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Aero-engine real-time models are widely used in control system design, integration, and testing. They can be used as the basis for
model-based engine intelligent controls and health management, which is critical to improve engine safety, reliability, economy,
and other performance indicators. This article provides an up-to-date review on aero-engine real-time modeling methods, model
adaptation techniques, and applications for the last several decades. Besides, future research directions are also discussed, mainly
focusing on the following four areas:(1) verification of the aero-engine real-time model over the full flight envelope; (2) better
balance between real-time performance and accuracy in simplified methods for the aero-thermodynamic component level
models; (3) further improvement in the real-time performance for the identified nonlinear models over the full flight envelope; (4)
improvement of hybrid on-board adaptive real-time models combining the advantages of both model-based and data-based on-

board adaptive real-time modeling methods.

1. Introduction

Due to the harsh working environment of the aircraft en-
gine, the aero-thermodynamic process is complex, and its
characteristics can only be described by a complex multi-
variate time-varying model with strong coupling and
nonlinearity. Real-time aero-engine models with high ac-
curacy have been rigorously pursued. Consequently, much
research has been conducted, and many important results
have been obtained. In SAE AIR4548 standard, a real-time
engine model is defined as a transient performance com-
puter program, whose engine outputs are generated at a rate
commensurate with the response of the physical system it
represents [1]. In essence, the real-time model of the engine
is equivalent to a digital engine, and it can calculate the
steady-state and transient characteristics of the engine
within the entire flight envelope in real time with a certain
accuracy, which reflects the actual working state of the
current engine. This obviously forms important aspects of
propulsion simulation and becomes the basis for advanced
health management systems.

As early as the 1970s, in order to develop the aero-engine
controllers in software and hardware platforms, researchers

began to study real-time models. The early real-time models
were primarily simple analog devices. In 1972, Seldner et al.
[2] successfully performed real-time simulation of steady
and dynamic performance of the J85-13 turbojet engine on
an analog computer. With the increasing demand for real-
time models, the analog model shows the disadvantages of
low precision, high cost, and difficulty in use. The digital
model with low cost begins to enter the view of modeling
researchers. Koenig et al. [3, 4] developed digital model
programs GENENG and GENENG II for calculating the
design and nondesign point performance of turbojet and
turbofan engines. This early digital model is simply a simple
digitization of the analog model, whose real-time capability
and precision are also limited. In the mid-1970s, when
digital computer performance was limited, Szuch et al. [5, 6]
used multiple analog-digital hybrid models, which run in
collateral analog and digital processors to improve the
performance of real-time simulation. They applied it to real-
time simulations of TF30-P-3 and F100-PW-100 turbofan
engines. Literature [7] summarized the modeling technol-
ogies of real-time models before the 1980s, and the author
pointed out that the main difficulty of real-time modeling is
the limited computing power of hardware. At that time, the
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analog-digital hybrid model is the type of real-time model
with the best comprehensive performance. Since then, with
the rapid development of digital computer and Full Au-
thority Digital Electronic Control (FADEC) technology, the
digital model has gradually eliminated the analog model and
the digital-analog hybrid model, becoming the mainstream
of real-time models. According to different application re-
quirements, various types of real-time models are put for-
ward. In [8], real-time engine modeling technologies in the
1980s and 1990s are summarized, and the author points out
that the on-board real-time modeling technology is the
advanced research direction of real-time modeling. Besides,
the author also predicts that the main development direction
of the real-time model in the future is the self-adaption
improvement combined with intelligent advanced algo-
rithms. Since the beginning of the new century, with the
rapid development of artificial intelligence technology, aero-
engines have gradually entered the intelligence time, and the
requirements of intelligent aero-engine propulsion systems
for on-board adaptive real-time models are also increasing.
As the basis of intelligent engine control, NASA, General
Electric, Pratt & Whitney, and other institutions, companies,
and research scholars have placed the research on high-
precision on-board adaptive real-time engine models at the
first priority. Review [9] offers a historical review of on-
board modeling applied on gas turbine engines, and it also
establishes its limitations, and consequently the challenges,
which should be addressed to apply the on-board real time
model to new and the next generation gas turbine aero-
engines.

Up to now, in order to obtain real-time models with as
high a comprehensive performance as possible after bal-
ancing real-time performance, adaptability, accuracy, and
cost, a series of research achievements have been obtained.
Based on the previous achievements, this paper gives a
review of the development of aero-engine digital real-time
modeling technology and its application field over the past
decades. The structure of the article is as follows: the first
chapter describes the real-time modeling method; the sec-
ond chapter describes the modeling method of on-board
adaptive real-time model based on the first chapter; the third
chapter describes the application field of real-time model;
the fourth chapter summarizes the above chapters and looks
forward to the future development direction of real-time
model.

2. Real-Time Modeling Method

The aero-engine modeling methods commonly used are
divided into analytical methods and experimental methods
[10]. The analytical methods use the characteristic data of
each component and the constraints of the engine to es-
tablish a series of nonlinear equations describing the aero-
thermodynamic characteristics of the engine. By solving
the nonlinear equations, the steady and dynamic charac-
teristics of the engine can be simulated in the full flight
envelop. The nonlinear component-level model of the
engine established by the analytical method has high
precision, but the real-time performance is poor because of
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the complex calculation process. It can only run offline at
the ground state and needs to be simplified before the
available real-time model can be obtained. Experimental
methods are based on the principle of system identification.
The whole engine is regarded as a “black box.” Based on the
engine input and output data set, a model equivalent to the
measured system is determined from a given set of model
classes. Experimental methods do not need the users to
understand internal working mechanism and component
characteristics of the engine. The real-time performance
and accuracy of the model established by the experimental
method depend on the selected model class and the
identification principle.

2.1. Simplified Component-Level Real-Time Model. The
simplified component-level real-time modeling method is
basically the same as the component-level non-real-time
modeling method. However, in order to ensure real-time
performance without reducing too much accuracy, some
minor aero-thermodynamic characteristics need to be
neglected, and some approximate methods are adopted in
the algorithm. These simplified methods are summarized as
follows:

(i) Only retain low-frequency dynamics and ignore
high-frequency dynamics: The most common high-
frequency dynamics in aero-engines are volume
dynamics. Ignoring the effect of volume dynamics is
acceptable in most applications of real-time models,
which does not reduce the precision too much.

