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Aerobic exercise (AE) has been widely praised for its potential benefits to cognition
and overall brain and mental health. In particular, AE has a potent impact on
promoting the function of the hippocampus and stimulating neuroplasticity. As the
evidence-base rapidly builds, and given most of the supporting work can be readily
translated from animal models to humans, the potential for AE to be applied as
a therapeutic or adjunctive intervention for a range of human conditions appears
ever more promising. Notably, many psychiatric and neurological disorders have been
associated with hippocampal dysfunction, which may underlie the expression of certain
symptoms common to these disorders, including (aspects of) cognitive dysfunction.
Augmenting existing treatment approaches using AE based interventions may promote
hippocampal function and alleviate cognitive deficits in various psychiatric disorders that
currently remain untreated. Incorporating non-pharmacological interventions into clinical
treatment may also have a number of other benefits to patient well being, such as
limiting the risk of adverse side effects. This review incorporates both animal and human
literature to comprehensively detail how AE is associated with cognitive enhancements
and stimulates a cascade of neuroplastic mechanisms that support improvements in
hippocampal functioning. Using the examples of schizophrenia and major depressive
disorder, the utility and implementation of an AE intervention to the clinical domain will
be proposed, aimed to reduce cognitive deficits in these, and related disorders.

Keywords: aerobic fitness, hippocampus, plasticity, schizophrenia, depression, dementia, memory, neurogenesis

INTRODUCTION

The brain is continuously balancing two conflicting demands: it must retain enough structural
integrity to maintain proper neurotransmission, and function efficiently, whilst remaining
malleable enough to restructure itself and adapt to changing environmental demands. The dynamic
nature of the brain is underpinned by the concept of neuroplasticity, which refers to the brains
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capacity to change and reorganize itself in response to
internal and/or external influences. The impact and eventual
consequences of brain plasticity can be twofold; i.e., these
influences can be adaptive, such as during skill learning, when
they help the individual to survive, or can be maladaptive, when
plasticity is insufficient to meet a specific demand, which may
then contribute toward disease conditions.

To some extent, brain disorders can be considered
maladies of neuroplasticity (Krystal et al., 2009). As such,
stimulating neuroplasticity is becoming a popular approach
aimed to counteract pathological harm (Kays et al., 2012).
Interestingly, a stimulus as peripheral as aerobic exercise (AE)
has been demonstrated to have a strong influence on inducing
neuroplasticity (Voss et al., 2013a) and promoting cognitive
performance (Smith et al., 2010). Given its general benefits
to ones physical health, low risk profile and relative ease of
implementation, AE represents a promising therapeutic target
for a range of brain pathologies.

One brain region with a high degree of endogenous
neuroplasticity is the hippocampus (Bavelier and Neville, 2002).
The hippocampus is heavily involved in learning and memory
processes and is particularly vulnerable to damage in various
pathological conditions like major depressive disorder (MDD),
Alzheimer’s disease and schizophrenia (Adriano et al., 2012;
Bartsch and Wulff, 2015; Schmaal et al., 2016). Conversely, the
positive influence of AE on neuroplasticity is more pronounced
within the hippocampus than in any other brain region (Gomez-
Pinilla and Hillman, 2013). AE has been suggested as a
promising approach in remediating hippocampal harm and
cognitive deficits caused by neurodegenerative disorders like AD
(Intlekofer and Cotman, 2013), but AE may also be a promising
approach for various psychiatric disorders like schizophrenia or
MDD (Oertel-Knöchel et al., 2014).

This paper will review the cognitive benefits associated with
AE and focus on aspects of cognition that are particularly
dependent hippocampal functioning such as episodic memory
formation. We further discuss the capacity of AE to stimulate
macro- and micro-scale neuroplastic mechanisms relating to
hippocampal functioning. Finally, we address the suitability of
AE to be used as a novel therapeutic intervention for psychiatric
disorders. Both schizophrenia and MDD are associated with
hippocampal deterioration and cognitive dysfunctions, so we take
these two conditions as examples to discuss the potential utility of
AE-based interventions.

EXERCISE AND COGNITION

The interest in how AE influences cognitive performance has
exploded in the past decade. AE generally refers to exercise
that improve the efficiency of aerobic energy producing systems
by increasing maximal oxygen uptake and cardiorespiratory
endurance (Voss et al., 2013a). Large-scale epidemiological
studies have consistently correlated high levels of aerobic fitness
with greater academic achievement and IQ scores (Sibley and
Etnier, 2003; Tomporowski et al., 2008, 2014; Howie and Pate,
2012) as well as with a greater preservation of cognitive function

in old age (Yaffe et al., 2001; Barnes et al., 2003; Middleton
et al., 2008; Wendell et al., 2014) and fewer incidences of
dementia (Hamer and Chida, 2009). The capacity to promote
cognitive performance in this way implies that AE may have
an important clinical relevance in counteracting the cognitive
decline associated with aging or dementia (Kramer et al., 2006)
and has catalyzed its systematic investigation. Many randomized
controlled trials (RCTs) have now been conducted using AE
interventions of a moderate intensity (such as 30 min of
Nordic walking) that generally span for 3–12 months and are
mostly conducted in older adults. Meta-analyses have found
AE interventions to improve cognitive performance across a
variety of domains, including attention, executive functioning,
processing speed, motor functioning, and memory in healthy
young and middle aged adults (Etnier et al., 1997; Smith et al.,
2010; Chang et al., 2012; Roig et al., 2013; Verburgh et al., 2013)
but mostly in older age groups (Etnier et al., 1997; Colcombe and
Kramer, 2003; Angevaren et al., 2008; van Uffelen et al., 2008;
Smith et al., 2010; Snowden et al., 2011; Chang et al., 2012), as
well as in older individuals with mild cognitive impairments or
dementia (Heyn et al., 2004; van Uffelen et al., 2008; Gates et al.,
2013).

The available evidence strongly suggests that AE has a
positive influence on cognition in individuals of all age groups,
particularly in older adults. However, the exact nature of
how AE impacts upon cognition is not yet clear. Some RCTs
have stipulated that AE influences divergent cognitive domains,
whereas others have suggested AE had no significant impact
on cognition at all (Etnier et al., 2006; van Uffelen et al.,
2008; Snowden et al., 2011; Gates et al., 2013; Kelly et al.,
2014; Young et al., 2015). Such inconsistencies may partially
be explained by the methodological variation between RCTs,
making it difficult to systematically compare their findings in
meta-analyses (Angevaren et al., 2008; Young et al., 2015).

On a neural level, findings have been consistent in
demonstrating that AE has a strong, positive influence on the
structure of the hippocampus, which is not seen to the same
extent in any other brain regions (Gomez-Pinilla and Hillman,
2013). As will be discussed below, it has been extensively
demonstrated in animal models that AE stimulates a cascade
of neuroplastic mechanisms within the hippocampus that are
often paralleled by functional improvements (Voss et al., 2013a;
Opendak and Gould, 2015). A large cohort of animal studies
have assessed the functional impact of AE using tasks designed
to specifically assess hippocampus dependent processing such as
spatial (Vaynman et al., 2004) or contextual memory (Radak et al.,
2006). Using hippocampus dependent paradigms, AE has been
reliably demonstrated to improve task performance in animal
models (van Praag, 2009; Voss et al., 2013a), although this does
also depend on others aspects of AE such as the duration and
intensity of AE (Naylor et al., 2005; Ploughman et al., 2007;
O’Callaghan et al., 2009).

Until recently, human studies had primarily focussed on
examining the impact of AE on performance in frontal-executive
or attentional tasks rather than on specific hippocampus
dependent forms of cognition (Ruscheweyh et al., 2011). It is
possible that this may have contributed toward the inconsistent
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findings when investigating the effect of AE on human cognition.
Based on the profound impact of AE on the hippocampus, this
bottom-up focus on hippocampus dependent processing may
also be a useful approach in specifying the impact of AE on
human cognition and will be adopted here.

A Hippocampus-Centric Approach
The hippocampus plays an important role in both learning and
memory (Jarrard, 1993) and affective processing (Phillips et al.,
2003). The dichotomous functioning of the hippocampus is
thought to be reflected in its structure, with affective processing
being largely attributed to the ventral hippocampus and learning
and memory processes mostly occurring through the dorsal
hippocampus (Moser and Moser, 1998). Given that cognition
is a central theme of this paper, the following sections will
predominantly focus on the role of the hippocampus in learning
and memory processing.

