stage optimization problem satisfies

certain properties like linear dynamics and quadratic cost,

then convergence to a globally optimal solution can be

guaranteed. For systems with uncoupled dynamics and

non-linear stage costs, distributed algorithms with stability

guarantees exist in the literature. However, the optimality

and stability guarantees are under the conditions that the

robots are allowed to communicate infinitely often and

the communication network topology remains connected

[69–71].

Fig. 2 Front (left) and top (right) views of an outdoor experiment of a

drone with three UWB sensors (hexacopter) estimate the relative posi-

tion toward another drone (quadcopter) with a single UWB sensor by

using the three distance measurements. The estimation signal is fed

back to the control algorithms of the drones for a coordinated flight.

The drones rely on their onboard sensors only and do not use a GPS

sensor for localization
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Solving the multi-stage optimization problem generates

optimal trajectories for an entire swarm. However, imple-

menting these trajectories in real time is another equally

important problem. One approach is to implement trajectory

tracking controllers that are designed to follow the optimal

trajectories. Even if the optimal trajectories are collision

free, the trajectory tracking controllers are augmented with

local controllers for obstacle and collision avoidance [72–

74], and [75]. These local controllers are often based on

potential functions that generate repulsive forces for avoid-

ing collisions among neighboring robots or obstacles. The

idea of using potential functions for obstacle and collision

avoidance has been around for a while, see [76] and [44].

However, using potential functions for an aerial swarm with

a large number of robots has its challenges as well since

these approaches often lead to local minima and cannot pro-

vide safety guarantees in the case of large number of fast

moving robots [77].

Another prevalent approach is to solve the multi-stage

optimization problem in a model predictive control (MPC)

setting as in [67, 69–71, 78]. In an MPC setting, an optimal

trajectory is computed typically over a finite horizon. Then,

the computed trajectory is executed for the first stage only

and the problem is solved again. MPC-based solutions

are popular when operating under unknown environments

since solving the problem in a receding horizon setting

compensates for unknown sources of disturbances. For

swarm applications, MPC makes sense because even in the

case of complete information about the environment, the

robots themselves act as a source of dynamic uncertainty

that has to be actively compensated.

While solving a multi-stage optimization problem in

a distributed setting can lead to optimal solution, these

methods are often not feasible for aerial swarms because

of the computational and communication requirements of

these methods. There has to be a trade-off between real-

time performance of an algorithm and optimal performance

[10]. For instance, in MPC-based solutions, the robots

have to communicate their entire trajectories with their

neighbors a large number of times (ideally infinitely

often). Moreover, after each communication, the robots

have to solve complex multi-stage optimization problem

for updating their local estimates. The time required for

this extensive communication and computation is not

available for decision-making in applications involving

aerial swarms. In a system comprising a large number of

UAVs moving at high speeds, a slight delay in decision-

making may lead to collisions among several robots

and break down the entire system. In such applications,

efficiently computing feasible actions that can guarantee

obstacle and collision avoidance is often more desirable than

computing optimal actions with delay. Thus, computing

suboptimal actions with real-time performance guarantees is

also an active area of research in multi-robot path planning

[22, 25, 68].

The other major approach for path planning in multi-

robot systems is motivated from game theory literature in

which each robot is modeled as a self interested decision

maker [79–81]. In this setup, each robot is assigned a utility

function that depends on its local information only. Local

information of a robot typically includes its own action

and the actions of its immediate neighbors, which it can

either observe using on-board sensors or can receive by

communicating with the neighbors. Then, the robots update

their actions to myopically maximize their utility through

local learning rules. Learning in games is an active area of

research and various learning rules have been proposed in

the literature that guarantee convergence to Nash Equilibria

that often correspond to desired global configurations (see

for instance [82] and [83]). Game theoretic approaches

have been used for various applications like vehicle target

assignment problems [84], distributed coverage [85], and

collision avoidance [80]. One important research challenge

in this approach is utility design for individual robots [86].

If the utility functions of individual robots are not properly

aligned with the global objective functions, the quality

of the global solution may deteriorate. Various quality

measures like price of anarchy and price of stability have

been developed to quantify performance loss because of the

misalignment between local incentives and global objective

[87].