(ii) Improve the interpolation algorithm for component
characteristic curves: Characteristic curves of the
compressor and turbine usually have a large amount
of data. Interpolation calculations of component
characteristics are required in each cycle, which has
a great influence on the real-time performance of
the model. A common simplification method is to
optimize the interpolation algorithm [11, 12] or use
a polynomial not higher than three times or other
function to fit [13, 14], thus avoiding interpolation.

(iii) Simplify the formulas of aero-thermodynamic cal-
culation: The aero-thermodynamic calculation
process of the component-level model involves
complex calculations such as power exponents and
differential equations, as well as the possible time-
consuming problem of internal variable specific
heat iterated calculations. Simplifying the principle
formulas can reduce the complexity of calculation,
which in turn improves real-time performance.
These methods include approximating the com-
pressor’s temperature ratio to a piecewise function
of the pressure ratio to avoid a power exponent [15],
establishing an interpolation table for thermal
property parameters of gas [12] and so on.

(iv) Improve iterative algorithms, reduce the number of
loop iterations, or even use modeling methods
without iteration:The component-level model usu-
ally uses the Newton-Raphson method to iteratively
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solve the equilibrium equations. Although this al-
gorithm has high precision, it is usually inferior in
real-time performance. Scholars have done a lot of
researches on improving the real-time performance
in this aspect. These methods include reducing the
number of iterations by optimizing the selection of
initial guess values [16], using improved iterative
algorithms such as the Broyden method [12, 17, 18]
or even bringing in the variables and equations in
volume dynamics to avoid iterative calculations
directly [19, 20].

The simplified methods and results of the component-
level real-time model are shown in Table 1.

2.2. Identified Real-Time Model. System identification is a
data-driven modeling method. By giving the input signal,
using the input and corresponding output data of the aero-
engine test, the optimal fit between the data and the model is
found through a certain identification algorithm. This
identified modeling method does not require much un-
derstanding of the internal engine process.

In general, the identification method is divided into
nonparametric model identification method and parametric
model identification method [21]. When using nonpara-
metric model identification method, it is not necessary to
determine the specific structure of the model in advance, and
the response curve of time or frequency is used to describe
the system, such as impulse response, step response, and
frequency response; When using parametric model identi-
fication method, the specific structure of the model needs to
be chosen, and the model parameters are estimated by
minimizing the error criterion function between the model
and the system. Generally speaking, the transfer function
model and the state-space model are the most basic pa-
rameter identification models. The nonparametric model
obtained by the identification algorithm can be transformed
into a parametric model after appropriate processing. The
classification of identified real-time models is shown in
Figure 1.

2.2.1. Linear Identified Real-Time Model. Since linear system
theory has developed very maturely, the development of
accurate aero-engine linear model is of great help to engine
control. If there is an accurate linear real-time model of the
engine, it is possible to carry out a large number of control
methods based on linear control theory and improve the
design of aero-engine control system. Establishing the linear
identified real-time model of engine is usually based on
high-precision  aero-thermodynamic  component-level
model or test data, which can be divided into two categories:
time domain and frequency domain.

The most commonly used linear identified real-time
model is linear parameter varying (LPV) model in time
domain identification. The concept of LPV system was first
put forward by Shamma in 1990s, and its structure is as
follows:

x = A(a)x + B(a)u,

(1)
y =C(a)x + D(a)u,
in which xeR" is the state vector; yeR" is the output vector;
ueR? is the control vector; aeR’ is the scheduling parameter
vector.

The basis of the aero-engine LPV model is the com-
ponent-level model. Generally speaking, the two most
critical steps in establishing a LPV model are obtaining
accurate small deviation state space models in steady-state
points and choosing the appropriate scheduling method.
Partial derivative method and fitting method are commonly
used to obtain a small deviation state space model [22]. As
early as 1978, Geyser [23] had already developed a tool
DYGABCD to calculate A, B, C, and D matrices of the state-
space model on each steady-state point using a nonlinear
engine model. Up to now, traditional parameter scheduling
methods include linear interpolation and fitting of a poly-
nomial (no more than 3-order), and the scheduling pa-
rameter « is usually rotational speed, and they have huge
room for improvement in accuracy and real-time perfor-
mance. Domestic and foreign scholars mainly research and
improve these two aspects.

In terms of improving the accuracy and real-time per-
formance of the small deviation state space model, Mihaloew
and Roth [24] and Daniele [25] consider that the traditional
partial derivative method uses a positive perturbation for a
given small disturbance amount, which will result in the
problem that obtained state-space model may have a large
dynamic error in the field below the steady state point. So the
symmetric perturbation method is used to reduce this error.
In addition, Daniele’s research has established a reduced-
order model for the problem of excessive output parameters
in the F100 engine. It improves the real-time performance of
the LPV model. Sugiyama [26] proposes a corresponding
solution to three problems: (1) the indefinite selection cri-
terion of the small disturbance size in the partial derivative
method; (2) the indefinite calculation method of the partial
derivative; (3) the excessive gap of the coefficient matrix in
the whole flight envelope. Duyar et al. [27] calculate the
coefficient matrix of state space model by « standard
method. Kim et al. [28] apply the variable perturbation to the
small perturbation method in obtaining the partial deriva-
tive needed in state space model, and the fuzzy logic is used
to select the large, medium, and small sizes to solve the
convergence problem of the solver in the nonlinear starting
model at low speed during linearization. In addition, using
artificial intelligence algorithms such as genetic algorithms
[29], particle swarm optimization algorithms [30] and so on
can also effectively improve the accuracy of the small de-
viation state space model.

In terms of improving scheduling methods, Kulikov et al.
[31] use an interpolation scheduling parameter, which
considers high and low speeds synthetically, and a real-time
model of a twin-shaft turbojet engine has been established
successfully by using this interpolation scheduling method.
Yang et al. [32] comes up with a nonaffine parameter-de-
pendent LPV modeling method, and the polynomial-based
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TaBLE 1: Simplification methods for component-level real-time models.