Several meta-analyses have denoted the tendency for RCTs
to report improvements in memory-based task performance
following an AE intervention (Colcombe and Kramer, 2003;
van Uffelen et al., 2008; Smith et al., 2010; Chang et al.,
2012; Roig et al., 2013). However, some domains of memory
are more reliant on hippocampal functioning than others (see
Box 1) and therefore, it is possible that the most consistent
cognitive improvements may be found in these specific domains
of memory.

Some human studies have focussed on assessing the influence
of AE on hippocampus dependent cognition and shown in
older adults that AE was associated with improved performances
in both episodic (Richards et al., 2003; Stewart et al., 2003;
Sabia et al., 2009; Flöel et al., 2010; Ruscheweyh et al., 2011)
and spatial (Erickson and Kramer, 2009; Erickson et al., 2010,
2011) memory tasks as well as in pattern separation tasks in

BOX 1 | Hippocampus dependent memory. The human hippocampus
plays a vital role in the formation of declarative memories, most prominently of
which, in the formation of episodic and spatiotemporal memories (Burgess
et al., 2002). Episodic memory refers to the recollection of autobiographical
events and is related to spatial memory, which refers to one’s environment and
spatial orientation. Spatial and episodic memory processes are inherently
related given their specific reliance on the hippocampus (Bird and Burgess,
2008) and the fact that episodic memories are encoded in a spatio-temporal
context (Tulving, 1993), making spatial information important in episodic
memory formation. Also, the hippocampus, and particularly the DG, is crucial
in selecting and separating similar events in space and time, and hence
pattern separation is a main function attributed to the hippocampus (Yassa
and Stark, 2011; Oomen et al., 2013, 2014). It is important to note that given
the requirement of a conscious experience to form an episodic memory, at
present episodic memory cannot be directly studied in animals given the lack
of behavioral markers for their conscious experience (Clayton et al., 2001).
Contextual memory is a process strongly related to episodic memory that is
also highly dependent on the hippocampus and refers to the capacity for an
animal to make associations with salient landmark objects and their
environmental context (Eichenbaum et al., 2005). As there is currently no
objective proxy for studying episodic-like memory processing in animals
(Templer and Hampton, 2013), hippocampal functioning shall be considered
here as a function of contextual and spatial memory task performance when
referring to animal literature and episodic and spatial memory task
performance in human literature.

young adults (Déry et al., 2013). Moreover, some studies have
demonstrated in preadolescent children and young adults that
AE is selectively associated with improved performances on
contextual (Chaddock et al., 2010, 2011; Monti et al., 2012) and
spatial (Stroth et al., 2009; Herting and Nagel, 2012) memory
tasks and not with less hippocampus dependent tasks such as
attention, verbal memory, or item recognition tasks.

Despite a limited selection of studies, these findings indicate
that AE may have a positive influence on hippocampus
dependent forms of cognition in healthy human participants,
similar to what has been consistently shown in animal models.
Pertaining to its highly neuroplastic nature (Bavelier and
Neville, 2002), the hippocampus is particularly vulnerable to
structural and functional deterioration in a wide range of
neurological and psychiatric disorders (Bartsch and Wulff,
2015). The aforementioned studies demonstrate that AE could
have a positive influence on hippocampal functioning, but a
significantly greater cohort of systematic investigations using
human participants will be necessary to outline this relationship
on a broader cognitive level. A growing body of evidence is also
accumulating to suggest that AE may have a prominent impact
on hippocampal structure in humans as well as in animal models.
The following sections will first discuss the relationship between
AE and gross structural changes related to the hippocampus in
humans. We will then discuss both animal and human work,
which indicates that these structural changes may be driven by
a cascade of micro-scale neuroplastic mechanisms within the
hippocampus that are stimulated by AE.

MACRO-SCALE CHANGES

Directly studying structural changes in the human brain in vivo
is currently limited to the use of neuroimaging techniques,
like magnetic resonance imaging (MRI), to detect macro-scale
changes such as in grey-matter volume or white-matter integrity.

Gray-Matter
A number of cross-sectional studies have used both voxel-based
morphometric (VBM) and region of interest (ROI) techniques
on structural MRI data to estimate volume changes associated
with AE. Higher levels of aerobic fitness have been consistently
associated with larger hippocampal or temporal lobe volumes
in healthy adolescent (Chaddock et al., 2010) and older adults
(Colcombe et al., 2003; Bugg and Head, 2011; Head et al., 2012;
Niemann et al., 2014). Several studies have also shown that
hippocampal growth induced by AE correlates with a greater
performance on spatial memory tasks such as a virtual Morris
Water Maze task (Erickson and Kramer, 2009; Szabo et al.,
2011; Herting and Nagel, 2012) and on contextual memory
tasks (Chaddock et al., 2010) with correlations ranging from
r = 0.12 to r = 0.36. Cross-sectional data has also indicated that
AE may also be beneficial to non-healthy individuals as higher
levels of aerobic fitness have also been correlated with larger
hippocampal volumes in patients with obesity (Bugg et al., 2012),
anorexia (Beadle et al., 2015), mild cognitive impairments (Gates
et al., 2013; Makizako et al., 2014), MDD (Travis et al., 2015),
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Alzheimer’s disease (Honea et al., 2009), and multiple sclerosis
(Prakash et al., 2010; Motl et al., 2015).

Several RCTs have extended upon these findings in healthy
and non-healthy samples, which have mostly implemented AE
interventions of a moderate intensity for 3–12 months. RCTs in
healthy samples have demonstrated that AE interventions were
associated with increases in hippocampal volume in young and
middle aged (Thomas et al., 2016) and older adults (Colcombe
et al., 2006; Erickson et al., 2011; Niemann et al., 2014; Kleemeyer
et al., 2015; Maass et al., 2015; Sexton et al., 2015a). In some cases
the AE induced growth in hippocampal volume was correlated
with improved performances on a computerized spatial memory
task (r = 0.28; Erickson et al., 2011) or on a complex figure
test of spatial object recognition (r = 0.37; Maass et al., 2015).
AE interventions have also been shown to increase hippocampal
volume in patients with mild cognitive impairments (ten Brinke
et al., 2015), schizophrenia (Pajonk et al., 2010), and multiple
sclerosis (Leavitt et al., 2014). While some RCTs have found that
AE did not have an impact on hippocampal volume (Ruscheweyh
et al., 2011; Scheewe et al., 2013; Krogh et al., 2014; Rosenbaum
et al., 2015; Malchow et al., 2016), it is possible that such
discrepancies are caused by a lack of consistency in AE protocols
used (Prakash et al., 2015) or in the methods of calculating
hippocampal volume (Niemann et al., 2014).

White-Matter
The majority of the current literature has focussed on assessing
gray-matter changes, but some studies have investigated
the impact of AE on white-matter integrity. A recent
systematic review concluded that AE was associated with
global and localized improvements in white-matter volume and
microstructural integrity in older adults (Sexton et al., 2015b). It
would be reasonable to expect AE to have a specific impact on
hippocampal connectivity, but such findings were not supported
in this review (Sexton et al., 2015b). However, some studies have
found AE to be associated with greater white-matter volume
in the temporal lobes that surround the hippocampus in older
adults (Colcombe et al., 2003, 2006; Tseng et al., 2013; Burzynska
et al., 2014). In addition, one RCT that assessed a 12-month AE
intervention did demonstrate that greater changes in aerobic
fitness were associated with greater improvements in temporal
lobe white-matter integrity in healthy, older adults (Voss et al.,
2013b). White-matter alterations may also occur in non-healthy
individuals as one recent RCT demonstrated a 6-month AE
intervention to improve global white-matter integrity in patients
with schizophrenia (Svatkova et al., 2015).

Structural Benefits of AE
There is a growing cohort of evidence to suggest that AE is
associated with increases in hippocampal gray-matter volume in
both healthy and non-healthy individuals (Hötting and Röder,
2013; Hamilton and Rhodes, 2015), and with increases in
hippocampal microstructural integrity (Kleemeyer et al., 2015).
In some cases, these AE-induced gray-matter changes have
been directly correlated with improvements in hippocampal
functioning (Prakash et al., 2015). AE appears to have a beneficial

impact on global white-matter integrity (Sexton et al., 2015b) and
potentially on hippocampal connectivity.