Towards a Generalized Swarm System
Architecture

It is clear that aerial swarm systems require further real-

world oriented development in order to be deployable

at a large scale in realistic environments. Any UAV

swarm system, regardless of the specific application, should

include two main modules: state estimation (at the robot-

level and swarm-level) and swarm mission planning (also at

the robot-level and swarm-level).

As mentioned in Section 5, there are several ways to

develop swarm localization systems. However, those are

usually sensor-specific and, therefore, feasible to use under

certain environment conditions (e.g., feature-rich environ-

ments for vision-based methods, outdoor environment for

GPS-based methods). One way to enhance the localization

accuracy is to develop multi-modal localization system, i.e.,

multi-sensor fusion. More specifically, GPS sensors can be

used for outdoor localization, visual inertial odometry can

be used for locally accurate localization when GPS signal is

degraded or not available, and UWB can be used to provide

omni-directional relative localization in featureless environ-

ments where vision-based methods fail. By fusing all these
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Fig. 3 Proposed swarm system architecture with a centralized swarm-

level mission planning and distributed robot-level mission execution,

navigation, and state estimation modules. The top block (green) acts

like an interactive interface between the operator and the swarm-level

mission module (red) which are both running on a centralized control

station. The remaining lower blocks (blue) run local state estimation

and mission execution on individual robots

methods together, for example, using Kalman filter–based

algorithms, the overall robot-level and swarm-level local-

ization accuracy can be significantly improved and becomes

less sensitive to environment conditions by overcoming the

individual sensor limitations.

Complete swarm-level mission planning while account-

ing for individual robot’s trajectory planning and obsta-

cle avoidance is known to be computationally prohibitive

especially in large swarm systems operating in unknown

dynamic environments. To simplify such complex system,

a multi-layer mission planning architecture can be used

where swarm-level mission planning and robot-level plan-

ning are decoupled. The swarm-level planning layer would

be responsible for task assignment, high-level multi-robot

path planning, and defining swarm behaviors and commu-

nication requirements for the mission. The output of the

swarm-level mission planning would guide the individual

robot’s task execution including local trajectory planing and

reactive obstacle avoidance, for example. The abstraction

of the swarm-level planning layer makes the swarm system

modular and more general with respect to the robot platform

type and capabilities, and also enables the development of

heterogeneous swarm systems consisting of different types

of robot platforms such as aerial and ground robots.

The aforementioned abstraction layers (swarm-level

mission planning and state estimation) facilitate the

development of generalized software architectures of swarm

systems. For example, Fig. 3 shows a proposed hybrid

system architecture where the swarm-level mission planning

runs on a central control station and communicates with

robot-level state estimation and mission execution modules

to provide the desired high-level swarm behaviors. The

individual robots locally executes the assigned missions

while coordinating with each other by means of local

sensing and communications. This architecture can be

useful for small multi-UAV system, especially when the

individual robot on-board capabilities can not perform the

swarm-level mission planning tasks. Figure 4, on the other

hand, shows a completely distributed architecture where the

each individual robot has a swarm-level planning module

which requires coordination among the robots by means of

local sensing and communications.
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Fig. 4 Proposed swarm system architecture with both distributed

swarm-level mission planning and robot-level mission execution, nav-

igation, and state estimation modules. The operation interface module

(green) provides interaction with the swarm-level mission module. In

a distributed architecture, each robot has a local copy of the swarm-

level mission planning module (red) which exchanges information

with other robots for overall swarm coordination

Conclusions

This paper presented a summary of the main applications

related to aerial swarm systems and the associated research

works. Furthermore, a summary of research findings related

to the main components of any swarm system, localization

and mission planning, is presented. Finally, this paper

presents a proposed abstraction of an aerial swarm system

architecture that can help developers to understand the main

required modules.
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69. Müller MA, Reble M, Allgöwer F. Cooperative control of

dynamically decoupled systems via distributed model predictive

control. Int J Robust Nonlinear Control. 2012;22(12):1376–97.

70. Ferrari-Trecate G, Galbusera L, Marciandi MPE, Scattolini R.

Model predictive control schemes for consensus in multi-agent

systems with single-and double-integrator dynamics. IEEE Trans

Autom Control. 2009;54(11):2560–72.

71. Li H, Yan W. Receding horizon control based consensus scheme

in general linear multi-agent systems. Automatica. 2015;56:12–

18.

72. Jaleel H, Shamma JS. Distributed submodular minimization and

motion planning over discrete state space. IEEE Trans Control

Netw Syst. 2019.