Reference Year Sﬁgﬂgzd Verification scope Real-time performance Accuracy
R 5% to o state on the groun s . o description
[13] 1981 W), 2) 62.5% to 100% he g 4 Single-step running time on Xerox No d .
Sigma8 is 5.7 ms
. Single-step running time on 80836 Within the allowable
0, V)
[15] 1991 M, () 55% 10 95% in sea level Microcomputer system is less than 10ms  error of the project
. Single-step running time on 33M IBM- . o
[14] 1994 1), (2) Idle state to maximum state PC/386 is 25 ms Relative error<5%
[17] 2001 1), (4) Idle state to maximum state Single-step running time on 90 MHz <1%
Pentium II <15 ms
[19] 2003 (4) The whole flight envelope No description No description
Ground state and two acceleration
. -~ — Single-step running time on IBM/PC o
[20] 2004 (4) progresses in 15\11;6— 0.3, H=3km Pentium IIT 866 is 1 ms <1%
[18] 2010 1), (4) Idle state to maximum state No description No description
[11] 2017 (1), (2), (4) Ma:0~0.8 H:0~15 km No description <5%
1), (2), (3), 0 o Single-step running time on 168 MHz o
[12] 2017 (4) 70% t0100% in sea level STM32F407 is 1.55 ms <0.2%
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Figure 1: Classification for identified real-time models.

LPV modeling method is firstly employed to obtain the basis
matrices, and then the Radial Basis Function Neural Net-
work (RBFNN) is introduced for the online estimation of the
nonaffine model parameters, which improves the simulation
performance.

The LPV model is widely used, but it also has inherent
problems. The accuracy is generally low in the dynamic
process segments with large nonlinearity and large transient

response. To solve these problems, colleges as well as re-
search institutions constantly explore new modeling
methods for linear identified real-time models in time
domain.

In 2002, the Institute of Advanced Dynamics of Harbin
Institute of Technology proposed a linear variable parameter
model with nonlinear characteristics constructed by the
linearized model—expansion model based on equilibrium
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manifold [33]. Compared to the LPV model, the effective
range is extended to all steady-state points. The algorithm of
equilibrium manifold expansion model is simple and easy to
implement. It does not require detailed component char-
acteristic data during modeling. Besides, it can even quickly
establish a simplified model of the engine at any time by
using a two-step identification method of dynamic and static
separation. According to the value of the scheduling vari-
able, the quasistationary working equation of the engine and
the related output parameter equation in the state of the
current scheduling variable can be directly obtained. When
establishing an equilibrium manifold expansion model, the
selection of scheduling variables and the mapping type of
working points are the main factors that determine the
accuracy and real-time performance of modeling. After
more than ten years of development, the equilibrium
manifold model has great potential application value in
hardware-in-loop and on-board models [34, 35].

In order to make the state variable model have the ability
to update online, Pang et al. [36] directly uses the engine
component-level model to obtain the exact partial deriva-
tives online. Then, the accurate state variable model at any
operating point can be calculated online, too. Compared to
piecewise linearization model established offline, this
method can get the state variable model online, which
improves the accuracy of the real-time model.

In addition, real-time modeling methods proposed by
other scholars in the time domain include dynamic equa-
tions method [37], novel generalized describing function
(NGDF) method [38], analytical linearization method [39],
dynamic coefficient method [40], multilevel identification
method [41], and hybrid method [42] (transfer functions
combined with fitted functions). From three most important
criteria of aero-engine real-time model, accuracy, real-time
performance, and application of range, all linear identified
real-time modeling methods in time domain are summa-
rized in Table 2.

In addition to the time domain identified modeling
method, the frequency-domain identified modeling tech-
nique has great potential for establishing a model that can
reflect physical features and precision requirements. The
frequency-domain model can also be used to directly es-
timate the transfer function model. In frequency-domain
identified modeling, it is especially important to select the
appropriate excitation signal that can excite all modes of
the system. In the early 1990s, the US Air Force began to
apply the frequency-domain system identification method
to aircraft control system design and developed a definite
identification process [43]. After that, the researchers be-
gan to apply the frequency-domain identification method
of the aircraft control system to the establishment of the
real-time model of the aircraft engine. Evans et al. [44, 45]
use multiple sinusoidal signals as excitation signals for
frequency-domain identification to obtain the nonpara-
metric model and parametric model of the engine. For
models of different order, a series of engine operating
points are selected, and the most excellent identification
model is judged by calculating the cost function and the
error autocorrelation function. This method is verified

based on the test data of Rolls-Royce’s dual-rotor Spey
MK202 engine. Schoukens et al. [46] use a random sinu-
soidal signal to establish a linear dynamic model, which
replaces the nonlinear dynamic model. This study defines
the concept of Relevant Linear Dynamic System (RLDS)
towards Nonlinear System (NLS) and establishes the re-
lationship between RLDS and NLS by random numbers.
The parameter model is set by using RLDS, and it proves
that this model has good convergence to RLDS. Liu [47]
designs a multisinusoidal excitation signal suitable for
aero-engine identification and establishes a constrained
frequency-domain maximum likelihood criterion function
based on the compound normal probability distribution,
and the least square method is used to establish the esti-
mated value of parameters. In his results, a multivariable
frequency-domain maximum likelihood identification
method with constraint is proposed, which has better
suppression of noise and improves the accuracy of the
linear model of the engine.

2.2.2. Nonlinear Identified Real-Time Model. As the per-
formance requirement of the aero-engine continues to in-
crease, the accuracy requirement of the identified real-time
model is also constantly increasing. The accuracy of the
traditional linear identified model is hard to be further
improved. In recent years, the research on nonlinear system
identification methods based on finite observation data sets
has become more and more mature. Artificial intelligence
algorithms, which have the characteristics of association,
fuzzy ability, and high nonlinear processing ability, have
developed rapidly, and more and more applications begin to
be applied to the field of aero-engine real-time modeling.
These types of models include NARMAX model, block
structure model, fuzzy model, Markov model, neural net-
work identification model, and support vector machine
(SVM). Such identification models usually rely on a large
amount of data training, the computational complexity is
usually high, and the real-time performance and accuracy
are difficult to balance, so they have great potential to im-
prove. This section briefly summarizes the above principles
of nonlinear identification models and the corresponding
real-time modeling research results.