These studies support the idea that AE may be beneficial
to hippocampal integrity but it is important to note that these
human imaging techniques may only directly assess macro-scale
changes and not the functional changes or biological mechanisms
that may underlie these changes. Without information relating to
the specific substrates underlying changes in tissue composition,
it is difficult to determine the exact functional significance of
a change in volume (Czéh and Lucassen, 2007; Thomas et al.,
2012; Biedermann et al., 2016). For example, volume growth
could be driven by a regional increase in dendritic length or
density, but it could also be driven by changes that are likely
to be less functionally relevant, such as expanding interstitial
space between cells or changes in relative water distributions.
Alternatively, increases in the proliferation of stem cells, glia, or
the birth of new neurons that are added to existing hippocampal
circuitry could also influence hippocampal volume over time.
Furthermore, the additional energy demands from new neurons
or synaptic changes may also require greater metabolic support.
This could induce gliogenesis or changes in vasculature, i.e.,
angiogenesis, that may further contribute to fluctuations in
volume (Anderson, 2011). In many respects, such structural
adaptations resemble some of the opposite changes seen after
exposure to (chronic) stress, that are generally associated with
hippocampal volume reductions and represents a risk factor
for depression (Czéh and Lucassen, 2007). Whether the same
substrates underlie both the atrophy and the growth of a brain
region is not clear and in principle, different mechanisms may be
responsible for such opposing effects.

Micro-scale changes on a molecular or cellular level can be
directly studied using histological approaches in animal models
in vivo. Therefore, the following section will focus predominantly
on animal literature to outline the micro-scale impact of AE on
hippocampal neuroplasticity that may drive these macro-scale
structural and functional improvements seen in human studies.

MICRO-SCALE CHANGES

Aerobic exercise has been linked to changes in a range of
independent and interdependent mechanisms of neuroplasticity
within the hippocampus (for comprehensive reviews, see: van
Praag, 2009; Gomez-Pinilla and Hillman, 2013; Voss et al., 2013a;
Bolijn and Lucassen, 2015; Opendak and Gould, 2015). Key
mechanisms at both the cellular and molecular level will be
discussed below in terms of their contribution to AE-induced
enhancements in hippocampal functioning.

Neurogenesis
Adult neurogenesis is a form of structural hippocampal plasticity
that refers to the process of stem cells forming new neurons
within a few, distinct sub-regions of the adult brain. These stem
cells undergo subsequent stages of proliferation, migration and
neuronal differentiation, eventually producing adult-generated,
fully functional, neurons that are well integrated into existing
neural circuits (Kempermann et al., 2015). The subgranular
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zone of the hippocampal dentate gyrus (DG) is one of the just
two primary locations where neurogenesis is known to occur
in the adult rodent and human brain (Spalding et al., 2013;
Kempermann et al., 2015). AE increases the rate of hippocampal
neurogenesis, i.e., both the rate of cell proliferation as well as
the survival of newborn granule cells (Cotman et al., 2007;
Kempermann et al., 2010; Lucassen et al., 2010; Vivar et al., 2013)
and despite being difficult to study in humans (Manganas et al.,
2007; Ho et al., 2013; Jessberger and Gage, 2014), AE may also
stimulate cell proliferation and DG volume growth in the human
brain (Pereira et al., 2007; Erickson et al., 2011; Demirakca et al.,
2014).

The proliferation of adult-born granule cells is thought to
play an important role in hippocampal functioning (Deng et al.,
2010; Oomen et al., 2014). It has been extensively demonstrated
that the process of neurogenesis modifies the excitation of
hippocampal neurons (Ikrar et al., 2013). Animal models have
demonstrated that the inhibition or ablation of neurogenesis
impairs performance on spatial and contextual memory tasks
while improved performances on these tasks are seen when
neurogenesis is stimulated (Deng et al., 2010; Snyder and
Cameron, 2012; Aimone et al., 2014; Vadodaria and Jessberger,
2014; Kent et al., 2015). Furthermore, manipulating the rate
of proliferation in rodents has been shown to selectively effect
hippocampus dependent task performance, such as in spatial and
contextual memory or pattern separation tasks, but not in tasks
that are less hippocampus dependent, such as delay conditioning
(Gould et al., 1999; Shors et al., 2002; Snyder et al., 2005, 2011;
Deng et al., 2009; Sahay et al., 2011; Lucassen et al., 2013).

While there is still debate as to the exact role that adult-
born granule cells play in hippocampal functioning, the process
of neurogenesis forms a substrate for experience-dependent
change (Opendak and Gould, 2015; Lucassen and Oomen,
2016), which has been implicated in fear and anxiety and
depression like-behavior (Sahay and Hen, 2007; Besnard and
Sahay, 2015; Lucassen et al., 2015; Hu et al., 2016). This
primarily occurs through the role that neurogenesis plays in
facilitating memory formation by dictating a computational
mechanism known as pattern separation (Aimone et al., 2011;
Sahay et al., 2011). Pattern separation is an essential mechanism
for the DG to efficiently process and store sensory inputs to
enable the formation of episodic, contextual or spatial memories
(Lazarov and Hollands, 2016), and its importance in AE induced
cognitive enhancement is epitomized by correlative studies that
manipulate neurogenesis (Kent et al., 2015; Lucassen and Oomen,
2016). For example, inhibiting the rate of cell proliferation in
mice was sufficient to impair pattern separation (Deng et al.,
2010) and block AE-induced improvements in spatial (Clark
et al., 2009) and contextual (Wojtowicz et al., 2008) memory
performance, but only in conditions in which the task required
fine spatial discriminations (i.e., where pattern separation was
necessary; Creer et al., 2010). Therefore, AE may augment
hippocampal memory formation by minimizing the interference
between highly similar inputs through increasing the rate of cell
proliferation (Déry et al., 2013).

While pattern separation is a popular example of DG
function, adult-born granule cells have also been associated with

a number of other theoretical DG frameworks important to
memory formation that are not discussed here, such as memory
resolution or encoding temporal context (see Aimone et al.,
2014 for a comprehensive review). While neurogenesis is a
crucial process to the spatiotemporal aspect of hippocampal
functioning and is likely to be a key mediator of the hippocampal
enhancement stimulated by AE (Cotman et al., 2007), more
research is needed to elucidate the exact role that adult-born
granule cells play in DG and general hippocampal functioning.

Stimulating neurogenesis and promoting DG function is
one mechanism through which AE may promote hippocampal
function and some recent findings suggest this mechanisms may
be driving the macro-scale increases in hippocampal volume
found in human imaging studies (Erickson et al., 2011; Fuss et al.,
2014). However, AE also induces a variety of other neuroplastic
mechanisms that work both independently and in tandem with
neurogenesis to improve hippocampal functioning.

Synaptic Plasticity
Learning and memory is reliant upon the efficient
communication between neural cells through their synapses
and AE is thought to enhance this efficiency through promoting
synaptic plasticity in a number of ways (Vivar et al., 2013), such
as through facilitating long-term potentiation (LTP). LTP is one
model of synaptic plasticity that refers to the strengthening of
synaptic connections between neurons (Bliss and Collingridge,
1993). Forming an episodic memory involves the association of
an event or feature with a particular location in space and occurs
through this LTP mechanism in the hippocampus (Bannerman
et al., 2014). AE has been demonstrated to stimulate LTP in
young rodents and reverse the age-related decline of LTP within
the DG of aged rodents compared to sedentary controls (van
Praag, 2009; Voss et al., 2013a). Interestingly, these changes
appear to be specific to the DG region and may be directly
related to the stimulation of neurogenesis by AE (van Praag,
2008). Indeed, immature granule cells are particularly suited to
participate in the learning process as they have a lower threshold
for LTP induction (Schmidt-Hieber et al., 2004) and demonstrate
enhanced LTP compared to surrounding mature granule cells
(Lee S.W. et al., 2012). Being hypersensitive to influence on
their synaptic plasticity has led to the idea that these adult-born
granule cells mediate the enhancement of LTP in the DG from
AE (Voss et al., 2013a).

Aerobic exercise has also been associated with certain
morphological changes to the structure of neural cells, which may
be important in facilitating hippocampal learning and memory
(Lang et al., 2004). The dendrites of granule cells within the
DG have been shown to increase in length, complexity, and
spine density in response to AE (Eadie et al., 2005; Redila and
Christie, 2006) as well as spine density in surrounding pyramidal
cells of the entorhinal cortex and CA1 regions (Stranahan et al.,
2007). AE also interacts with the glutamatergic system through
increasing the expression of N-methyl-D-aspartic acid (NMDA)
receptors in the hippocampus (specifically, both NR2A and NR2B
subtypes), which contributes toward the synaptic plasticity of
the region (Molteni et al., 2002; Farmer et al., 2004). These
morphological changes are associated with higher rates of LTP
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induction and facilitate changes in dendritic strength (van Praag,
2008).

