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High-accuracy numerical simulations are performed to study aeroacoustic source mecha-
nisms of wavy leading edges (WLE) on a thin aerofoil undergoing vortical disturbances.
This canonical study is based on a prescribed spanwise vortex travelling downstream
and creating secondary vortices as it passes through the aerofoil’s leading edge. The
primary aim of the study is to precisely understand the relationships between the vortex-
induced velocity perturbation and the wall pressure fluctuation on the WLE geometry.
It is observed that by increasing the size (amplitude) of the WLE the source strength
at the peak region is reduced rapidly to a certain point and followed by a saturation
stage, while at the root (trough) it remains fairly consistent regardless of the WLE size.
This observation is demonstrated to be the consequence of three-dimensional vortex
dynamics taking place along the WLE. One of the most profound features is that
a system of horseshoe-like secondary vortices are created from the WLE peak region
upon the impingement of the prescribed vortex. It is found that the horseshoe vortices
produce significantly non-uniform velocity perturbation in front of the WLE leading to
the disparity in the source characteristics between the peak and root. The alterations to
the impinging velocity perturbation are carefully analysed and related to the wall pressure
fluctuation in this study. In addition, a semi-analytic model based on Biot-Savart’s law
is developed to better understand and explain the role of the horseshoe vortex systems
and the source mechanisms.

1. Introduction

When an upstream vortical field impinges on a solid body its normal velocity com-
ponent is abruptly forced to zero due to a no-penetration condition. This results in
the generation of pressure fluctuation on the surface, which in the case of an aerofoil
radiate as a dipole sound primarily from the aerofoil leading edge (LE). Accordingly this
noise mechanisms is usually referred to as LE noise or aerofoil-turbulence interaction
(ATI) noise, and is often considered to be one of the major noise sources particularly
in the presence of significant upstream disturbances (Migliore & Oerlemans 2004). Such
conditions are regularly met in a variety of engineering applications, for example contra-
rotating fans, propellers, turbofan outlet-guide vanes, high-lift devices and wind farms.
Over the years many approaches have been adopted for the study of ATI noise to
understand both the physical noise generation mechanisms and the influence of various
geometric parameters such as aerofoil thickness, angle of attack and camber. This
includes the theoretical model of Amiet (1975) and its subsequent extensions, namely,
the convection of two-dimensional frozen turbulence in a uniform mean flow (Roger &
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Moreau 2010); theoretical and numerical approaches based on harmonic gusts (Goldstein
1978; Atassi et al. 1990; Myers & Kerschen 1995, 1997; Lockard & Morris 1998; Evers &
Peake 2000; Gill et al. 2013; Ayton & Peake 2013, 2015); experimental approaches based
on grid generated homogeneous isotropic turbulence (Paterson & Amiet 1976; Moreau
et al. 2005; Devenport et al. 2010); and, recent computational approaches based on two-
or three-dimensional Euler and Navier-Stokes simulations (Christophe et al. 2007, 2008;
Deniau et al. 2011; Gill et al. 2015; Kim & Haeri 2015).

Research conducted in the previous a few years has shown that a potential passive
treatment capable of large reductions to ATI noise is the inclusion of an undulated
(wavy) aerofoil leading edge. Such geometry was originally considered for its aerodynamic
properties (Miklosovic et al. 2004; Johari et al. 2007; Hansen et al. 2011, 2016), and is
inspired by the leading-edge protrusions (tubercles) of the humpback whale’s pectoral
flippers thought to be responsible for its impressive maneuverability when catching its
prey (Fish et al. 2008). One of the first attempts to quantify the aeroacoustic properties
of WLEs was conducted by Hansen et al. (2012), who through experiments based on
a NACA0021 aerofoil identified that WLE cases obtained large tonal and broadband
self-noise reductions within a certain frequency range. They theorised that the noise
reductions were related to the production of streamwise vortices at the leading-edge
troughs, which enhance the stability of the boundary layer by mixing in higher momentum
fluid from the free stream altering the generation of vorticity near the trailing edge.
In the meantime, a large effort has been made towards quantifying the extent of ATI
noise reductions based on various geometric parameters, particularly the WLE amplitude
(hLE) and wavelength (λLE) (Lau et al. 2013; Clair et al. 2013; Narayanan et al. 2015;
Chaitanya et al. 2015; Kim et al. 2016). It is consistently found that the level of noise
reductions is positively influenced by increasing hLE . Comparatively, altering λLE seems
to have a smaller effect.

Narayanan et al. (2015) performed an experimental parametric study based on grid-
generated homogeneous isotropic turbulence and noted that more noise reductions were
achievable for lower flow speeds (U∞) and thinner aerofoils. One of their most significant
findings was a consistent starting frequency of noise reduction: f0 = αU∞/(2hLE), where
α ≈ 0.5 for all cases. This finding is also supported by the work of Clair et al. (2013)
who observed a broader frequency range of noise reductions for a reduced flow speed.
A further parametric study was conducted by Chaitanya et al. (2015) focusing on the
WLE serration angle defined as θ = tan−1(4hLE/λLE). They concluded that, for a
given WLE amplitude and turbulence integral length scale, there exists an optimum
serration angle for maximum noise reduction. This means that increasing λLE can result
in either an increase of the noise reduction or a decrease depending on whether θ is higher
than the optimal value or lower, which explains some inconsistent observations (on the
effect of λLE) made between Lau et al. (2013) and Narayanan et al. (2015). Chaitanya
et al. (2015) also showed that the noise reduction increases with frequency as a power
law. Meanwhile, an analytical study by Mathews & Peake (2015) suggested that there
exist noise-increasing eddy components in the impinging turbulence depending on their
orientation relative to the leading edge. It is, however, speculated that the probability of
such eddies is lower in the WLE cases and the averaged effect yields a consistent noise
reduction.

Despite rapid growth in the field, understandings of the noise reduction mechanisms
associated with WLEs are still underdeveloped. A significant progress has recently been
made by Kim et al. (2016) who carried out high fidelity numerical simulations based on
three-dimensional nonlinear compressible Euler equations and synthetic inflow turbulence
(Kim & Haeri 2015). They identified two primary noise reduction mechanisms: a source
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cutoff effect and a phase interference effect. The source cutoff effect was recognised by
analysing the auto-spectrum of the fluctuating wall pressure at different points along the
WLE, revealing a substantial reduction in source strength at the hill region across the
whole frequency range. It was suggested that this was due to the geometric obliqueness
relative to the incoming flow turbulence. Arguably more intriguing is that significant
source strength differences were observed between the peak and root, despite the fact
that both has zero obliqueness against the incoming disturbances similar to a straight
leading edge (SLE) case. At low frequencies the peak exhibited a substantially lower
source strength than the root, while at high frequencies the peak seemed to overtake the
root by a small margin. Overall, the source strength at the root was comparable to that
of the SLE at all frequencies. Regarding the phase interference effect, it was reported
that the two-point phase spectra between the peak and other points along the WLE
experiences an increased level of phase shifts towards π (out of phase) compared to the
SLE case.
Guided by the earlier findings, the present work is aimed to extend the understanding of