(1) NARMAX model. The nonlinear auto regressive
moving average (NARMAX) model is a universal
nonlinear system structure proposed by Billings in
1982. It is suitable for describing nonlinear dynamic
processes of aero-engine system, and it usually
combines various artificial intelligence algorithms to
identify parameters and optimize structure.

(2) Block structure model. Block structure models
comprise Hammerstein model, Wiener model,
Wiener-Hammerstein model, and Hammerstein-
Wiener model. These models contain different cas-
cade connections of nonlinear static systems and
dynamic linear systems. Although these models are
the simplest types of block-oriented nonlinear sys-
tems, they appear in many engineering applications.
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TaBLE 2: Summary of identified real-time linear modeling methods in time domain.

Reference Year Method Analysis of research results
Verification range is Ma: 0~0.2 and H: 0~5 km. Single step running time of the model
[24] 1982 on Xerox Sigma 9 is 8.9 ms and output error is less than 6%. This model method is
fully verified in each aspect.
Digital simulation verification range is the whole flight envelope (consist of 6 typical
[25] 1979 ; : : WHO'S P
operating point, but it has no hardware verification and accuracy has no description.
[26] 1994 Digital simulation verification range is the whole flight envelope and model relative
error is about 2%, but it has no hardware verification.
[27] 1992 Digital simulation verification range is 87% to 99% state on the ground and model
relative error is about 4%, but it has no hardware verification.
28] 2006 LPV method Digital simulation verification range .is fro_m idle state to maximum state and starting
progress. No hardware verification and no accuracy description.
Digital simulation verification range is H=0, Ma=0 and H=10km, Ma=1.3. No
[29] 2006 o ran .
hardware verification and no accuracy description.
[30] 2014 Digital simulation verification range is Ma: 0~1.2 and H: 0~11 km. Model relative
error is about 3.5%, but it has no hardware verification.
31] 2004 Digital simulation verification range is from idle state to maximum state on the
ground. Model relative error is about 4%, but it has no hardware verification.
Digital simulation verification range is from idle state to maximum state on the
[32] 2019 ground, 13 equilibrium points are selected. RMSE of the matrices A and B is less than
0.6. Model has no hardware verification.
The scheduling parameter is selected as the corrected high-pressure rotation speed.
[34] 2010 Verification range is from 83% to 93% state on the ground and single step running
time on 2.66 GHz CPU is 0.17 ms. Model relative error is less than 4%.
Equilibrium manifold expansion A fitting idea of preconstructing polynomial dynamic coeflicients is proposed to
[35] 2018 improve the interpolation accuracy of dynamic.coeﬂvicients. Verification range is Ma:
1.1~1.6 and H: 9~14km and single-step running time on STM32F407 is less than
0.5ms. No accuracy description in detail.
ial derivati i Accurate state variable model at any operating point in the whole flight envelope can
[36] 2018 Exact partial derlvative onfiine p. .1 ulated online. Average single step running time is less than 1.68 ms and model
obtained method . .
relative error is less than 2%.
The coefficients of the model are easy to determine, no iterations, and the adaptability
[37] 1992 Dynamic equations method  is easy to expand. Hardware verification range is the whole flight envelope and single-
step running time on HH-AT is 18 ms, model relative error is less than 3%.
Verification range is from idle state to maximum state and accuracy of large transient
[38] 2004 NGDF method response is improved. The model running on Pentium III 1~2s is as same as the real
engine operating 2~4s.
Verification range is the whole flight envelope and accuracy of large transient
[39] 2011 Analytical linearization method l.respgnsg is improved. The.real—time pgrformance is .equivalent to. the Piecewise
inearization model. Normalized uncertainty of output in large transients is less than
0.07 (piecewise linear model is 0.18).
Verification range is from idle state to maximum state, single step running time on
[40] 2015  Dynamic coeflicient method 100 MHz TMS320F2808 is 0.2 ms and accuracy of transient process is less than 6%.
The structure is flexible and simple, it has good real-time performance.
The degree of fit is around 90%, which has great potential for improvement. This
[41] 2017 Multilevel identification method  method can be applied to closed-loop systems whose controller parameters are
unknown.
Verification is from 77% to 100% HP shaft speed on the ground. This method
[42] 2017 Hybrid method combines transfer functions with fitted functions. Dynamic modeling error is less
than 3%.

(3) Fuzzy model. The fuzzy model is a model established is a nonlinear system with high uncertainty and
by using fuzzy mathematics to describe certain difficult in establishing mathematical model, so the
features and internal relations of objective things. fuzzy modeling method may have great advantages.
Because the fuzzy logic system has the characteristic (4) Markov model. The Markov model is a statistical
of uniformly approximating any nonlinear function model. The discrete dynamic system can be
defined on a dense set in arbitrary precision, so it has expressed as an N-order Markov process. Some

been widely used in the field of nonlinear system

scholars conduct researches on aero-engine identi-

identification in recent years. For the aero-engine, it fication based on Markov model.
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(5) Neural network model. Neural network is a research
hotspot in the field of artificial intelligence since the
1980s. It abstracts the human brain neural network
from the perspective of information processing,
establishes a simple model, and forms different
networks according to different connection methods.
The neural network uses the input and output data of
the system to learn to make the specified function
error value reach the given requirement, and the
mapping relationship between input and output is
summarized. The neural network is widely used in
the identification of nonlinear systems such as aero-
engines.

(6) Support vector machine. Support vector machine is a
pattern recognition method based on statistical
learning theory proposed by Vapnik in 1995. It
shows many unique advantages in solving small
sample, nonlinear, and high dimensional pattern
recognition problems. Support vector machine has
fewer adjustment parameters than neural network,
and the modeling complexity is greatly reduced. So,
the application of support vector machine to the
identification of aero-engine dynamic process has
great potential.

From the three most important criteria of aero-engine
real-time model, accuracy, real-time performance, and ap-
plication of range, critical discussions of modeling methods
for nonlinear identified real-time models are shown in
Table 3.