While certain morphological changes enhance synaptic
plasticity within the CA1 and entorhinal cortex, AE seems to
have a particularly potent impact on the granule cells of the
DG. Through generating a greater influx of adult-born granule
cells that have an enhanced propensity for LTP and fine-grained
morphological changes, AE stimulates an environment within the
hippocampus that promotes LTP and facilitates improvements in
hippocampus-dependent cognition (Boecker et al., 2012).

Vasculature
Cerebral blood flow is important in providing oxygen and
essential nutrients that facilitate brain functioning. Improving
cerebral blood flow may be an important mediator of AE induced
changes in hippocampal functioning (Christie et al., 2008). It
has been demonstrated in animal models that AE stimulates
the sprouting of new capillaries (angiogenesis) and improves
vasculature within the hippocampus (Trejo et al., 2001; van Praag
et al., 2005). This coincides with studies that have demonstrated
a greater cerebral blood flow in the human hippocampus (Pereira
et al., 2007; Burdette et al., 2010; Maass et al., 2015), some of
which have correlated this increase with improved performance
on episodic memory tasks (Pereira et al., 2007; Maass et al.,
2015). The positive influence of improving vascularization may
extend beyond a greater supply of oxygen and glucose through
prompting the release of neurotrophic factors (the influence
of which will be discussed below; Maass et al., 2015) or
through facilitating other neuroplastic mechanisms like synaptic
plasticity (Christie et al., 2008) or neurogenesis (Palmer et al.,
2000; Pereira et al., 2007; Boecker et al., 2012; Bolijn and
Lucassen, 2015; Biedermann et al., 2016). In fact, one recent
human RCT found that the improvements in hippocampus
dependent task performance and growth in hippocampal volume,
which occurred following a 3-month AE intervention were
predominantly attributable to a greater cerebral blood flow in
the hippocampus (Maass et al., 2015). The authors suggested that
these changes were either a direct consequence of vascularization
or an indirect consequence of changes in synaptic plasticity
or neurogenesis that were stimulated by the improvements in
cerebral blood flow.

Quantifying the impact that changes in vasculature induced
by AE have on hippocampal functioning is increasingly attracting
attention, but the relative contribution of changes in vasculature
is still in contention. For example, some animal models
have suggested that angiogenesis may underlie improvements
in spatial memory tasks independent of other neuroplastic
mechanisms (van Praag et al., 2007; Kerr et al., 2010), whereas
others have found improvements in spatial learning to be driven
by neurogenesis with no influence at all from angiogenesis
(van Praag et al., 2005). Changes in vasculature may indeed
stimulate other neuroplastic mechanisms like synaptogenesis
or neurogenesis and promote hippocampal tissue growth
(Kleemeyer et al., 2015), but a greater investigation is required
to outline the direct relationship between vascularization
and enhancements in hippocampal functioning stimulated by
AE (Davenport et al., 2012). Interestingly, AE is specifically

associated with an increase the density of small, rather than large-
diameter blood vessels in both humans (Bullitt et al., 2009) and
animals (Bloor, 2005; Van der Borght et al., 2009). Increasing
microvasculature density may be protective against white-matter
hyperintensities, which itself may reduce gray-matter atrophy
and cognitive dysfunction (Voss et al., 2013a). Therefore, in
additional to promoting hippocampal function, the influence of
AE on vasculature may also preserve structural integrity in the
hippocampus and other regions of the brain.

On a cellular level, both animal and human literature
has suggested that neurogenesis, synaptic plasticity and
vascularization within the hippocampus represent the three
primary neuroplastic mechanisms that are stimulated by AE
to promote hippocampal functioning. These cellular changes
are in turn influenced by a number of changes that occur on
a molecular level in response to AE and the relevance of these
molecular factors to hippocampal functioning will be considered
below.

Neurotrophic Factors
Neurotrophins are important to the development and
maintenance of functioning neural cells in the brain (Barbacid,
1995) and are likely to play a crucial role in mediating the
impact of AE on hippocampal neuroplasticity and functioning
(Cotman et al., 2007; Voss et al., 2013a; Bolijn and Lucassen,
2015). Brain-derived neurotrophic factor (BDNF) is a centrally
produced neurotrophin of particular interest due to its high
concentration within the hippocampus and its integral role
in supporting neuronal survival and growth, and synaptic
plasticity (Cotman et al., 2007; Cowansage et al., 2010). Animal
models have shown AE to be associated with a region-specific
up-regulation of BDNF in the hippocampus (Neeper et al., 1995;
Marlatt et al., 2012; Uysal et al., 2015). Similarly, in human
models AE has been associated with an increase in BDNF serum
(Coelho et al., 2013) with some indication of this up-regulation
occurring specifically within the hippocampus (Erickson et al.,
2011; Voss et al., 2013a).

Brain-derived neurotrophic factor may be the most important
factor that is upregulated by AE given its extensive involvement
in both synaptic plasticity and neurogenesis (Cotman et al.,
2007). The protein is thought to interact with energy metabolism
to facilitate both pre- and post-synaptic mechanisms and the
induction of LTP (Gomez-Pinilla and Hillman, 2013; Edelmann
et al., 2014), as well as promoting the proliferation and
survival of adult-born granule cells (Korol et al., 2013; Park
and Poo, 2013). The importance of BDNF to hippocampal
neuroplasticity is epitomized by animal studies, which have found
that the manipulation of BDNF expression directly impacts upon
performance in spatial and contextual memory tasks (Linnarsson
et al., 1997; Alonso et al., 2002; Heldt et al., 2007; Peters
et al., 2010), and also that the downregulation of BDNF inhibits
AE induced improvements in spatial memory performance
(Vaynman et al., 2004).

Recently, a number of human studies have also demonstrated
that the increased BDNF serum levels associated with AE
are directly correlated with improved performances in
various domains of memory including on spatial memory
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tasks (Piepmeier and Etnier, 2015). In line with the
molecules’ interaction with neurogenesis and particularly
high concentration within the DG subfield of the hippocampus
(Farmer et al., 2004), BDNF may play an important role in
pattern separation. Recent studies have shown that BDNF is
required for the pattern separation to occur in memory encoding
and consolidation, and specifically that BDNF acts on adult-born
granule cells within the DG to facilitate pattern separation
(Bekinschtein et al., 2013, 2014).

Vascular endothelial derived growth factor (VEGF) and
insulin growth factor 1 (IGF-1) are growth factors that are
produced peripherally and are implicated in both angiogenesis
and neurogenesis (Gomez-Pinilla and Hillman, 2013). Human
studies have shown that AE is associated with peripheral increases
in VEGF and IGF-1 serum concentrations (Schobersberger et al.,
2000; Llorens-Martín et al., 2010), and both molecules are known
to cross the blood brain barrier and interact with hippocampal
cells (Ding et al., 2006; Tang et al., 2010). VEGF is a hypoxia-
inducible protein that stimulates angiogenesis (Krum et al., 2002).
By facilitating vascularization in this way, particularly within
the DG (Clark et al., 2009), the molecule also supports the
AE induced stimulation of neurogenesis (Gomez-Pinilla and
Hillman, 2013). Similarly, IGF-1 is known to support alterations
in vascularization that are induced by AE (Lopez-Lopez et al.,
2004) and promotes the proliferation and survival of newborn
neural cells (Gomez-Pinilla and Hillman, 2013). Indeed, the
inhibition of VEGF or IGF-1 has been demonstrated to impair
the promotional impact of AE on the rate of neurogenesis
(Trejo et al., 2001; Fabel et al., 2003; Ding et al., 2006) and
spatial memory performance (Ding et al., 2006). Conversely,
up-regulating either VEGF or IGF-1 can stimulate neurogenesis
independently of AE (Aberg et al., 2000; Carro et al., 2000; Trejo
et al., 2001; Cao et al., 2004).

While a number of other biochemical changes occur in
response to AE (see Bolijn and Lucassen, 2015), BDNF, VEGF,
and IGF-1 are considered to be key proteins upregulated
by AE that induce hippocampal neuroplasticity. The
important contribution that these neurotrophins make to
the neuroplasticity induced by AE is underscored by animal
models, which demonstrate their direct and significant impact on
hippocampal functioning (Cotman et al., 2007; Llorens-Martín
et al., 2010; Voss et al., 2013a; Piepmeier and Etnier, 2015).
Subsequently, human studies are starting to take a step further
than only assessing the impact of AE in terms of macro-scale
structural changes by attempting to indirectly study underlying
biological processes.