the aeroacoustic source mechanisms associated with the WLEs interacting with vortical
disturbances. Here we focus on explaining the disparity in source characteristics between
the peak and root as outlined above. The current study is based on a computational
approach similar to Kim & Haeri (2015); Kim et al. (2016) except that a single spanwise
vortex model is used instead of synthetic inflow turbulence to create vortical disturbances.
Using the single vortex model has two main advantages over the synthetic turbulence
approach. First, it offers enhanced clarity in observing and identifying major physical
phenomena taking place during the aerofoil-vortex interaction process. Secondly, there
still is a reasonable range of frequency components in the vortical disturbances unlike
harmonic gust approaches and the resulting spectra are much cleaner than those from
the synthetic turbulence approach.
The current simulation result shows that the prescribed vortex impinging on the

aerofoil creates secondary vortices along the WLE which form a horseshoe-like vortex
system which tends to intensify as time elapses. The three-dimensional dynamics of the
horseshoe vortex system is carefully investigated with regard to the induced velocity
field around the WLE, from which the wall pressure fluctuation (aeroacoustic source
strength) is deduced. The problem is also modelled semi-analytically by using Biot-
Savart’s law to further support the hypothesis proposed in the current study. It should
be noted that the current study is still based on a zero-thickness aerofoil in an inviscid
flow at zero mean incidence angle and low Mach number. It is expected that a realistic
aerofoil (with a thickness and/or camber) and a non-uniform viscous mean flow may
develop increasingly complex mechanisms associated with self-generated leading-edge
vortices (Hansen et al. 2016) and viscous distortion/dissipation of the vortices. Prior
to the additional complexity to be investigated, the current study focuses on the most
basic form of the aerofoil-vortex interaction and therefore the simplest geometry and flow
condition are chosen in this paper.
This paper is structured and written in the following order. ➜2 introduces the computa-

tional set-up and methods used in this study including details of the prescribed spanwise
vortex model implemented in the current simulations. ➜3 provides initial observations
obtained from the simulations including wall and far-field pressure spectra for various
WLE geometries. Additionally it includes a qualitative discussion of the secondary vortex
structures created along the WLE and how they influence the induced velocity field. ➜4
provides quantitative explanations as to how the aeroacoustic source strength at the root
region is maintained at a level similar to the SLE case. ➜5 moves the focus on to the peak
region and explain the trend of the source strength decaying (but converging) with the
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Figure 1. Description of the current problem: a prescribed spanwise vortex impinging on a thin
aerofoil with a wavy leading edge: (a) schematic diagram, (b) initial condition, (c) during the
interaction and (d) after the interaction. The mean aerofoil chord is denoted by Lc.

WLE amplitude, which is also supported by the semi-analytic model derived from Biot-
Savart’s law. In ➜6 supplementary observations are made with respect to a similarity rule
in the source strength and the effect of three-dimensionality in the impinging vortex.
Finally concluding remarks are provided in ➜7.

2. Description of the problem and computational set-up

The current problem of aerofoil noise generation due to interaction with a prescribed
spanwise vortex impinging on the leading edge is illustrated in figure 1. Instantaneous
snapshots of the computed pressure field exhibit sound waves generated and radiated
during and after the interaction. This section describes the problem set-up and the
computational methodologies used in this study.

2.1. Computational domain and aerofoil geometry

The computational domain in a rectangular cuboid contains a flat-plate aerofoil at
the centre with zero thickness and zero angle of attack. The zero-thickness aerofoil is
modelled by using a H-topology grid system where the central branch section represents
the aerofoil’s upper and lower surfaces with no gap between them. The longitudinal
and vertical boundaries of the domain are surrounded by a sponge layer through which
the flow is (gently) forced to maintain the potential mean flow condition. Any acoustic
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Figure 2. Surface meshes (coarsened for illustration purposes) on the flat-plate aerofoils used
in the present study, with (a) straight and (b) wavy leading edges (SLE and WLE, respectively).
The case of hLE/Lc = 1/15 and λLE/Lc = 2/15 is shown in this figure.

waves are attenuated and absorbed in the sponge layer to prevent numerical reflections
at the outer boundaries. The lateral boundaries of the domain are interconnected via a
periodic boundary condition. The entire computational domain; the inner region (physical
domain) where meaningful simulation data are obtained; and, the sponge layer zone are
defined as

D∞ = {x |x/Lc ∈ [−5, 9], y/Lc ∈ [−7, 7], z ∈ [− 1
2Lz,

1
2Lz]},

Dphysical = {x |x/Lc ∈ [−3, 3], y/Lc ∈ [−5, 5], z ∈ [− 1
2Lz,

1
2Lz]},

Dsponge = D∞ −Dphysical,











(2.1)

where Lc denotes the mean chord length of the aerofoil and Lz is the spanwise length
of the domain. The origin of the domain is located at the centre of the aerofoil surface.
In the current simulations, Lz is set to cover one wavelength of the WLE profile given.
The free-stream Mach number is set to M∞ = u∞/a∞ = 0.24. This Mach number is the
same as used in the previous work by Kim et al. (2016).

The aerofoil has a WLE (wavy leading edge) which is profiled by using a sine function
where the most protruded points are defined as “peak”, the least as “root” and the
middle as “hill” as denoted in figure 2. Herein, hLE is the WLE amplitude (2hLE being
the peak-to-root amplitude) and λLE is the spanwise wavelength of the WLE. The WLE
profile in this study is defined by

xLE(z) = − 1
2Lc + hLE sin

Å
2πz

λLE

ã
, z ∈

[

− 1
2Lz,

1
2Lz

]

, (2.2)

where the location of the trailing edge is fixed at xTE = 1
2Lc. The spanwise coordinates

of the peak, hill centre and root are z = −λLE/4, 0 and λLE/4, respectively. The default
wavelength of the WLE in the current study is λLE/Lc = 2/15 and in ➜6 λLE/Lc = 4/15
is used as well. The baseline WLE amplitude is hLE/Lc = 1/15 and lower/higher values
of hLE are also explored to investigate the effect of hLE . These geometric parameters are
similar to those used in Kim et al. (2016).
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2.2. Governing equations and numerical methods

Aerofoil noise generated by interaction with vortical disturbances is largely considered
an inviscid phenomenon and therefore exclusion of viscous terms is usually considered
to be a reasonable simplification (Goldstein 1978; Atassi et al. 1990; Myers & Kerschen
1995; Lockard & Morris 1998; Evers & Peake 2000; Ayton & Peake 2013; Gill et al.

2015; Kim & Haeri 2015). Following up on the historical approach, we employ full 3-D
compressible Euler equations (with a source term for the sponge layer mentioned earlier)
in a conservative form transformed onto a generalised coordinate system:

∂

∂t

Å
Q

J

ã
+

∂

∂ξi

Å
F j

J

∂ξi
∂xj

ã
= −a∞

Lc

S

J
, (2.3)

where i = 1, 2, 3; and, j = 1, 2, 3 denoting the three dimensions. In (2.3), the conservative
variable and flux vectors are given by

Q = [ρ, ρu, ρv, ρw, ρet]
T ,

F j = [ρuj , (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj ]
T ,

´
(2.4)

where ξi = {ξ, η, ζ} are the generalised coordinates, xj = {x, y, z} are the Cartesian
coordinates, uj = {u, v, w}, et = p/[(γ− 1)ρ]+ujuj/2 and γ = 1.4 for air. In the current
setup, ξ, η and ζ are body fitted coordinates along the grid lines in the streamwise,
vertical and lateral directions, respectively. The Jacobian determinant of the coordinate
transformation (from Cartesian to the body fitted) is given by J−1 = |∂(x, y, z)/∂(ξ, η, ζ)|
(Kim & Morris 2002). The extra source term S on the right-hand side of (2.3) is non-zero
within the sponge layer only, which is described in Kim et al. (2010).