2.3. Summary. This chapter introduces different methods
for building real-time models. The advantages and disad-
vantages are summarized in Table 4.

3. On-Board Adaptive Real-Time Model

Due to the normal aging of gas turbine engines from erosion,
corrosion, fouling, and tip clearance change over the life
cycle, the real-time model may be seriously mismatched with
the real engine, because the engine performance deviates
from its nominal state. To solve the model mismatch
problem, on-board adaptive real-time model is required.

The establishment of the engine on-board adaptive real-
time model is divided into two steps: one is to establish a
high-precision real-time model of the nominal engine; the
other is to implement the adaptation part for degraded
engine. Several methods for nominal engine modeling have
been introduced in detail in the above chapters. This section
describes how to implement the adaptation part for the
degraded engine.

The main idea for on-board adaptive real-time modeling
is that once the engine malfunctions or degrades, the engine
will deviate from the rated operation state. Any off-design
operation of the engine will cause excursion of its output
parameters, so we can estimate the off-design operating
characteristics of the engine by the offset of the output
parameters. At present, the methods for establishing an on-
board adaptive real-time model mainly include adaptive

real-time modeling method based on Kalman filter, data-
based adaptive real-time modeling method, and hybrid
adaptive real-time modeling method.

3.1. Adaptive Real-Time Modeling Method Based on Kalman
Filter. 'The principle of the adaptive real-time modeling
method based on Kalman filter is that, according to the
deviation between the actual measured parameters of the
engine and the estimated parameters calculated by the real-
time model, extended Kalman filter technique is used to
correct the based value of the real-time model online. This
method is a combination of modern control theory and
traditional modeling technology. It is especially suitable for
automatic correction of the model in dynamic process,
which can more fully reflect the operating state of the
engine.

The schematic diagram of this adaptive modeling idea is
shown in Figure 2. It contains the Kalman filter and the on-
board nominal engine model. The modules are described in
detail as follows:

3.1.1. Kalman Filter. In order to estimate the component
performance degradation using the deviation between the
model output and the actual engine measurable output, it is
necessary to consider the effect of engine performance
degradation in the engine state variable model. So, the
engine health parameters (such as flow or efficiency of major
components) need to become the state variables, and the
engine piecewise augmented state variable model in the
flight envelope is established offline. Then, the corre-
sponding Kalman filter is designed as the state estimator. In
the actual working process of the on-board adaptive real-
time model, based on the offset between the estimated
parameters from the real-time model and the actual engine
measurement parameters, the designed Kalman filter is used
to estimate the degradation of the health parameters of the
engine, which makes the on-board real-time model perform
adaptive correction.

3.1.2. On-Board Nominal Engine Model. The on-board
nominal model usually adopts the simplified component-
level model (CLM), linear identified models as introduced in
chapter. The adaptive correction of the model is performed
in real time through the degradation of the component
health parameters estimated by the Kalman filter, and then
the corresponding engine performance parameters (thrust,
surge margin, etc.) can be updated.

For a long time, researchers have made some effective
improvements to the adaptive modeling method based on
Kalman filter and try to apply them on the actual engine. In
the early 1990s, NASA used a “steady-state linear mod-
el + nonlinear performance parameter calculation + Kalman
filter” composite real-time model in performance optimi-
zation control, which has been successfully applied on the
F15/F100 engine [64, 65]. In 2002, Pratt & Whitney de-
veloped an on-board real-time model STORM. It used the
estimated parameters of the Kalman filter to correct the
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TaBLE 3: Summary of identified real-time nonlinear modeling methods.

Reference  Year Analysis of research results

Type

A multiobjective genetic algorithm based on the NARMAX model is proposed, verification

[48, 49] 12%%?’ range is 55%~85% rotational speed on the ground. Model accuracy of large transient is low and
real-time performance has no description.
Semiphysical simulation experiments are carried out for real-time verification, verification
[50] 2016 NARMAX model range is from idle state to maximum state on the ground, and model accuracy is more than
92%.
Volterra series model (a type of NARMAX model) is used describe the dynamic working
[51] 2004 process of the engine between the idle state to maximum state on the ground. Real-time
performance has no description.
[52] 2014 Hammerstein-Wiener model is usgd. Simulation shows.that the application range of each H-
Block structure . ' W model is larger .than those ll.near models. '
model Wiener model is used as the nominal engine model. Simulation shows that compared with
[53] 2020 piecewise linear model and NGDF, Wiener model is the best candidate for nominal engines
on-board modeling when unmeasured parameters are concerned.
[54] 2007 Verification range is cruise state, real-time performance is poor because identification needs
20s, only offline modeling is available. Relative error is less than 0.15%.
Compared with [54], verification range is extended to the whole flight envelope. Identification
[55] 2013 Fuzzy T-S model time is shorten to about 1s, it is potential for online correction combined with real-time data.
Y Relative error is less than 0.18%.
Some contributions are made for identifying a T-S fuzzy model for turbofan aero-engines with
[56] 2018 guaranteed stability, which facilitates the application of the fuzzy control. Accuracy index
NMSE is less than 3.4 * 107>,
Verification range is from minimum thrust state to the take-off state on the ground, real-time
[31] 2004 Markov model performance is 20 times better than using the RBF neural network model. Average speed error
is around 4 rpm.
[57] 2002 High accuracy in low frequency band simulation.
[58] 1998 No iteration is needed and suitable for online identification. Relative error is less than 107*.
[59] 2015 Offline training and real-time performance is poor. Accuracy index MSE is less than
328 107,
[60] 2000 Neural network Offline training and real-time performance is poor. Accuracy index MSE is less than
model 57 %1077,
The training time is greatly reduced compared to the BP-based algorithm, and the number of
[61] 2000 training steps is only 20. Model relative error is less than 1.2% in large transient, but
verification range is only in cruise.
[62] 2004 Verification range is cruising and landing conditions. Relative error is less than 4%. Real-time
Support vector performance has no description.
[63] 2010 machine Compare with [62], support vector machine learning speed is improved and sample size is
reduced. Relative error is less than 0.35%.
TaBLE 4: Comparison among different types of real-time models.
Type Advantage Disadvantage

Simplified component-
level real-time model

Engine physical characteristics can be
retained.