Inferring Micro-Scale Changes Using
Human Imaging
An important approach has been to supplement volumetric
changes with recordings of peripheral biomarkers as a proxy
for measuring changes in neurotrophin regulation within the
brain. Results using this approach have thus far have been
mixed, with some AE studies findings a positive correlation
between hippocampal volume or connectivity changes and serum
concentrations of BDNF, VEGF, and IGF-1 (Erickson et al., 2011;

Coelho et al., 2013; Voss et al., 2013b), while others have failed to
replicate such findings (Maass et al., 2016).

Another promising approach has been to combine
multimodal imaging techniques to estimate the micro-scale
processes that underlie volumetric changes associated with
AE. For example, one study demonstrated that AE stimulated
hippocampal volume growth and then utilized a range of
multi-modal MRI techniques to indirectly suggest that this
growth may be supported by changes in myelination, rather
than in vasculature (Thomas et al., 2016). Some studies
have used diffusion tensor imaging (DTI) to demonstrate
that the growth in hippocampal volume induced by AE is
correlated with improvements in the microstructural integrity
of hippocampal gray-matter, based on the assumption that a
low mean diffusivity is indicative of an increased gray-matter
tissue density (Kleemeyer et al., 2015). Another multimodal
approach that is growing in popularity is the use of MR
spectroscopy (MRS) to measure microscale changes in local
metabolite composition. N-acetylaspartate (NAA) is a metabolite
indicative of neuronal integrity and a number of AE studies have
demonstrated that the growth in hippocampal volume (Pajonk
et al., 2010; Erickson et al., 2012; Gonzales et al., 2013; Wagner
et al., 2015) and in some cases, improvements in working
memory performance (Erickson et al., 2011) are both correlated
with higher concentrations of NAA. One of these studies found
that an AE intervention led to a 2% decrease in hippocampal
volume but the MRS data indicated there was no change in NAA
(Wagner et al., 2015). Therefore, given the approximation that
50% of gray-matter is composed of neuropil (Thomas et al.,
2012), the authors suggested that the volumetric decline is
unlikely to have resulted from a loss of neurons (which would
have been indicated by a lower NAA value) and may be due to
other factors such as changes in glial cells (Wagner et al., 2015).
This analysis and others (Dennis et al., 2015) illustrate the utility
of using multimodal imaging such as MRI with MRS to assess the
functional relevance of volumetric alterations that is not possible
using one modality alone. Future research would benefit from
adopting methods similar to those outlined above to aid in the
translation between animal and human models and help provide
a more comprehensive account detailing the impact of AE on the
human brain.

Animal studies have demonstrated that AE stimulates a
cascade of interdependent cellular and molecular mechanisms
of neuroplasticity that mediate the associated enhancements
in hippocampal functioning. In humans, AE is associated
with increases in hippocampal volume and some indirect
indicators of neuroplasticity (e.g., increased cerebral blood flow
or BDNF serum concentration), which correlate with improved
performances on hippocampus dependent tasks, indicative of an
enhanced hippocampal functioning. These findings suggest that
AE can stimulate hippocampal neuroplasticity and promote the
regions functioning in humans in a similar way to that which
has been demonstrated using animal models. Considerably more
research will be necessary to substantiate this relationship and
methods such as multimodal imaging and assessing peripheral
biomarkers represent promising ways that future RCTs can help
to bridge the gap between animal and human models. Based
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on the available evidence outlined above, AE does appear to
have a highly beneficial impact on hippocampal integrity and
the following sections will discuss whether AE thus represents a
viable clinical intervention.

CLINICAL APPLICATION

The capacity for AE to induce neuroplastic changes that
improve both hippocampal integrity and promote hippocampus
dependent cognition may be of particularly clinical importance
for two reasons. Firstly, a number of psychiatric and
neurological disorders seem to have a particularly potent
influence on hippocampal structure (Bartsch and Wulff, 2015)
and its deterioration may underlie certain aspects of their
symptomatology. Secondly, psychiatric symptoms can be
dichotomously described as being either affective or cognitive in
nature, yet a disproportionate amount of the current literature
has exclusively focussed on ameliorating affective symptoms
(Millan et al., 2012). Currently, no effective treatments have
been developed to alleviate cognitive deficits associated with
psychiatric or neurological disorders (Wallace et al., 2011; Keefe
et al., 2013, 2014; Solé et al., 2015). Promoting neuroplastic
changes that enhance hippocampal functioning may be useful
in remediating certain domains of cognitive dysfunction (e.g.,
in learning and memory), which occur in disorders that have
a particularly detrimental impact on hippocampal integrity.
The efficacy of AE is already being investigated as a therapeutic
intervention to counteract cognitive decline and deteriorating
hippocampal integrity associated with aging or neurological
disorders like dementia (Ahlskog et al., 2011). Comparatively
little attention has been afforded to the potential application
of AE in treating psychiatric disorders that have a similarly
deleterious impact on the hippocampus and are associated with
severe cognitive deficits. The following sections will outline the
need to develop effective interventions that remediate cognitive
symptoms, which can have a debilitating impact on psychiatric
patients, using the examples of schizophrenia and MDD. The
capacity for AE to aid in the alleviation of cognitive symptoms
and improve the efficacy of current treatment will then be
discussed in the context of both MDD and schizophrenia.

Cognitive Dysfunction in Psychiatric
Disorders
Behaviors observed in animal models of anxiety/MDD have
indicated that MDD can cause deficits in several areas of
cognition, many of which are strongly related to hippocampal
function (Darcet et al., 2016). A number of animal studies
have shown models of anxiety/MDD to be associated with
poorer performances on tasks of working memory (Mizoguchi
et al., 2000; Henningsen et al., 2009) and attention (Baudin
et al., 2012; Wilson et al., 2012; Wallace et al., 2014), as
well as on tasks reliant on hippocampal functioning such as
episodic-like memory (Orsetti et al., 2007; Baudin et al., 2012;
Naninck et al., 2015) and spatial memory (Markham et al.,
2010; Darcet et al., 2014). Similarly, human patients with MDD
have consistently demonstrated clinically relevant deficits in

domains of executive functioning, psychomotor speed, attention,
and memory (McDermott and Ebmeier, 2009; Lee R.S. et al.,
2012; McIntyre et al., 2013; Rock et al., 2013). Even after
remission following successful antidepressant treatment, most
patients continue to experience cognitive deficits, particularly
within domains of executive function, memory, and attention
(Hammar and Ardal, 2009; Bora et al., 2013; Rock et al., 2013;
Popovic et al., 2015; Solé et al., 2015). Individuals with MDD who
continue to experience these cognitive symptoms are more likely
to relapse and display worse psychosocial functioning outcomes
(Papakostas et al., 2008; Bortolato et al., 2016), which can impact
their capacity to socialize or to function well at work (Jaeger et al.,
2006; McIntyre et al., 2013). Consequentially, the importance of
alleviating cognitive dysfunction to enhance the success of MDD
treatment is increasingly being recognized (Solé et al., 2015;
Bortolato et al., 2016).

The heterogeneity of schizophrenia makes the disorder
extremely difficult to model in animals and most approaches
have focussed on replicating certain groups of schizophrenia-
like behaviors in animals (Nestler and Hyman, 2010). For
example, disrupting NMDA receptors with phencyclidine (PCP)
is known to produce a range of symptoms associated with
schizophrenia (Nestler and Hyman, 2010) and has subsequently
been shown to cause a number of cognitive deficits including
in cognitive flexibility (Abdul-Monim et al., 2007), attention
(Amitai et al., 2007) and episodic-like memory (Grayson et al.,
2007; Nagai et al., 2009). Cognitive dysfunction in human
patients with schizophrenia is rapidly being considered amongst
the most debilitating aspects of schizophrenia (Nuechterlein
et al., 2011) and the severity of cognitive dysfunction is a
key determinant of the functional outcome following treatment
(Goldberg and Green, 2002). Schizophrenia is associated with
deficits in cognitive domains of executive functioning, processing
speed, memory and attention (Mesholam-Gately et al., 2009;
Keefe and Harvey, 2012). The persistence of these deficits has a
significant impact on an individual’s quality of life and ability to
attain and maintain employment (Archer and Kostrzewa, 2015)
making the amelioration of cognitive deficits a highly prioritized
therapeutic goal in schizophrenia treatment (Malchow et al.,
2013).