In this work, the governing equations given above are solved by using high-order accu-
rate numerical methods specifically developed for aeroacoustic simulations on structured
grids. The flux derivatives in space are calculated based on fourth-order pentadiagonal
compact finite difference schemes with seven-point stencils (Kim 2007). Explicit time
advancing of the numerical solution is carried out by using the classical fourth-order
Runge-Kutta scheme with the CFL number of 0.95. Numerical stability is maintained by
implementing sixth-order pentadiagonal compact filters for which the cutoff wavenumber
(normalised by the grid spacing) is set to 0.85π (Kim 2010). In addition to the sponge lay-
ers used, characteristics-based non-reflecting boundary conditions (Kim & Lee 2000) are
applied at the far-boundaries in order to prevent any outgoing waves from returning to the
computational domain. Periodic conditions are used across the spanwise boundary planes
as indicated earlier. Slip wall (no penetration) boundary conditions are implemented on
the aerofoil surface (Kim & Lee 2004) and also on the centre plane downstream of the
aerofoil. The latter is intended to eliminate the secondary interaction which takes place
at the trailing edge, and therefore to focus on the leading edge interaction only.

The simulation is carried out on a total of 43,760,640 grid cells (1036×660×64) where
the smallest cells are located at the aerofoil LE with the size of ∆x = ∆y = 0.00625Lc

and ∆z = 0.002083Lc. Although the grid is gradually stretched outwards, a high
grid resolution is still maintained in the far field in order to capture high-frequency
components radiated. At least 46 cells are located across the diameter of the initial
vortex. The computation is parallelised via domain decomposition and message passing
interface (MPI) approaches. The compact finite difference schemes and filters used are
implicit in space due to the inversion of pentadiagonal matrices involved, which requires a
precise and efficient technique for the parallelisation in order to avoid numerical artefacts
that may appear at the subdomain boundaries. A recent parallelisation approach based
on quasi-disjoint matrix systems (Kim 2013) offering super-linear scalability is used in
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Figure 3. The initial velocity field induced by the spanwise vortex model given by (2.6): (a)
induced velocity magnitude contours and (b) the vertical velocity profile along the centreline
(y = 0).

the present paper. The entire domain is decomposed and distributed onto 480 separate
computing nodes/subdomains (20 × 12 × 2 in the streamwise, vertical and spanwise
directions, respectively). A grid convergence test has been performed for the current
computational set-up – see Appendix A.

2.3. Prescribed spanwise vortex model

The spanwise (two-dimensional) vortex model prescribed as an initial condition in this
study is based on the Gaussian synthetic eddy profile used in previous publications (Kim
& Haeri 2015; Kim et al. 2016). It provides a divergence-free velocity field via taking the
curl of the following vector potential, i.e. u′(x, t = 0) = ∇× [Ψ(x)ez]:

Ψ(x) = a∞Lc
ǫ√
σ
exp{−[3σr(x)]2}, r(x) =

(x− x0)
2 + y2

L2
c

, (2.5)

where ǫ and σ are control parameters for the vortex strength and size, respectively;
x0 = −2.5Lc is the streamwise coordinate of the starting point of the vortex core; and,
ez is a Cartesian unit vector in the spanwise direction. This results in the following
formulae for the velocity field at t = 0:

u(x) = u∞ + 36
σ2

L2
c

yr(x)Ψ(x), v(x) = −36
σ2

L2
c

(x− x0)r(x)Ψ(x), (2.6)

while the pressure and the density are set to ambient/quiescent conditions (p∞ and ρ∞).
The control parameters are set to ǫ = 0.00228 and σ = 14.4 such that the level and the
length scale of the velocity perturbation (0.025u∞ and 0.1Lc, respectively) are similar
to those of the large eddies used in the previous experiments by Narayanan et al. (2015)
and Chaitanya et al. (2015). The parameters were determined via the following definition
of perturbation length scale in this paper:

Perturbation-Length-Scale =
1

max |v(x)|

∫ x0+∞

x0

|v(x)|dx at y = z = t = 0. (2.7)

The resulting velocity field is plotted in figure 3. The prescribed vortex induces clockwise
rotating velocity components, firstly making a downwash stroke on to the aerofoil leading
edge followed by an upwash stroke as the vortex travels further downstream. It is shown
in figure 1 that the downwash-upwash strokes create compression-expansion pressure
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waves on the upper side of the leading edge radiating towards the top (with the opposite
taking place on the lower side).

3. Initial findings and the questions emerged

The simulations are run until a non-dimensional time of ta∞/Lc = 20, which is
sufficient to capture both the fluctuating wall pressure signals and the far field sound. For
the subsequent sections the following quantities are used repeatedly. Fluctuating acoustic
and wall pressures are denoted by p′a and ∆pw, respectively, defined here as

p′a(x, t) = pa(x, t)− p∞, ∆pw(x, t) = pw(x, y = 0+, z, t)− pw(x, y = 0−, z, t), (3.1)

where the subscripts y = 0+ and 0− indicate the upper and lower surfaces of the flat
plate aerofoil, respectively. The wall pressure fluctuation (∆pw) defined in this paper
is therefore representing the aeroacoustic source strength. The power spectral density
(PSD) of the wall pressure fluctuation can then be determined as

Sppw(x, f) = 2‘∆pw(x, f)‘∆pw
∗

(x, f), (3.2)

where “∧” represents a Fourier transformed variable and “∗” denotes a complex con-
jugate. For the subsequent analysis surface quantities are extracted one grid point aft
of the leading edge, where the largest pressure fluctuation is obtained in the current
simulations. Similarly the PSD of the acoustic pressure may be determined as

Sppa(x, f) = 2“p′a(x, f)“p′a
∗

(x, f), (3.3)

which is calculated at an observer location xo = (0, 5Lc, 0) in the present study. The
sound attenuation due to a WLE relative to the SLE case is then quantified by

∆SPL(x, f) = 10 log10

ï
Sppa(x, f)|SLE
Sppa(x, f)|WLE

ò
. (3.4)

3.1. Wall and acoustic pressure fluctuations

As a result of the current simulations, figure 4 shows the time signals and corresponding
PSD (power spectral density) functions of the wall pressure fluctuation (∆pw) on the
leading edge points for three different WLE geometries (hLE/Lc = 1/30, 1/15 and 1/10)
compared with the SLE baseline case. First, it is apparent in the figure that the level
of wall pressure fluctuation (aeroacoustic source strength) at the hill location constantly
decreases with increasing hLE (WLE amplitude) across the entire frequency range. This is
directly related to the “source cutoff” effect due to the geometric obliqueness as suggested
by Kim et al. (2016), i.e. ∆pw ∝ cos θ where θ is the local sweep angle of the leading
edge. Figure 4 also shows that the source strength at the root does not seem to change
much with hLE (maintained at the level of the SLE case), which might be rather simply
anticipated because the sweep angle is locally zero at the root. However, at the peak
where the sweep angle is also zero, the source strength significantly changes with hLE

although it does not drop as consistently as the hill case and seems to converge towards
a constant level. The distinction in source strength between the peak and root was also
reported by Kim et al. (2016) with little understood about its cause. Therefore, the main
focus of the paper is on understanding and explaining the disparity in source behaviours
between the peak and root.
Figure 5 shows the far-field radiated acoustic pressure signals, their PSDs and the

relative noise reduction spectra for the three different WLE amplitudes as tested in
figure 4. The reduction of the sound pressure level in the WLE cases is clear in this
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Figure 4. Fluctuating wall pressure time signals, ∆pw(t
∗)/p∞, and the corresponding power

spectral density (PSD), Sppw(f
∗)/p2∞, obtained at three different locations on the WLE (peak,

hill centre and the root) for three different values of the WLE amplitude (hLE/Lc = 1/30, 1/15
and 1/10) with its wavelength fixed (λLE/Lc = 2/15), compared with the SLE baseline case.

figure. It is also apparent that the noise reduction increases with the WLE amplitude
(hLE) and with the frequency as well. The same observations have been made in the
previous studies with various upstream flow conditions as mentioned in ➜1 (Lau et al.