73. Zavlanos MM, Pappas GJ. Potential fields for maintain-

ing connectivity of mobile networks. IEEE Trans Robot.

2007;23(4):812–16.

74. Olfati-Saber R. Flocking for multi-agent dynamic systems: algo-

rithms and theory. IEEE Trans Autom Control. 2006;51(3):401–

20.

75. Leonard NE, Fiorelli E. Virtual leaders, artificial potentials

and coordinated control of groups. In: Proceedings of the 40th

IEEE conference on decision and control (Cat. No. 01CH37228).

IEEE; 2001. p. 2968–73.

319Curr Robot Rep (2021) 2:309–320

https://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-spaceport-virgin-galactic
https://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-spaceport-virgin-galactic
https://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-spaceport-virgin-galactic
https://doi.org/10.1109/MCS.2008.929280
https://doi.org/10.1109/MCS.2008.929280


76. Khatib O. Real-time obstacle avoidance for manipulators and

mobile robots. In: Autonomous robot vehicles. Springer; 1986.

p. 396–404.

77. Koren Y, Borenstein J, et al. Potential field methods and their

inherent limitations for mobile robot navigation. In: ICRA; 1991.

p. 1398–1404.

78. Keviczky T, Borrelli F, Balas GJ. Decentralized receding

horizon control for large scale dynamically decoupled systems.

Automatica. 2006;42(12):2105–15.

79. Marden JR, Arslan G, Shamma JS. Cooperative control and

potential games. IEEE Trans Syst Man Cybern Part B (Cybern).

2009;39(6):1393–1407.

80. Mylvaganam T, Sassano M, Astolfi A. A differential game

approach to multi-agent collision avoidance. IEEE Trans Autom

Control. 2017;62(8):4229–35.

81. Marden JR, Shamma JS. Game theory and distributed control.

In: Handbook of game theory with economic applications.

Elsevier; 2015. p. 861–99.

82. Fudenberg D, Drew F, Levine DK, Levine DK, Vol. 2. The

theory of learning in games. Cambridge: MIT press; 1998.

83. Marden JR, Shamma JS. Game-theoretic learning in distributed

control. Handbook Dynam Game Theor 511–546. 2018.

84. Arslan G, Marden JR, Shamma JS. Autonomous vehicle-

target assignment: a game-theoretical formulation. J Dynam Syst

Measure Control. 2007;129(5):584–96.

85. Lim Y, Shamma JS. Robustness of stochastic stability in game

theoretic learning. In: 2013 american control conference. IEEE;

2013. p. 6145–50.

86. Marden JR, Wierman A. Overcoming the limitations of utility

design for multiagent systems. IEEE Trans Autom Control.

2013;58(6):1402–15.

87. Roughgarden T, Vol. 174. Selfish routing and the price of

anarchy. Cambridge: MIT Press; 2005.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Affiliations

Mohamed Abdelkader1,2
· Samet Güler3
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samet.guler@agu.edu.tr

Hassan Jaleel

hassan.jaleel@lums.edu.pk

Jeff S. Shamma

jeff.shamma@kaust.edu.sa

1 Prince Sultan University, Riyadh, Saudi Arabia
2 Systemtrio Electronics LLC, Abu Dhabi, UAE
3 Graduate School of Engineering and Science, Abdullah Gül

University, Kayseri, Turkey
4 Syed Babar Ali School of Science and Engineering, LUMS,

Lahore, Pakistan
5 Computer, Electrical and Mathematical Science and Engineering

Division, KAUST, Thuwal, Saudi Arabia

320 Curr Robot Rep (2021) 2:309–320

http://orcid.org/0000-0002-0518-852X
mailto: samet.guler@agu.edu.tr
mailto: hassan.jaleel@lums.edu.pk
mailto: jeff.shamma@kaust.edu.sa

	Aerial Swarms: Recent Applications and Challenges
	Abstract
	Introduction
	Overview of Aerial Swarm Applications
	Entertainment
	Security and Surveillance
	Collaborative Transportation
	Environmental Monitoring
	Flying Cellular Networks

	Core Elements of a Swarm System
	State Estimation and Localization
	Swarm Path Planning

	Towards a Generalized Swarm System Architecture
	Conclusions
	Declarations
	References
	Affiliations