The Underlying Neuroplasticity of
Cognitive Dysfunction
Both MDD and schizophrenia have a detrimental impact on
neuroplasticity, particularly within the hippocampus. A reduced
hippocampal volume is one of the most consistently reported
structural abnormalities in patients of MDD (Schmaal et al.,
2016) and of schizophrenia (Ellison-Wright and Bullmore, 2010;
Adriano et al., 2012). In patients with schizophrenia, these
hippocampal abnormalities have been correlated with deficits in
memory (Gur et al., 2000) and aspects of executive functioning
involving inhibitory control (Bilder et al., 1995; Szeszko
et al., 2002), demonstrating the importance of hippocampal
abnormalities to cognitive dysfunction. Both disorders seem to
have a particularly deleterious impact on DG volume (Tamminga
et al., 2010; Huang et al., 2013; Travis et al., 2015), which
is reminiscent of the reduced level of neurogenesis found
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in animal models of both disorders (Eisch and Petrik, 2012;
Lucassen et al., 2015; Allen et al., 2016). Schizophrenia and MDD
also inhibit other important neuroplastic mechanisms such as
synaptic plasticity (Law and Deakin, 2001; Kolomeets et al., 2007;
Kobayashi, 2009; McEwen et al., 2012; Sanderson et al., 2012)
and BDNF expression (Krishnan and Nestler, 2008; Green et al.,
2011; Favalli et al., 2012) within the hippocampus. The inhibition
of such key neuroplastic mechanisms in the hippocampus is
likely to be an important factor contributing toward the cognitive
deficits associated with MDD (Perera et al., 2008; Kaymak et al.,
2010; Nagahara and Tuszynski, 2011; Turner et al., 2012) and
schizophrenia (Ranganath et al., 2008; Schobel et al., 2009;
Heckers and Konradi, 2010; Zhang et al., 2012).

Targeting neuroplasticity has recently become an important
approach in treating psychiatric symptoms (Kays et al., 2012)
and may be useful in counteracting this hippocampal harm to
remediate cognitive deficits. For example, deficits in episodic
memory have been consistently found in patients with MDD
(McDermott and Ebmeier, 2009) and schizophrenia (Barch and
Ceaser, 2012), and given the role of the hippocampus in episodic
memory formation this may be somewhat attributable to its
dysfunction. Indeed, aspects of hippocampal dysfunction such as
a lower basal rate of neurogenesis are thought to inhibit one’s
capacity for pattern separation in patients with MDD (Déry et al.,
2013; Shelton and Kirwan, 2013) or schizophrenia (Das et al.,
2014) and the negative impact that this has on episodic memory
formation may have broad implications for the symptomology of
both disorders (Dere et al., 2010; Tamminga et al., 2010).

To illustrate this point, deficits in pattern separation could
negatively influence one’s capacity to correctly discriminate
between stimuli and lead to a tendency for overgeneralization
(Kheirbek et al., 2012; Shelton and Kirwan, 2013). The pre-
disposition for individuals with MDD to make negative self-
inferences coupled with the tendency to overgeneralize could
result in negative overgeneralizations in the formation of episodic
memories, which may contribute toward affective symptoms
such as anhedonia (Eisch and Petrik, 2012; Shelton and Kirwan,
2013). In the case of schizophrenia, the added complication
of a reduced synaptic connectivity between the DG and CA3
subfields (Kolomeets et al., 2007) to a lower basal rate of
neurogenesis may contribute toward psychosis to some extent.
Patients with schizophrenia show a disproportionately low level
of pattern separation relative to pattern completion (Tamminga
et al., 2010). Pattern completion is a complimentary process to
pattern separation whereby through the activation of associative
networks in the CA3 region, partial information can act as
a recall cue to return the full representation of a previously
stored memory (Nakashiba et al., 2012). It is possible that this
overactivation of the pattern completion mechanism could lead
to the inappropriate associations and representations causing the
encoding or retrieval of false episodic memories with psychotic
content (Tamminga et al., 2010; Das et al., 2014).

These two theoretical examples illustrate how hippocampal
dysfunction in either disorder may disrupt the correct
formation of episodic memories and potentially exasperate
other psychiatric symptoms. Within this framework, the
stimulation of neuroplastic mechanisms like neurogenesis might

help to alleviate deficits in episodic memory, subsequently
help to reduce the expression of other psychiatric symptoms.
Furthermore, given the regions importance to learning and
memory processing, it is possible that improving hippocampal
functioning would also contribute toward the alleviation of
other cognitive deficits than episodic memory. For example,
deficits in working memory represent an aspect of executive
functioning impaired in MDD (Lee R.S. et al., 2012; Rock et al.,
2013) and schizophrenia (Forbes et al., 2009). As hippocampal
functioning may be an important factor supporting working
memory (Fell and Axmacher, 2011; Chaieb et al., 2015)
promoting hippocampal integrity may indirectly contribute
toward alleviating working memory deficits and improving
executive functioning.

While it has not been the focus of this paper, it is also
worth noting that altered hippocampal functioning can directly
influence other, non-cognitive processes that are important
in the pathology of certain psychiatric disorders like MDD.
Through its dense connectivity with the prefrontal cortex and
the amygdala, the hippocampus is also implicated in emotional
regulation (O’Donnell and Grace, 1995; Seidenbecher et al., 2003;
Lisman and Grace, 2005; Maren and Hobin, 2007) as well as
playing an important role in regulating feedback inhibition from
the hypothalamic-pituitary-adrenal axis (Jacobson and Sapolsky,
1991). Hippocampal dysfunctioning may therefore contribute
toward deficits in the regulation of emotional processing and
stress responses that are often seen in patients with MDD
(Sapolsky, 2000; Davidson et al., 2002).

The role of these deficits in neuroplasticity within
the hippocampus may be a crucial factor underlying
hippocampal dysfunction in psychiatric disorders like MDD
and schizophrenia. Directly targeting these deficits to enhance
hippocampal functioning may help to improve deficient
cognitive processes whose underlying etiology are particularly
localized to the hippocampus. Furthermore, it is possible that
promoting hippocampal functioning may have a beneficial
impact on alleviating other cognitive or affective symptoms,
which are more broadly related to dysfunctional networks that
involve the hippocampus.

Current Treatment Approaches
Psychiatric disorders like schizophrenia and MDD have
been primarily treated using pharmacotherapy such as with
antipsychotic or antidepressant medications, both of which
have been shown to reduce psychiatric symptoms (Leucht et al.,
2012; Undurraga and Baldessarini, 2012). However, several
large-scale meta-analyses have recently suggested that the
effectiveness of antipsychotic and antidepressant medications is
only marginally different from that of a placebo (Leucht et al.,
2009; Rief et al., 2009), and neither have been able to successfully
remediate cognitive dysfunction (Keefe et al., 2013, 2014; Solé
et al., 2015). These approaches are generally not designed to
target neuroplasticity, but rather to remediate other aspects of
a psychiatric disorder such as dysfunctional neurotransmitter
systems. Neither antipsychotics nor antidepressants have
been consistently shown to induce any lasting neuroplastic
changes in the brain (Rief et al., 2015). With the growing
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importance that is being placed on deficits in neuroplasticity
to the underlying etiology of psychiatric disorders, it may be
necessary to stimulate underlying neuroplastic changes in order
to induce lasting structural alterations and effectively alleviate
cognitive dysfunctions.

For example, there have been equivocal findings regarding
the impact of antipsychotic medications like haloperidol (typical)
and olanzapine (atypical) on macro-scale hippocampal structure,
with studies finding chronic use to cause volumetric increases
(Schmitt et al., 2004), decreases (Barr et al., 2013), and no
impact at all (Navari and Dazzan, 2009; Smieskova et al.,
2009; Vernon et al., 2011). Micro-scale changes associated with
the chronic use of antipsychotics have also been mixed, for
example it remains unclear whether any antipsychotic has a
consistent impact on hippocampal neurogenesis (Schoenfeld
and Cameron, 2015). Even in cases where antipsychotics like
olanzapine were found to increase the number of adult-born
cells in the DG, these cells were likely to be endothelial cells
and oligodendrocytes rather than granule cells (Kodama et al.,
2004), which may not promote DG function and mechanisms
like pattern separation in the same way. The impact of both
types of antipsychotics on synaptic plasticity is also ambiguous,
with some studies showing drugs like olanzapine to promote
dendritic growth (Park et al., 2013), while others have found that
various typical and atypical antipsychotics are associated with
a general reduction in dendritic complexity and impaired LTP
(Frost et al., 2010; Price et al., 2014). Finally, BDNF is considered
to be an important factor underlying the pathophysiology of
schizophrenia. However, typical antipsychotics have been largely
associated with reductions in BDNF expression and the impact
of atypical antipsychotics remains unclear, with many studies
finding it to have no impact on BDNF expression in the
hippocampus and across other regions (Favalli et al., 2012).