2013; Clair et al. 2013; Narayanan et al. 2015; Chaitanya et al. 2015; Kim et al. 2016).
The current vortex flow condition adds another example in which the WLE performs
successfully for noise reduction. However, it is still unknown as to how the radiated
sound field achieves such a large reduction in the high frequency range (figure 5b) when
the source strength at the peak and root does not drop as much in the same frequency
range (figure 4b and 4f ). On the contrary, the substantially weakened source strength in
the low frequency range at the peak and hill (figure 4b and 4d) does not seem to project
on the radiated sound field at all (figure 5b). It is speculated that there exist some crucial
mechanisms particularly in the propagation process leading to these controversial results.
The authors stress that substantial work is required in order to understand the hidden



10 J.M. Turner & J.W. Kim

Figure 5. Far-field acoustic pressure time signals, p′a(t
∗)/p∞, the corresponding PSD,

Sppa(f
∗)/p2∞, and the relative noise reduction spectra, ∆SPL(f∗), obtained at an observer

location, xo = (0, 5Lc, 0), from three different WLE geometries (hLE/Lc = 1/30, 1/15 and 1/10
with λLE/Lc = 2/15), compared with the SLE baseline case.

propagation mechanisms. This paper is yet focused on the source mechanisms which need
to be established beforehand.

3.2. Horseshoe vortex systems induced by WLE

As mentioned above, the distinction between the peak and root source behaviours
seems contradictory to some extent, as one would assume that both interact with the
impinging vortex in a parallel fashion (zero geometric obliqueness). The authors find
that the distinction is mainly attributed to the dynamics of secondary vortices created
along the WLE. The impinging vortex (rotating clockwise viewed from the xy-plane)
induces a downwash downstream of its core and consequently an upwash upstream of
it as indicated in figure 3. As the vortex moves close to the aerofoil with a SLE the
preceding downwash (v < 0) is suppressed very rapidly to zero (v = 0) at the leading
edge due to the no-penetration (wall) condition. The upshot of this is that a high velocity
gradient (∂v/∂x ≫ 0 while ∂u/∂y ≈ 0) is created at the leading edge, which results in
a counter-clockwise spanwise vorticity there (ωz = ∂v/∂x − ∂u/∂y ≫ 0). This is a
typical example of vortex-body interaction (Rockwell 1998). In the SLE case the induced
spanwise vorticity (ωz) is uniform along the span. However, in a WLE case, ωz varies
along the span and also a streamwise vorticity (ωx) is produced due to a significant ∂v/∂z
created at the hill side via the same mechanism described above.

Figure 6 shows snapshots of the WLE-vortex interaction taken as time elapses from the
first contact until the vortex completely detaches from the WLE. The vortex travelling
through the aerofoil is shown by the spanwise vorticity contour surfaces (ωzLc/a∞) and
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Figure 6. Snapshots of WLE-vortex interaction in temporal order: contour plots for
perturbed acoustic pressure (p′a/p∞), spanwise vorticity (ωzLc/a∞) and the Q-criterion
(||ΩijLc/a∞||2 − ||SijLc/a∞||2 where Ωij and Sij are the vorticity and rate-of-strain tensors,
respectively). The figures show secondary vortices (Q-criterion) and sound waves (p′a/p∞)
generated at the leading edge during the interaction. The bottom left corner of images (b)–(f )
provides a zoomed out perspective visualising the radiating sound waves. hLE/Lc = 1/30.

the induced secondary vortices on the wall are visualised by using the Q-criterion contour
surfaces. In addition, the plots of p′a/p∞ in the xy-plane show the dipole sound pulses
with an alternating sign being generated when the downwash and upwash strokes of the
travelling vortex impact the leading edge.

One of the most critical features shown in figure 6 is the creation of horseshoe-
like vortex systems emanating from the WLE as shown from the Q-criterion plots.
The horseshoe vortex system consists of a bound vortex sitting at the WLE around
the peak and two counter-rotating streamwise vortices trailing from the bound vortex
as depicted in figure 6b. The horseshoe vortex systems are created twice during the
downwash and upwash strokes, and the direction of the rotation reverses between them.
The gap between the pair of streamwise vortices becomes larger as the initial vortex moves
further downstream. However, this results in a decreasing gap between two neighbouring
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Figure 7. Q-criterion iso-surfaces coloured by streamwise vorticity (ωxLc/a∞) taken at two
different points in time during (a) the downwash and (b) upwash strokes of the impinging
vortex. The red and blue surfaces indicate positive (clockwise) and negative (anti-clockwise)
rotations around the x-axis, respectively. The dashed yellow curves indicate the WLE-induced
horseshoe vortex systems.

Figure 8. Simplified illustration of the WLE-induced vorticity distribution exhibited in Figures
6 and 7: (a) the sideview on the WLE showing the contribution of spanwise vorticity components
induced during the downwash stroke of the impinging vortex; and, (b) the frontview on the WLE
describing the streamwise vorticity contribution creating an upwash at the peak and a downwash
at the root as a result.

streamwise vortices from two adjacent horseshoe vortex systems. These are significantly
different vortex dynamics, which do not appear in the SLE case.
In figure 7 the Q-criterion contour surfaces shown in figures 6b and 6e are recoloured

by the streamwise vorticity (ωxLc/a∞) indicating the direction of rotation about the
x-axis. A brief sketch of this event is provided in figure 8 depicting the horseshoe-
vortex-induced vorticity distributions at a single instant of time during the downwash
stroke of the impinging vortex. It is illustrated in the figure that, during the downwash
stroke, the horseshoe-vortex-induced streamwise vorticity components create an addi-
tional downwash at the root but a counteracting upwash at the peak (figure 8b). For the
upwash stroke the opposite trend takes place. On a minor note, the streamwise vorticity
distribution observed from the simulation data is almost symmetrical across both sides
of the aerofoil with a minor difference in magnitudes.

It is reasonable to assume that the aeroacoustic source strength is almost purely
governed by the vertical velocity component (downwash and upwash) impinging on
the leading edge since the current aerofoil geometry is completely horizontal with zero
thickness and viscosity. Based on this assumption, the authors suggest that the uneven
spanwise distribution of the induced vertical velocity illustrated in figure 8b is mainly
responsible for the disparity in source behaviours between the peak and root observed
in ➜3.1. It is apparent in the figure 8b that the peak is experiencing a reduced level of
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Figure 9. The distribution of maximum values (taken from time signals) of the perturbed
vertical velocity (|v|max/a∞) and the vorticity magnitude (|ω|maxLc/a∞) on the horizontal
plane (y = 0): (a/b) for a SLE baseline case and (c/d) for a WLE case with hLE/Lc = 1/15.
The vertical velocity plots are shown in the flow field only, and the vorticity magnitude plots
on the aerofoil’s upper surface only.

vertical velocity perturbation due to the counteracting effect of the streamwise vortices,
hence a weaker source strength at the peak as seen in figures 4a and 4b. On the other
hand, the root experiences an amplified level of the vertical velocity perturbation and
therefore a reinforced source strength at the root, which is also manifested to a certain
extent in figures 4e and 4f (at low frequencies). However, the relative difference to the
baseline SLE case is much smaller at the root compared to that taking place at the
peak. This requires an explanation. Additional quantitative investigations provided in
the following sections reveal further details of the source behaviours.