Difficult to balance the real-time performance and accuracy, little
simplification can lead to huge accuracy loss.

Difficult to cover the whole flight envelope; low accuracy in large
transient; robust problems may arise when piecewise controllers are
integrated.

Difficult to meet the requirements of precision, data storage and real-
time performance at the same time.

Linear identified real-time Real-time performance is good, linear
model control theory can be applied.

Nonlinear identified real-
time model

High approximation accuracy for
nonlinear dynamic processes.

nonlinear on-board real-time model. One disadvantage of
STORM is that it has limited scope for abrupt fault on some
components. STORM has been successfully verified on the
F22/F119 engine [66]. Suglyama [67] designs a constant gain
extended Kalman filter to improve the real-time perfor-
mance of the traditional extended Kalman filter gain cal-
culation. This method has completed the feasibility

verification on the single-axis turbojet engine. Chen [68]
proposes an improved Kalman filter with input integral
compensation for the problem that the traditional Kalman
filter designed at a design point has small applicable range,
which solves the problem of estimation accuracy and ap-
plication range. In addition, the standard orthogonal de-
composition method is used to design an adaptive model of
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FIGURE 2: Block diagram of adaptive real-time model based on
Kalman filter.

the reduced-order Kalman filter based on the engine with
only a few sensors operating smoothly. Compared with the
traditional method, the accuracy of this method is not re-
duced, and it is more practical, and this method is needed to
be verified in a real engine in the future work.

Through these researches results, we can find that
practicality can be improved by (1) simplifying the Kalman
filter design method such as reducing numbers of Kalman
filters; (2) adopting a constant gain. The main problem for
adaptive real-time modeling methods based on Kalman filter
is how to extend the applicable range of the Kalman filter at
one design point.

3.2. Data-Based Adaptive Real-Time Modeling Method.
Since the beginning of the 21st century, with the develop-
ment of artificial intelligence technology, data-based adap-
tive modeling methods have begun to receive attention in
the field of adaptive real-time models, such as neural net-
works and support vector machines. Compared to Kalman
filters, the adaptive module based on data does not need to
know the characteristics of the physical object; it only needs
to transform the input and output data of the research
object. The data-based adaptive real-time modeling method
selects some suitable engine measurable parameter offsets as
inputs, and it takes the component performance degrada-
tions, which reflect the engine health condition as outputs.
Block diagram of adaptive real-time model based on data is
shown in Figure 3.

The literatures [69, 70], respectively, use BP and MGN
neural network to replace the Kalman filter to establish the
corresponding adaptive module in the on-board real-time
model. Wei et al. [53] propose an on-board modeling
structure named Hybrid Wiener model (HWM). In this
research, Wiener model is chosen as the on-board nominal
engine model, and the adaptation element updates the
health parameters and steady-state operating lines based on
postflight data after each flight cycle to match the specified
engine with the most possible effort. What these studies
have in common is that the adaptation approaches are all
offline.

— > Real engine

Measured
parameters

Flight condition
and control signal

Estimated engine
parameters

+

»  Real-time model

[
update

Degradation of
health parameters

Data-based
correction module

Data-based on-board adaptive
real-time model

FI1GURE 3: Block diagram of adaptive real-time model based on data.

3.3. Hybrid Adaptive Real-Time Modeling Method. In order
to combine the advantages of model-based and data-based
adaptive modeling methods, a hybrid adaptive real-time
modeling method comes out. The principle of this method is
that, on the basis of original adaptive model based on
Kalman filter, the data-based correction module is added to
correct the modeling error of the on-board nominal model,
which can improve the estimation accuracy of Kalman filter
on the degradation of real engine component parameters. To
realize the modeling of this hybrid adaptive real-time model,
it is necessary to use a large number of engine test data to
perform offline training on the data-based correction
module. The inputs are flight condition and control signals,
and the outputs are the modeling errors between the on-
board real-time model and the actual engine. The hybrid
adaptive real-time model block diagram is shown in
Figure 4.

In the past decade, research institutions and scholars
have also carried out a series of study on hybrid adaptive
real-time models. On the basis of STORM, Pratt & Whitney
combined the neural network correction module to establish
an enhanced hybrid on-board real-time model eSTORM
[71-73], which improves the reliability of Kalman filter.
eSTORM has been successtully verified on the PW6000
engine. Based on the traditional model-based adaptive real-
time modeling method, Lu and Huang [74] propose the
application of adaptive genetic algorithm to the parameter
selection of least squares support vector regression machine
and establish the NARMAX model correction module. The
output of the model correction module is used to com-
pensate the output of the on-board adaptive model online,
which effectively reduces the error between the real engine
and the on-board adaptive real-time model. Practicality of
this research also needs to be verified in the real engine.

3.4. Summary. This chapter introduces three main types of
methods for establishing an on-board adaptive real-time
model. The advantages and disadvantages are summarized in
Table 5.

In addition, as the performance requirements of the new
generation of fighters are getting higher and higher, the
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TaBLE 5: Comparison among different types of on-board adaptive real-time model methods.
Method Advantage Disadvantage

Kalman filter based on-
board adaptive real-time
model

Data based on-board
adaptive real-time model
Hybrid on-board adaptive
real-time model

are mature.

not needed.

Design process and theoretical support

Applicable range of each KF is very limited. There will be a large
amount of stored data when applied in the full flight envelope.

Physical characteristics of the engine are Theoretical proof of how to achieve engine adaptation is lack.

Large amount of flight data is needed.

Structural flexibility is large. Advantages Structure is complex and a large amount of flight data is needed.
of other methods can be combined.

Real-time performance has great potential for improvement.

function of the on-board adaptive real-time model will
become more complex. The study of integrated on-board
real-time model equipped with the tip clearance model, the
icing model, the variable geometry model, and the intake
model may become an advanced research field for future
real-time models.

4. The Applications of Real-Time Model

The real-time model of the aero-engine is widely used. It is
not only the basis for the hardware-in-the-loop and semi-
physical real-time simulation, test, and verification of the
control system, but also the basis for the aircraft iron bird
test and flight simulator. Besides, it is the necessary part for
on-board model-based engine control, fault diagnosis, and
health management.