Furthermore, no antipsychotic medication (Goldberg et al.,
2007; Tybura et al., 2013) or other pharmacological intervention
(Keefe et al., 2013) has been consistently demonstrated to alleviate
the cognitive deficits associated with schizophrenia and in cases
where the medication is anticholinergic, cognitive deficits have
been shown to worsen (Tandon, 2011). The most promising
approach in restoring cognitive deficits in schizophrenia may
in fact, be through cognitive remediation which has produced
some significant improvements in a number of cognitive domains
and functional outcomes (McGurk et al., 2007; Reddy et al.,
2014), however, effect sizes remain only small to moderate
(Wykes et al., 2011). Currently, cognitive deficits are one of the
most debilitating aspects of schizophrenia that remain the least
effectively treated (Gibbons and Dean, 2016).

In the case of treating MDD, widely prescribed antidepressant
medications such as selective serotonin reuptake inhibitors
(SSRIs) have been more convincingly demonstrated to induce
neuroplastic changes. SSRI medications have been shown to
stimulate the rate of hippocampal neurogenesis (Malberg et al.,
2000; Boldrini et al., 2009), but again this may not be
representative of increased granule cells. It has been suggested
that this effect is likely due to a ‘dematuration’ of mature granule
cells in the DG rather than increased cell proliferation and it is
unclear what impact this would have on hippocampal functioning

(Kobayashi et al., 2010). For example, mature granule cells are
intrinsic to pattern completion (Nakashiba et al., 2012) so this
dematuration of granule cells caused by SSRIs could lead to an
underactivation of pattern separation and inhibit proper episodic
memory formation. However, various antidepressant treatments
have reliably been shown to up-regulate hippocampal BDNF
(Duman and Monteggia, 2006; Musazzi et al., 2009), which
appears to be promoting synaptic plasticity within the region
(Bath et al., 2012). Despite this, antidepressant medications are
encumbered with slow response rates, a modest therapeutic
efficacy and little or no impact on the cognitive deficits associated
with MDD (Duman and Aghajanian, 2012; McIntyre et al., 2013;
Rosenblat et al., 2015; Solé et al., 2015; Bortolato et al., 2016).
Despite the increasing importance placed on alleviating cognitive
dysfunction in MDD, research has continued to focus on treating
affective symptoms (Baune and Renger, 2014). Subsequently,
there are currently no prescribed treatments available that
effectively alleviate cognitive deficits in MDD (Keefe et al., 2014;
Solé et al., 2015; Bortolato et al., 2016).

Through directly targeting neuroplasticity in crucial areas
like the hippocampus, it may be possible to induce lasting
structural changes that promote the region’s functioning and
contribute toward the alleviation of cognitive dysfunction in
psychiatric disorders. With the global pharmaceutical industry
being estimated to reach a value of US$1.3 trillion by 2018 (CMR
International, 2015), bridging the gap between neuroplasticity
and functional outcomes in treating psychiatric disorders will
likely be dominated by a pharmacological approach. Indeed, a
great amount of research is being conducted into developing an
effective pharmacological intervention to treat cognitive deficits
in psychiatric disorders (Wallace et al., 2011). However, none
of the most promising pharmacological agents have been able
to achieve more than a moderate effect size in treating most
cognitive deficits, at least within MDD (Keefe et al., 2014; Solé
et al., 2015) and schizophrenia (Keefe et al., 2013). Therefore, it
may be worth considering the inclusion of non-pharmacological
approaches such as AE, as an adjunction to pharmacotherapy that
may improve treatment of cognitive dysfunction.

The Prospect of an AE Intervention
While its therapeutic potential has only been explored very
recently, AE has been demonstrated to counteract pathologically
induced hippocampal harm and improve the region’s functioning
in a range of animal disease models including fetal alcohol
spectrum disorders, traumatic brain injury, stroke, and
Parkinson’s, Alzheimer’s and Huntington’s diseases (Patten et al.,
2015). In humans, AE has been shown to stimulate hippocampal
neuroplasticity and successfully counteract deteriorating
hippocampal function caused by aging or Alzheimer’s disease
(Intlekofer and Cotman, 2013). However, whether these findings
can be extended to individuals with psychiatric disorders is still
unclear. Most of the existing human literature investigating
the use of AE in the treatment of MDD or schizophrenia has
only measured its impact on individual psychopathologies, such
as depressive symptoms or positive and negative symptoms
(Knöchel et al., 2012). In both cases, AE has been demonstrated
to be effective in reducing both positive and negative symptoms
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of schizophrenia (Vancampfort et al., 2012; Firth et al., 2015;
Rimes et al., 2015) and affective symptoms in MDD (Cooney
et al., 2012), in some cases just as effectively as antidepressants
(Blumenthal et al., 1999, 2007; Brosse et al., 2002), or in terms
of neurogenesis, exceeding it (Marlatt et al., 2010). The efficacy
of AE in reducing a range of psychiatric symptoms suggests
that AE interventions could have a number of benefits to the
treatment of disorders like MDD or schizophrenia. Importantly,
AE appears to be able to stimulate neuroplasticity and promote
hippocampal functioning in brains with both healthy and
pathologically deteriorated hippocampi. It is plausible that AE
interventions could be used to counteract hippocampal harm
caused by disorders that profoundly impact upon hippocampal
functioning, and through this approach, aid in the alleviation of
certain aspects of cognitive dysfunction.

In recent years, AE has started to attract attention as a
therapeutic target for schizophrenia treatment, but only a handful
of studies have systematically investigated the capacity for an
AE intervention to remediate cognitive deficits associated with
the disorder (Knöchel et al., 2012; Sommer and Kahn, 2015).
Both cross-sectional (Kimhy et al., 2014) and interventional
studies (Pajonk et al., 2010; Oertel-Knöchel et al., 2014;
Kimhy et al., 2015; McEwen et al., 2015) have demonstrated
that AE can promote cognitive functioning in patients with
schizophrenia across a range of cognitive domains including
speed of processing, short-term and working memory and visual
learning. Although one review was unable to find an association
between AE and a reduction of cognitive symptoms in patients
with schizophrenia (Dauwan et al., 2016) these early results are
largely promising.

On a cellular level, some studies have used animal models of
schizophrenia to demonstrate that AE can promote neurogenesis
(Wolf et al., 2011), hippocampal BDNF concentration and the
expression of NDMA receptors in the hippocampus (Kim T.W.
et al., 2014; Park et al., 2014). One study using an animal
model of schizophrenia also demonstrated AE to improve
performance on a spatial working memory task (Kim T.W.
et al., 2014). These initial results suggest that AE could be
beneficial for improving hippocampal structure and functioning
in schizophrenia but such findings must be interpreted with
caution given the aforementioned difficulty of modeling complex
disorders like schizophrenia in animals (Nestler and Hyman,
2010). Some recent studies in human patients with schizophrenia
have shown AE interventions to be associated with increased
BDNF serum concentrations (Kuo et al., 2013; Kim H. et al.,
2014; Kimhy et al., 2015) and one study found that the increased
BDNF concentration accounted for a significant proportion of
the improvements they had observed in cognitive performance
observed in following AE (Kimhy et al., 2015). Another study in
patients with schizophrenia also demonstrated AE to counteract
the deterioration of white-matter tract integrity that is associated
with the disorder (Svatkova et al., 2015).