4. Consistent source strength at the root

Figure 9 shows the distribution of the maximum values of the net induced vertical
velocity (|v|max/a∞) and vorticity magnitude (|ω|maxLc/a∞) on the horizontal plane
(y = 0) where the aerofoil is located, obtained from each time signal at every point in
space:

|v|max(x) =
∞

max
t=0

|v(x, t)|, |ω|max(x) =
∞

max
t=0

|ω(x, t)|. (4.1)

It can be seen in figure 9c that the amplitude of the induced vertical velocity is highest
around the WLE root area as expected. It is also indicated in figure 9d that the stream-
wise vortices once created at the peak become amplified as they are moving downstream
along the hill towards the root, which results in the highly concentrated vertical velocity
spot around the root as anticipated from figure 8b. These are, surprisingly, much higher
(by a factor of two) than those of the SLE baseline cases, which leads to a question how
such a highly amplified level of velocity perturbation at the root settles down with a
minor increase in the aeroacoustic source strength (wall pressure fluctuation) as seen in
figures 4e and 4f. A discussion on this follows below.
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Figure 10. A comparison between the induced vertical velocity and wall pressure fluctuation
(v/a∞ and ∆pw/p∞) at the WLE root for various WLE amplitudes (hLE/Lc): (a) time signals
of v/a∞ obtained one grid point upstream of the root; (b) time signals of ∆pw/p∞ obtained
one grid point downstream of the root; (c) an instantaneous contour plot of v/a∞ taken at
t∗ = 8.08 (when the induced vertical velocity reaches its maximum, for hLE/Lc = 1/15)
indicating an oblique interaction with the root, where the values greater than 0.0098 indicate
stronger perturbation than the SLE case; and, (d) time signals of v cos[(φ1 + φ2)/2]/a∞ which
includes the obliqueness effect. The values of φ1 and φ2 are listed in table 1.

Figure 11. Spectral similarity at the root between the wall pressure fluctuation and the induced
vertical velocity including the obliqueness effect: (a) PSD of ∆pw/p∞ and (b) PSD of v cosφ/a∞

from figure 10b and 10d, respectively.

The time signals of the induced vertical velocity impinging at the root are provided
in figure 10a for various values of hLE , where it is clear that the velocity perturbation
increases significantly and steadily with hLE (linked with the streamwise vorticity inten-
sifying as the WLE becomes slender). On the contrary, the wall pressure fluctuation at
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Figure 12. Mean vertical velocity signals calculated from (4.2) around the root area for various
values of hLE/Lc (WLE amplitude), in relation to the consistent source strength at the root
irrespective of hLE .

the root shown in figure 10b does not vary as much, and even slightly decreases with
increasing hLE . One of the possible answers to this paradoxical event might be related
to the fact that the vertical velocity perturbation approaches the root area in an oblique
fashion as can be seen from figure 10c. The vertical velocity iso-contours that are skewed
and bent around the root area exhibit the oblique interaction taking place. In order to
quantify the obliqueness of the interaction, as shown in figure 10c, two cosine angles
(φ1 and φ2) are measured from the slender crescent-shaped high-intensity area in which
the vertical velocity perturbation is stronger than the maximum value of the SLE case
(−v/a∞ = 0.0098). The angles φ1 and φ2 are defined between the tip and the two
inflection points of the crescent contour line. The authors then take the average of the
two measures to represent the overall obliqueness, i.e. φ = (φ1 + φ2)/2. The values of
these angles estimated for each of the cases (hLE/Lc = 1/30, 1/15 and 1/10) are listed in
table 1. The authors have examined the sensitivity of φ for various values of the threshold
(up to ±20% from 0.0098) and found no significant changes as shown in Appendix B.
Figure 10d reveals that the vertical velocity signals multiplied by the obliqueness factor
(cosφ) are remarkably similar to the wall pressure fluctuation signals (∆pw/p∞) given
in figure 10b. They even show the same trend of changes with respect to increasing hLE .
The remarkable similarity is also demonstrated in the spectral domain in figure 11 where
the agreement is consistent throughout the entire frequency range. The result here might
strongly suggest that the oblique interaction is one of the possible explanations of the
consistent source strength at the root.

hLE/Lc φ1 φ2 φ = φ1+φ2

2

1/30 30.13◦ 47.72◦ 38.93◦

1/15 45.37◦ 63.33◦ 54.35◦

1/10 50.76◦ 69.76◦ 60.26◦

Table 1. The cosine angles representing the oblique interaction between the induced vertical
velocity and the WLE shown in figure 10c.

An additional investigation is performed in this section to find out that there is a
certain normalisation applicable to the vertical velocity perturbation, which leads to a
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meaningful correlation with the wall pressure fluctuation at the root. In this regard, an
area-averaged norm of the vertical velocity perturbations is defined around the root as a
function of time as follows:

vmean(t) =
1

A

∫ 1

2
λLE

0

∫ xLE

− 1

2
Lc

v(x, y = 0, z, t)dxdz,

A =

∫ 1

2
λLE

0

∫ xLE

− 1

2
Lc

dxdz =
λLEhLE

π
,























(4.2)

where A is the area of integration enclosed by the concave part of the WLE sinusoid
towards the root and a straight line where the SLE was positioned (e.g. the concave
area shown in figure 10c). The expression for xLE as a function of z is given in (2.2).
The calculated mean vertical velocity signals are presented in figure 12. It is shown
that the mean vertical velocity perturbation remains relatively unchanged despite the
substantial variation in hLE . This might indicate that the overall vertical momentum
(created by the initial vortex) is conserved although the vertical velocity tends to surge
locally around the root area. The vmean/a∞ signals also exhibit a good similarity with
the ∆pw/p∞ (wall pressure fluctuation) signals at the root shown in figure 10b. Therefore,
it may be concluded here that the source strength at the root is better correlated with
the mean vertical velocity signal than with the local one nearest to it. This outcome
is analogous to the theoretical consideration based on a Poisson equation, i.e. ∇2p =
−ρ(∂ui/∂xj)(∂uj/∂xi) – see Tsuji et al. (2007) – indicating that pressure at a certain
location is determined by integrating velocity properties surrounding it.