4.1. Real-Time Simulation Test on the Ground. The real-time
simulation test on the ground includes the hardware-in-the-
loop simulation (HIL), semiphysical simulation, and the
aircraft iron bird test. The real-time model of the aero-
engine is an indispensable part, whose performance directly
affects whether the entire ground test will success.

At present, in the development of FADEC system, the
cycle iterative design approach of “all-digital simulation”-
“hardware-in-the-loop simulation (HIL)”-“semiphysical
simulation”-“engine platform test”-“flight verification” is
adopted, which can shorten the development cycle and

reduce the design cost. Since the all-digital simulation is
only a preliminary test of the control algorithm, the engine
model used in the simulation is generally not real-time in
pursuit of accuracy, so the real-time performance of the
controller cannot be verified. The reliability of the simu-
lation result is not enough for practical applications. In
addition, it is difficult to implement the platform test and
flight test verification, because the cost is too high. Finally,
the hardware-in-the-loop simulation and semiphysical
simulation test with the characteristics of low difficulty,
relatively low cost, and closeness to the actual operating
environment of the engine become the most important part
of the design and development of the whole engine control
system [75]. Hardware-in-the-loop simulation introduces
the physical controller, driving and signal conditioning
module, interface simulator, and other physical objects into
the loop to complete the preliminary comprehensive ver-
ification of the control system. The schematic diagram is
shown in Figure 5. The real-time models of the engine,
sensors (LVDT is taken as an example), and actuators (the
fuel supply model and the oil needle model are taken as
examples) are included in the model computer. The entire
hardware-in-the-loop simulation needs to be real-time. The
schematic diagram of the semiphysical simulation is shown
in Figure 6. Based on the hardware-in-the-loop simulation,
the real power system and fuel system are brought into the
circuit, which makes the verification platform closer to the
actual operating environment of the engine. In the entire
semiphysical simulation platform, except for the real-time
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FIGURE 6: Experimental schematic diagram of aero-engine semiphysical simulation.

model of the engine, the components of the control system
are almost all real parts [76].

Whether it is hardware-in-the-loop or semiphysical
simulation test, as the feedback source of the engine con-
troller and the controlled object, the engine real-time model
is undoubtedly the core of the whole system, and its per-
formance directly affects the reliability of the whole test. It is
necessary to ensure that the model computer loaded with the
engine real-time model has high computational perfor-
mance. On the other hand, the most important point is to
design a real-time engine model that can balance real-time
performance and accuracy.

The aircraft iron bird test bench is called “flying
control hydraulic system comprehensive test bench,”
which is a key test facility essential for aircraft system
integration, optimization design, airworthiness forensics,
delivery operation, and continuous airworthiness. The
iron bird test bench is generally composed of a test bench,
a hydraulic system, a flight control system, a landing gear
system, a remote data interactive terminal, a console
system, and a real-time flight simulation system including
an engine real-time model. The structure diagram is
shown in Figure 7. On the iron bird test bench, it is
possible to verify that the function and performance of the
aircraft’s hydraulic system and its interaction with other
systems on the aircraft are normal or not. The mechanical
installation interface of the landing gear system, the

installation position of the accessories, the layout of the
hydraulic piping, and the installation method of the flight
control system in the “Iron Bird” are all consistent with
the real aircraft. The real aero-engine is used by the high-
precision real-time model instead. The entire iron bird
system undertakes aircraft system-level R&D and verifi-
cation, aircraft multisystem comprehensive verification,
and airworthiness verification of flight control systems,
hydraulic systems, and landing gear systems, which
provide important assurance for aircraft system integra-
tion, flight test safety, flight test troubleshooting, and
subsequent aircraft improvements [77].

4.2. Flight Simulator. The flight simulator is a flight real-time
simulation system that can simulate the aircraft’s air flight
state and flight environment on the ground. The flight
simulator is mainly composed of a console system, a data
interaction terminal, a real-time flight simulation system
including an engine real-time model, an audio, instrument,
and a vision system. The structure diagram is shown in
Figure 8. The real-time flight simulation system contains
real-time models describing aircraft, engine, and on-board
systems. It is the main component of the entire flight
simulator and the basis for the normal operation of the flight
simulator. Current flight simulator applications fall into
three general categories, which include engineering
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development, crew training, and maintenance training
simulation devices [1].

4.2.1. Engineering Development Simulators. These simula-
tors are usually used for “man in the loop” studies; they can
evaluate the flight performance of the whole aircraft and the
performance of the operating system, flight display system,
instrument display system, and other systems. By contin-
uously modifying the parameters of each system, they are
repeatedly tested to obtain the optimal performance of the
system.

4.2.2. Crew Training Simulators. These simulators are used
to train crew members in the proper use and control of
aircraft systems, including normal and emergency proce-
dures. Further, these devices are also used for instruction in
the theory and operation of specific aircraft systems and
their components. In these devices, a multitude of system
failures can be caused, which can result in realistic cockpit
indications and cues. Using these crew training simulators
can not only be free from meteorological conditions and site
constraints, but also save energy and protect environment.

4.2.3. Maintenance Training Simulators. These simulators
are a relatively recent simulator application. As the functions
of the new generation aircraft cockpit become more and
more complex, it is also very important to train the
maintenance staffs responsible for the on-board systems.
With these simulators, the maintenance staff can perform
fault simulation tests on various on-board equipment in the
cockpit and receive the corresponding results. They can use
these data for analysis to train their equipment maintenance
capabilities in the event of a real cockpit failure. Mainte-
nance staff can find the problem of on-board equipment
faster and more accurately.

4.3. Model-Based Control, Fault Diagnosis, and Health
Management. Advanced aero-engine FADEC systems are
not only limited to protection limit control and thrust
control, but may also include direct turbine front temper-
ature control, direct surge margin control, and performance
optimization control. In addition, the FADEC system re-
quires real-time fault diagnosis, tolerance, and health
management for the aero-engine, including sensor redun-
dancy reconstruction, engine performance degradation
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estimation, and component life analysis. These new FADEC
system functions all require the real-time engine model.
Opverall, the FADEC system can be divided into three layers
in terms of ensuring the safety and reliability of the engine:
the hardware layer, the basic control layer, and the per-
formance management layer [78]. The structure diagram is
shown in Figure 9. It can be seen that the aero-engine real-
time model is the most important part in the entire control
and performance management level. Aero-engine control,
fault diagnosis, and health management based on the real-
time model are the mainstream working modes of the
current advanced FADEC system.