5. Variations in source strength at the peak

The focus is now moved on to the WLE peak in this section. It has been observed
earlier in ➜3 that the aeroacoustic source characteristics at the peak are considerably
different to those at the root. The source strength at the peak decreases significantly
with increasing WLE amplitude (hLE) as shown in figure 4a and 4b. It seemed rather
straightforward from figure 8b that this was due to the attenuating vertical velocity
contribution created at the peak by the streamwise vorticity components that are growing
with hLE as shown in figures 13 and 14. The significant growth of the streamwise vorticity
appears counterbalanced by a decay in the spanwise vorticity to a certain extent, which
corresponds to Helmholtz’s theorems. The time signals of the induced vertical velocity
and the corresponding wall pressure fluctuation at the peak varying with hLE are shown
in figure 15. It is apparent in the figure that the vertical velocity perturbation decreases
with increasing hLE and it results in the reduction of the source strength at the peak.
A more interesting observation, however, is that both v and ∆pw become significantly
less sensitive to increasing hLE after a certain point. In particular the v signal seems to
converge towards that of the free-field solution generated without the aerofoil in place.
This section is focused on explaining the mechanism of the inconsistent source behaviours
taking place at the peak.
Considering the horseshoe vortex (HV) system identified in ➜3, a semi-analytic ap-

proach based on Biot-Savart’s law is proposed in order to obtain more information on
the induced velocity components from the HV system. The general form of Biot-Savart’s
law is expressed by

dv(x0, l) =
Γ

4π

r × dl

|r|3 , r = l− x0, (5.1)

where x0 and l are position vectors of the observer and a certain point on the vortex
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Figure 13. Instantaneous contour plots of streamwise vorticity (ωxLc/a∞: left) and spanwise
vorticity (ωzLc/a∞: right) on the upper surface of the aerofoil for three different WLE
amplitudes, obtained when the induced vertical velocity in front of the peak reaches its maximum
amplitude: (a/b) ta∞/Lc = 7.540, (c/d) 7.461 and (e/f ) 7.305 – see figure 15a.

Figure 14. Vorticity distributions in span along the leading edge for various values of hLE/Lc

obtained when the induced vertical velocity in front ot the peak reaches its maximum amplitude:
(a) streamwise vorticity (ωxLc/a∞) and (b) spanwise vorticity (ωzLc/a∞) on the upper surface
of the aerofoil – see figure 13. The spanwise coordinate of the peak is denoted by z0 in the x-axis
labels.
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Figure 15. A comparison between the induced vertical velocity and wall pressure fluctuation
(v/a∞ and ∆pw/p∞) at the WLE peak for various WLE amplitudes (hLE/Lc): (a) time signals
of v/a∞ obtained one grid point upstream of the peak; and, (b) time signals of ∆pw/p∞ obtained
one grid point downstream of the peak. The case with “Free field” indicates a free-field solution
(without the aerofoil) recorded at (x, y) = (−0.7Lc, 0).

ΓA

(x0 , z0)

z

x
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(xH , z0+H)

ΓB

ΓA

ΓB

Figure 16. Schematic of the horseshoe vortex (HV) system used to estimate the
WLE-induced vertical velocity in front of the peak, in relation to (5.3).

filament, respectively; and, Γ is the cross-sectional circulation induced by the vortex.
Since the current HV (horseshoe vortex) system is on a horizontal plane, the above
equation with the observer position fixed at the peak can be simplified as

dvHV
peak =

Γ

4π

(r3dx− r1dz)

(r21 + r23)
3

2

, (5.2)

where the subscripts “1” and “3” denote the streamwise and spanwise coordinates,
respectively. Integrating all contributions from the bound vortex and the two trailing
vortices lead to the following formula (see figure 16):

vHV
peak = vA + vB ,

vA =
1

4π

∫ z0+H

z0−H

ΓA

[(xLE − x0)2 + (z − z0)2]
3

2

ï
(z − z0)

dxLE

dz
− (xLE − x0)

ò
dz,

vB =
H

2π

∫ ∞

xH

ΓBdx

[(x− x0)2 +H2]
3

2

,































(5.3)

where the subscripts “A” and “B” represent contributions from the bound and trailing
vortices, respectively; (x0, z0) = (−Lc/2 − hLE −∆x,−λLE/4) is the observer position



Aeroacoustic source mechanisms of an aerofoil with a WLE 19

Figure 17. Semi-analytic predictions of the HV-induced vertical velocity components in front
of the peak, obtained by using (5.3) for various values of hLE/Lc: (a) contributions from the
bound vortex (vA) and the trailing vortices (vB), and the total (vA + vB); (b) a comparison
between the semi-analytic result and direct simulation data (“vconverged” is represented by the
case with hLE/Lc = 1/10). The predictions are made at ta∞/Lc = 7.774, 7.540, 7.461 and
7.305 for hLE/Lc = 0, 1/30, 1/15 and 1/10, respectively, when the vertical velocity reaches its
maximum amplitude (see figure 15).

(one grid cell ahead of the peak point) – see (2.2); and, H is the half width of the HV.
The bound vortex is located along the WLE, x = xLE(z) that is given by (2.2), and
xH = xLE(z0 + H) is the starting x-coordinate of the trailing vortices. Here, xH is
selected at the position where the largest streamwise vorticity |ωx| is obtained.
In (5.3), the cross-sectional circulations ΓA and ΓB are calculated at each grid point

along the HV based on the simulation data by using the Stokes’ theorem with a constraint
for the Q-criterion as

Γ =

∫

A

ωndA
∣

∣

∣

∣

Q>max(Q)/100

, (5.4)

where A is the integration area on a plane that is perpendicular to the WLE curve
and accordingly ωn is the vorticity component normal to the plane. The Q-criterion
constraint is used to eliminate the circulation produced by the initial prescribed vortex
in the current evaluation. Since the prescribed vortex has a significantly lower strength,
a value blanking method can be adopted for this purpose. This is achieved by restricting
A to the region where the Q-criterion remains above 1% of the global maximum value.
Since the HV structure exists on both the upper and lower sides of the aerofoil, the
calculation is repeated for both and added together to obtain the total induced velocity.
The result of the semi-analytic prediction by using (5.3) for the HV-induced vertical

velocity in front of the peak is presented in figure 17. The semi-analytic result follows a
very similar trend to that from the simulation data albeit not fully matched. It is clearly
shown in figure 17a that the net HV-induced vertical velocity decays with increasing
hLE . This is due to the contributions from the bound and trailing vortices (vA and vB)
cancelling out each other. The mutual cancellation is almost perfect and resulting in a
zero sum when hLE/Lc = 1/15 or higher, in which case the overall vertical velocity is
effectively maintained by the initial vortex approaching (free-field solution). This explains
the convergence/saturation of the vertical velocity signal at the peak for high hLE/Lc,
which was questioned in the beginning of the section.
In the meantime, in figure 17, the contribution of the bound vortex (vA) decreases

rapidly and converges towards zero with increasing hLE . The rapid decay of vA is
considered to be the major cause of the reduction in source strength at the peak discussed
earlier (figure 15). This may be explained in three steps. First, between hLE = 0 (SLE)
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Figure 18. Profiles of dvA/dz (normalised by a∞ and Lc) from (5.3): (a) entire and (b)
zoomed-up views, showing local piecewise contributions of the bound vortex to the overall
induced vertical velocity in front of the peak resulted in figure 17a.

and 1/30, there is a large drop in the spanwise vorticity (ωz) and the appearance of
ωx, which are shown in figure 14. Secondly, between hLE = 1/30 and 1/15, there is a
moderate drop in ωz and a further growth in ωx leading to a continued reduction of vA up
to this point. Lastly, between hLE = 1/15 and 1/10, ωx still grows consistently (with very
little change in ωz); however, this does not reflect efficiently on vA due to the fact that the
term [(z−z0)dxLE/dz−(xLE−x0)] in (5.3) tends to zero or a very small number (except
for the area nearest to the peak where ωz prevails) since dxLE/dz ∼ (xLE −x0)/(z− z0)
as the WLE profile becomes increasingly slender (similar to a long and narrow triangle).
These trends can also be found in figure 18 which provides local piecewise contributions
of the bound vortex (dvA/dz as a function of z) showing the rapid decrease of the
bound vortex contribution and its convergence at high hLE/Lc. The figure also shows a
certain amount of upwash generated by the bound vortex indicating the influence of the
streamwise vorticity component prevalent around the edges of the bound vortex.

More information can be found from the semi-analytic prediction data. In figure 17 the
contribution of the trailing vortices (vB) seems to gradually decreases with increasing hLE

although the streamwise vorticity (ωx) grows steadily with hLE as shown in figures 13 and
14. It may be explained by using (5.3) where vB is proportional to H and asymptotically
to (xH − x0)

−3. For a higher hLE , H decreases and xH increases (as shown in figures 14
and 16), which may result in a reduced vB despite a higher ωx or ΓB .

6. Additional findings and discussions

This section briefly presents additional findings made with regard to two different
aspects based on the current simulation framework: 1) the relationship between the
aeroacoustic source strength and the WLE aspect ratio; and, 2) the effect of a three-
dimensional profile introduced in the impinging vortex on the interaction with the
leading-edge geometries.

6.1. WLE aspect ratio and source strength

A parametric study is carried out to find a relationship between the aeroacoustic
source strength and the WLE aspect ratio (AR = 2hLE/λLE). Three different values
of AR = 0.5, 1 and 1.5 have been studied in ➜3 to ➜5 with the wavelength fixed at
λLE/Lc = 2/15. In this section, additional simulations are performed with both hLE

and λLE doubled (hence, the aspect ratios remain the same) in order to investigate



Aeroacoustic source mechanisms of an aerofoil with a WLE 21

Figure 19. Far-field acoustic pressure PSD profiles, Sppa(f
∗)/p2∞, obtained at an observer

location, xo = (0, 5Lc, 0), for three different WLE aspect ratios (AR = 2hLE/λLE = 0.5, 1 and
1.5). The aspect ratios with “∗” indicate that the size of the WLE is doubled (AR∗ = 2h∗

LE/λ
∗

LE

where h∗

LE = 2hLE and λ∗

LE = 2λLE). The dotted curves are from the SLE baseline case.

Figure 20.Wall pressure PSD profiles, Sppw(f
∗)/p2∞, obtained at three different locations on the

WLE (peak, hill centre and the root) for three different WLE aspect ratios (AR = 2hLE/λLE =
0.5, 1 and 1.5). The aspect ratios with “∗” indicate that the size of the WLE is doubled
(AR∗ = 2h∗

LE/λ
∗

LE where h∗

LE = 2hLE and λ∗

LE = 2λLE).

the differences in the source characteristics. In terms of the radiated sound pressure
level (SPL), it is well known that the SPL is dependent largely on hLE with secondary
contributions from λLE (Lau et al. 2013; Narayanan et al. 2015; Chaitanya et al. 2015;
Kim et al. 2016). This means that the SPL would be further reduced in the cases of
doubled hLE for the same aspect ratio, which is also true in the current study as shown
in figure 19 (AR∗ = 0.5, 1 and 1.5). The further reduction of sound is apparent across
the whole frequency range. However, the reduced sound does not necessarily relate to a
reduced source strength as far as the current results are concerned – see below.
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Figure 21. Schematics of a wavy vortex (WV) interacting with three different leading-edge
geometries: (a) SLE, (b) WLE and (c) the WLE inverted. The centreline of the wavy vortex is
undulated along the span in the same fashion applied to the WLE profile – based on (2.2). The
inverted WLE (IWLE) has an out-of-phase formation against the prescribed WV.

Figure 20 shows the source strength (wall pressure spectra) at the peak, hill centre and
root, obtained from the additional simulations with double sized WLEs, compared with
the earlier original cases of the same aspect ratios. It is noticeable that the source strength
remains relatively unchanged by doubling the size of the WLE as far as the aspect ratio is
maintained. Although slightly large deviations are seen at the peak at some frequencies,
a remarkable level of similarities can be found at the root and the hill. The result might
suggest that the WLE aspect ratio is a similarity parameter which dictates the source
strength and characteristics, despite the radiated sound being influenced mainly by the
WLE amplitude. It also suggests that there exist imperative mechanisms contributing to
the noise reduction purely associated with the propagation of the sound waves.

One of the propagation effects was indicated by Kim et al. (2016) where it was shown
that phase interferences between the source signals make significant contributions to the
reduction of the radiated sound at certain frequencies with out-of-phase relationships.
The phase interference effect may also be related with the starting frequency of noise
reduction, f0 ≈ 0.25U∞/hLE , reported by Narayanan et al. (2015). This implies that the
low-frequency noise reduction is strongly dependent of the WLE amplitude. However,
apart from these, there is little known about the propagation mechanisms particularly
with regard to the discrepancies between the source spectra and the radiated sound
spectrum as highlighted towards the end of ➜3.1. It is envisaged that the similarity
in the source characteristics observed in this paper will facilitate the study of the
propagation mechanisms in the future if two different WLEs with the same aspect ratio
are investigated and compared against each other.

6.2. The effect of three-dimensional profile in the impinging vortex

A miscellaneous test has been performed in order to briefly demonstrate the effect
of three-dimensionality introduced in the impinging vortex on the interaction with the
leading-edge geometries. The schematics of the additional test cases are described in
figure 21. The centreline of the impinging vortex no longer remains straight but forms
a wavy profile in the same fashion that was applied to the WLEs in the paper. Three
additional cases of aerofoil-vortex interaction are considered as depicted in figure 21:
(a) WV-SLE, (b) WV-WLE and (c) WV-IWLE, where WV and IWLE stand for wavy
vortex and inverted WLE, respectively. The WV and WLE profiles are identical but
the IWLE (inverted WLE) has an 180◦ phase-shift against the WV. The WV profile is
created simply by changing the centre coordinate (x0) of the vortex used in (2.5) and
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Figure 22. Far-field acoustic pressure time signals and the corresponding PSD: (a) p′a(t
∗)/p∞

and (b) Sppa(f
∗)/p2∞ obtained at an observer location, xo = (0, 5Lc, 0), from the additional

simulations described in figure 21. The new results are compared with the earlier cases (SV-SLE
and SV-WLE) that used a straight vortex. The WLE and WV profiles are based on hLE/Lc =
1/30 and λLE/Lc = 2/15.

(2.6) as follows:

x0 = −2.5Lc + hLE sin

Å
2πz

λLE

ã
, z ∈

[

− 1
2Lz,

1
2Lz

]

. (6.1)

The result of the additional simulations is presented in figure 22 in comparison with the
earlier cases (SV-SLE and SV-WLE) that was based on a straight vortex (SV). It is shown
that the WV-WLE case yields an almost identical sound pressure spectrum to that of
the SV-SLE case. Also, the WV-SLE and SV-WLE cases are remarkably similar to each
other except a marginal difference at high frequencies. In comparison, the WV-IWLE case
exhibits a substantial noise reduction across a wide range of frequencies. These results
could be explained by looking at the streamwise distance between the impinging vortex
and the leading edge. First, the WV-WLE and SV-SLE cases have the same relative
distance that is constant along the span. Therefore the impact takes place synchronously
(with no time delay) across the span. The WV-SLE and SV-WLE cases also have the same
relative distance but varying along the span, which results in an asynchronous interaction
over the span, hence a reduced noise level. Finally, the WV-IWLE case is effectively
comparable to the SV-WLE case with the WLE amplitude doubled (hLE/Lc = 1/15
instead of 1/30) and therefore resulting in a significantly increased noise reduction (see
figure 5).
It is possible to consider more complex cases such as the wavy vortex has a different

wavelength, amplitude or phase-shift to those of the wavy leading edge to interact with.
Also, the impinging vortex can be finite in span (similar to an individual eddy) as explored
in Mathews & Peake (2015). Studying these increasingly complex cases may enhance the
understanding of the noise generation/reduction mechanisms into more details later on.