Model-based control is a control law design method
using the real-time model as part of the control loop. The
block diagram of its basic control structure is shown in
Figure 10. Aero-engines have some state variables critical to
the safety and performance of aerospace engines, such as
high-pressure turbine blade temperature, compressor surge
margin, and net thrust. But most of these variables are
unmeasurable or need complex and unreliable measurement
systems. In the traditional sensor-based control law design
method, measurable parameters such as rotational speed and
pressure ratio are usually used to indirectly reflect un-
measurable performance parameters such as thrust and
surge margin. In order to ensure that these unmeasured
performance parameters are not exceeding the limitation,
larger safety margin will remain, which in turn leads to not
so good engine performance. When in actual flight, the
FADEC of the aero-engine is embedded with a high-pre-
cision on-board adaptive real-time model as a virtual engine,
running in parallel with the real aero-engine, and then it is
possible to use the real-time model to calculate the un-
measurable variables of the aero-engine required for the
current flight state. Combined with the measurable signals,
we can implement the advanced multivariable control
methods and ensure the performance keep best under the
condition that the engine meets various safety restrictions
[79, 80].

Taking model-based surge margin control as an example
[81], the structure of the controller is shown in Figure 11. In
the traditional min-max control structure, various types of
limiters calculate the corresponding fuel flow through real
engine measurement data and then give the actuator an
optimal fuel control command through min-max selection
logic, which causes the high-pressure compressor surge
margin to be low during the acceleration process. In model-
based surge margin control, surge margin control loop is
added to the controller structure due to the virtual mea-
surement data obtained by the real-time model, which di-
rectly limits the surge margin and greatly improves the
engine dynamic performance during acceleration process.

These years, model-based control methods have been
applied to more and more fields, such as NOx emissions
monitoring [82] and engine start-up optimization [83]. It
can be ensured that real-time model will play a more and
more important role in advanced FADEC system in the
future.

In addition, the on-board adaptive real-time model is
also a core part of aero-engine fault diagnosis and health
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management. Real-time diagnosis of the engine in flight is
critical to the improvement of aviation safety. The purpose of
the fault diagnosis system is to detect faults as quickly as
possible from the real-time output data obtained from en-
gine operation and then avoid false positives. However, as
the engine continues working, its component health pa-
rameters (efficiency and flow) will gradually decrease with
the engine’s operating cycle, which will result in degradation
and excursions in output variables. The normal degradation
of the engine is not a fault, but it often causes the false report
of the fault diagnosis system [84]. In order to solve this
problem, a health management system is needed to dis-
tinguish the engine information, fuse data, monitor the
engine health, and predict the engine life and performance
degradation [85]. A common method is to use the Kalman
filter to establish an on-board adaptive real-time model
coupled with the estimated performance tracking parame-
ters, which has been described in detail in the adaptive real-
time model in Chapter 2. Based on the offset of the mea-
surable parameters of the engine, the engine performance
deviation parameters are estimated by the Kalman filter, and
then the estimated deviation parameters value can be used to
calculate the correction of the engine unmeasurable pa-
rameters. By using the output estimation parameters of the
on-board adaptive real-time model, the sensor’s soft and
hard fault diagnosis and fault-tolerant control can be carried
out [86, 87]. In recent years, advanced intelligence algo-
rithms have also been applied to improve the performance of
model-based health management system [88, 89].

In summary, for aero-engines with changing conditions
in the actual flight, whether it is for effective and accurate
control, or to ensure accurate fault diagnosis and efficient
health management, a high-precision on-board real-time
model is indispensable.

5. Summary and Outlook

The development of aero-engine real-time models has been
around 50 years, and it always focuses on how to make a
balance between model accuracy and real-time performance.
In the early days, because of the limited computer hardware
capabilities, digital real-time models were mostly based on
reduced-order linear models or component level models,
which are simplified a lot, so their accuracies were low. With
the rapid development of the computer and artificial intel-
ligence technology in the past decade, the real-time perfor-
mance of the engine real-time model has become relatively
easy to achieve. More and more researches have been devoted
to how to improve the adaptability of the on-board model and
how to use the real-time model to estimate engine perfor-
mance parameters more accurately. In these fields, a large
number of advanced intelligent algorithms are applied to the
on-board adaptive real-time model to perform the error
correction of the real-time model, as well as the estimation of
engine performance parameters. In the past few years, NASA
Aeronautical Research Mission Directorate has introduced
and updated a “New Blueprint for Transforming the Global
Aviation,” in which there are six major strategic advance-
ments, and real-time system-level security assurance is one of
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them [90]. This raises higher functional requirements for on-

board adaptive real-time models in the future.
Looking forward to the future, the development trend of
the aero-engine real-time model is as follows:

erally has poor real-time performance, and there are
few researches applying this type of real-time model
to the verification on the real hardware platform.
Besides, the nonlinear identification real-time model
relies too much on real engine test data, and it is
difficult to theoretically prove the convergence of the
model. Solutions to these problems must be studied
in the future.

(3) Under the premise of high precision guarantee, the

study on simplified methods of the aero-thermo-
dynamic component level model will be the hot
research direction. At the same time, as the
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performance requirements of the engine become
higher and higher, the real-time model will also be
more complex. The integrated real-time model,
which consists of the tip clearance model, the icing
model, the inlet model, and so on, will become an
important research field in the future.

(4) The on-board adaptive real-time model in the future
will focus on the research of hybrid real-time model.
It uses traditional Kalman filter to estimate the
degradation of engine, and it also uses artificial in-
telligence algorithms to build a data-based model
correction module to achieve correction of the on-
board real-time model output parameters. Com-
pared with a single model-based and data-based on-
board adaptive real-time model, this hybrid adaptive
real-time model combines the advantages and dis-
advantages of both, which is expected to improve the
performance of the engine FADEC system and has
great improvement and optimization potential.
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