7. Concluding remarks

Detailed understandings of the aeroacoustic source mechanisms of a thin aerofoil
with a WLE interacting with a prescribed impinging vortex have been achieved by
using high-order accurate aeroacoustics simulations in this paper. The numerical flow
visualisation showed that the WLE upon interaction with the impinging vortex created
a horseshoe vortex (HV) system stemming from the peak area. The HV-induced vorticity
and velocity fields around the WLE provided key information to quantify and understand
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the changes in the wall pressure fluctuation compared to the SLE baseline cases. Two
distinctive source behaviours were observed and questioned during the initial analysis
of the simulation data. Some scientific explanations to the questions have emerged after
investigating into the role of the HV system and the induced velocity field induced by it.

The aeroacoustic source strength at the root remained consistent (similar to that of
the SLE counterpart) irrespective of the WLE amplitude (hLE). This initially seemed
incompatible with the growing contribution of the HVs substantially amplifying the verti-
cal velocity perturbation around the root with increasing hLE . The current investigation
showed that the oblique interaction between the vertical velocity perturbation and the
root area could be one of the mechanisms to explain the paradoxical event. From another
point of view, it was demonstrated that the area-averaged vertical velocity remained at
a constant level irrespective of hLE (indicating the conservation of vertical momentum),
which might suggest that the source strength at the root was determined mainly by the
overall amount of vertical momentum possessed in the upstream of the root.

Unlike the root, the source strength at the peak was significantly reduced with increas-
ing hLE up to a certain point. The reduction of source strength at the peak was well
correlated with the growth in streamwise vorticity and the decay in the spanwise vorticity
along the HV which efficiently attenuated the vertical velocity perturbation. However, the
source strength at the peak ceased to decrease further when hLE was sufficiently large.
The source convergence/saturation event was explained by using a semi-analytic model
of the HV (a curved bound vortex connected with two straight trailing vortices) based on
Biot-Savart’s law. The semi-analytic model showed that the HV-induced downwash and
upwash components eventually led to a complete mutual cancellation as hLE becomes
large, and therefore the net vertical velocity in front of the peak converged to that of
the free-field solution with no aerofoil in place. It was also found that the highly slender
WLE geometry made the HV effectively non-responsive to the source strength at the
peak despite the intensified streamwise vorticity components surrounding it.

It appeared that there was a strong similarity rule existing in the source characteristics
between two different WLE geometries with the same aspect ratio. The level of similarity
viewed from the wall pressure spectra was maintained at all frequencies and all probing
points (peak, hill centre and root). This might suggest that the source mechanisms ex-
plained in this paper have a certain level of universality applicable to a wide range of WLE
geometries. The authors suggest within this hypothesis that it is necessary to investigate
the “propagation” mechanisms in detail since there is a significant disagreement between
the source power spectra at the wall and the noise reduction spectrum at the far field,
as addressed in ➜3.1. Also, the exponential growth of noise reduction with frequency
– reported repeatedly by Narayanan et al. (2015); Chaitanya et al. (2015); Kim et al.

(2016) – is unexplained solely by the source mechanisms.

The current study was focused on the most basic scenario where the impinging vortex
was kept two-dimensional and only the leading-edge geometry was changed from 2D to 3D
such that it was straightforward to identify the differences that the geometric modification
made to the flow and sound. It would be necessary afterwards to consider a more complex
case where the impinging vortex has a three-dimensional profile as briefly demonstrated
in ➜6.2. It will aid better understanding the realistic aerofoil-turbulence interaction that
has a certain spanwise length scale and coherence. The size of the parametric space to
explore will become substantial in that case though.
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Figure 23. A grid convergence test of the current numerical simulation by using three different
levels of grid resolution. The far-field acoustic pressure signal (p′a/p∞) and its PSD (Sppa/p

2
∞) are

obtained at an observer point x0 = (0, 5Lc, 0). The WLE geometry is based on hLE/Lc = 1/15
and λLE/Lc = 2/15 (corresponding to figure 5).
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Appendix A. Validation of computational data

Figure 23 shows the results of a grid convergence test conducted with a WLE geometry:
hLE/Lc = 1/15 and λLE/Lc = 2/15 (AR = 1). Three different levels of grid resolution
(coarse, medium and fine) were used. The medium level was used for all simulation
data presented in this paper. The coarse/fine levels have 20% less/more resolution in all
directions. The number of grid points and the typical mesh sizes used for each resolution
level are listed in table 2. Figures 23a and 23b demonstrates that there is effectively no
difference in the results (time signals and the spectra as well) between the three different
grids. Figure 23d also shows a comparison to the free-field solution obtained without
the aerofoil in place (using the medium grid). The level of background noise (numerical
error residual) remained at least 40dB lower than the physical SPL throughout the entire
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frequency range, which represents the quality of the numerical solutions presented in this
paper.

Resolution level nξ nη nζ ∆xmax/Lc ∆xmin/Lc

Coarse 836 528 52 0.012 0.0075
Medium 1036 660 64 0.01 0.00625
Fine 1254 792 78 0.008 0.005

Table 2. Supplementary information for the grid convergence test shown in figure 23, where
nξ, nη and nζ denote the number of grid cells in the ξ-, η- and ζ-directions, respectively – see
(2.3) and (2.4).

Appendix B. Sensitivity test for the measure of the obliqueness in

interaction

The following tables show the estimated angles of the oblique interaction (φ) described
in ➜4 for various values of the −v/a∞ contour threshold selected from figure 10c.
The sensitivity test was performed for all three WLE geometries used in the paper
(hLE/Lc =1/30, 1/15 and 1/10). The tables show that the choice of the threshold (within
the 40% bandwidth tested) makes an insignificant change to the estimated obliqueness
angle with a deviation of up to 4.07% at maximum as far as the current test cases are
concerned.

Threshold selected φ1 φ2 φ = (φ1 + φ2)/2 Relative difference in φ

0.00784 (–20%) 30.18◦ 45.03◦ 37.61◦ –3.39%
0.00882 (–10%) 29.48◦ 46.34◦ 37.91◦ –2.62%
0.0098 (original) 30.13◦ 47.72◦ 38.93◦ -
0.01078 (+10%) 34.43◦ 45.11◦ 39.77◦ +2.16%
0.01176 (+20%) 32.46◦ 45.01◦ 38.74◦ –0.49%

Table 3. The estimation of φ for various thresholds in the case of hLE/Lc = 1/30.

Threshold selected φ1 φ2 φ = (φ1 + φ2)/2 Relative difference in φ

0.00784 (–20%) 42.85◦ 61.42◦ 52.14◦ –4.07%
0.00882 (–10%) 44.75◦ 62.80◦ 53.78◦ –1.05%
0.0098 (original) 45.37◦ 63.33◦ 54.35◦ -
0.01078 (+10%) 44.34◦ 61.45◦ 52.90◦ –2.67%
0.01176 (+20%) 43.42◦ 61.10◦ 52.26◦ –3.85%

Table 4. The estimation of φ for various thresholds in the case of hLE/Lc = 1/15.
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Threshold selected φ1 φ2 φ = (φ1 + φ2)/2 Relative difference in φ
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