These findings are encouraging and some human imaging
studies have suggested the positive impact of AE may be region-
specific to the hippocampus. For example, in patients with
schizophrenia a 12-week AE intervention has led to increased
hippocampal volume, hippocampal NAA concentration and

improved performances on short-term memory and working
memory tasks (Pajonk et al., 2010; Lin et al., 2015; McEwen
et al., 2015). However, other studies have found AE interventions
to of had no impact on hippocampal volume or function in
patients with schizophrenia (Scheewe et al., 2013; Rosenbaum
et al., 2015). It is possible that these discrepancies are caused
by systemic differences between the studies. Although data was
not available for all studies (Rosenbaum et al., 2015) attendance
rates for AE sessions were generally higher in those studies that
did find improvements in hippocampal volume and function
(Pajonk et al., 2010; Lin et al., 2015) than those which did not
(Scheewe et al., 2013). Additionally, both studies that found no
volume change used an automated algorithm to segment the
hippocampus (Scheewe et al., 2013; Rosenbaum et al., 2015),
which is known to be less accurate than the manual method
(Morey et al., 2009) employed in the former study (Pajonk et al.,
2010) – although this was not always the case (Lin et al., 2015).

In patients with MDD, several interventional studies have
demonstrated that AE can promote cognitive performance in
executive functioning, attention, inhibitory control, speed of
processing, working and spatial memory and visual learning
(Kubesch et al., 2003; Vasques et al., 2011; Oertel-Knöchel et al.,
2014; Greer et al., 2015). Although one study did not find AE to
have any positive impact on cognition (Hoffman et al., 2008), the
results so far are promising and AE may represent a viable option
in remediating cognitive dysfunction in MDD (Solé et al., 2015).

In animal models of stress/MDD, certain micro-scale
changes have been recorded which demonstrate that AE can
promote hippocampal neurogenesis, vascularization, BDNF
expression (both brain-wide and within the hippocampus),
IGF-1 expression, VEGF expression, and hippocampal synaptic
plasticity (Adlard and Cotman, 2004; Zheng et al., 2006;
Bjørnebekk et al., 2010; Nakajima et al., 2010; Sartori et al., 2011;
Kiuchi et al., 2012; Yau et al., 2012; Lu et al., 2014). Animal
models of stress/MDD have also shown that AE can reduce
depressive-like behavioral and deficits in spatial memory (Zheng
et al., 2006; Nakajima et al., 2010; Yau et al., 2012). In studies
of human patients with MDD, AE has been associated with
increased BDNF serum concentration (Gustafsson et al., 2009;
Laske et al., 2010). Just one human study has sought to assess
macro-scale structural changes and found no association between
an AE intervention and hippocampal volume or neurotrophin
circulation (Krogh et al., 2014). However, participant attendance
rate to AE sessions was very low in this study, at less than
half (one session per week) the attendance rate recorded by
studies in other psychiatric populations who did demonstrate
growth in hippocampal volume (2.6 sessions per week; Pajonk
et al., 2010). Furthermore, participants in this study also showed
no reduction in depressive symptoms. This indicates that there
may not have been a sufficient level of engagement in AE
for changes in hippocampal structure and neurobiology to be
recorded.

In addition to promoting neuroplastic changes that could
lead to cognitive enhancement, AE is also thought to interact
with several neurotransmitter systems, including the monoamine
system (Chaouloff, 1989). The action of the monoamine
neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in the
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hippocampus is known to facilitate the process of hippocampal
learning and memory (Riedel et al., 1999; Buhot et al.,
2000). 5-HT transmission in the hippocampus is disrupted in
schizophrenia and MDD (Naughton et al., 2000; Middlemiss
et al., 2002) and this 5-HT dysfunction is likely to contribute
deficits in learning and memory in these disorders (Meeter
et al., 2006; Gray and Roth, 2007). The exact nature of
this dysfunction is unclear given the diverging impact that
agonists and antagonists have on each 5-HT receptor subtype
within the hippocampus and the complex interactions between
5-HT and other neurotransmitter systems (Meneses, 1999).
Targeting specific hippocampal 5-HT receptors, particularly
the 5-HT1a receptor subtype, is growing in popularity as a
pharmacological approach designed to promote learning and
memory in psychiatric disorders (Wallace et al., 2011) like
schizophrenia (Meltzer and Sumiyoshi, 2008) or MDD (Meeter
et al., 2006). Some animal studies have indicated that AE
may also be associated with elevated levels of 5-HT in the
hippocampus (Gomez-Merino et al., 2001) as well as an increase
in tryptophan hydroxylase, a rate-limiting precursor of 5-
HT produced in the raphe nucleus, which projects directly
to the hippocampus (Chaouloff, 1989). It is unclear whether
this interaction with hippocampal 5-HT would be beneficial
or not, but some recent animal work has indicated that AE
can specifically ameliorate dysfunction in the 5-HT1a receptor
subtype (Maniam and Morris, 2010; Kim M.H. et al., 2014).
The impact of AE on the monoamine system has largely been
discussed in terms of its antidepressant properties (Christie
et al., 2008; van Praag, 2009), but it is possible that this
interaction may also contribute toward cognitive enhancement.
However, more work is needed to elucidate the exact role of
5-HT and 5-HT receptor subtypes in hippocampal learning
and memory and whether this coincides with the actions
of AE.

The inclusion of AE interventions into current treatment
approaches could be useful to counteract hippocampal harm
and alleviate cognitive dysfunctions caused by psychiatric
disorders. The important role that AE could play in the
treatment of cognitive dysfunction is starting to gain traction
in relation to schizophrenia (Malchow et al., 2013; Sommer
and Kahn, 2015; Vakhrusheva et al., 2016) and MDD
(Malchow et al., 2013; Oertel-Knöchel et al., 2014). Despite
this, there is a distinct lack of systematic investigations (both
animal and human) into the relationship between AE and
neuroplasticity, hippocampal functioning, and its impact
on cognitive dysfunctions in psychiatric disorders such as
MDD (Malchow et al., 2013) or schizophrenia (Sommer and
Kahn, 2015). Based on the available evidence, the merits
of AE are best capitulated as an adjunctive intervention to
pharmacotherapy that could improve treatment efficacy through
targeting cognitive dysfunctions that remain largely untreated.
It is possible that pharmacotherapy may eventually develop
a comprehensive treatment for cognitive dysfunction, but
non-pharmacological approaches like AE have a number of
distinct benefits to the patient (discussed below), which make
these interventions worthy of further investigation by future
research.

WHY ARE NON-PHARMACOLOGICAL
INTERVENTIONS USEFUL?

The efficacy of both antidepressant and antipsychotic
medications could be improved should more attention be
afforded to relevant lifestyle factors such as AE engagement
(Rief et al., 2015). There appears to be a degree of overlap in the
underlying mechanisms that are stimulated by AE and certain
pharmacological medications, such as with the antidepressant
fluoxetine (Huang et al., 2012). It is possible that such a degree
of overlap in their underlying mechanisms could mean that
combining a traditional pharmacological intervention with an
AE intervention would have a synergising impact on inducing
neuroplasticity. For example, animal models have demonstrated
that the combination of AE and antidepressant treatment
had a stronger impact on up-regulating BDNF than either
intervention had individually (Russo-Neustadt et al., 2001; Baj
et al., 2012) – this is particularly important as BDNF regulation
is thought to be crucial to the antidepressant mechanism
(Duman and Aghajanian, 2012). Additionally, the inclusion
of AE to a traditional antidepressant intervention has been
shown to have greater impact on reducing depressive symptoms
in patients with MDD, than antidepressant treatment alone
(Knubben et al., 2007; Schuch et al., 2011; Legrand and Neff,
2016). Interestingly, MDD patients with higher basal levels of
BDNF due to prior treatment with SSRI’s experienced a more
rapid reduction in symptoms following an AE intervention
than those with lower basal BDNF levels (Toups et al., 2011).
This suggests that antidepressant medications may be useful
for ‘priming’ patients with MDD to respond better to a
subsequent AE intervention (Toups et al., 2011). Additionally,
in animals, AE was significantly more potent at increasing
the survival of adult-born granule cells in comparison to
SSRIs like fluoxetine and duloxetine (Marlatt et al., 2010).
Therefore, the inclusion of AE to a traditional antidepressant
intervention could also have an additive impact on promoting
neurogenesis.

The use of AE as an adjunctive treatment to traditional
antidepressant medication may have a synergising impact on
neuroplasticity potentially resulting in a more effective approach
toward remediating psychiatric symptoms. The possibility of an
enhanced efficacy rate would be particularly useful in treating
patients with MDD who do not respond to antidepressant
treatment alone (Mura et al., 2014), which could be as many
as 10-30% of patients with MDD (Joffe et al., 1996). An
interesting direction for future research would be to investigate
whether including AE as an adjunctive treatment to a traditional
pharmacological approach would have a synergistic impact on
neuroplasticity, resulting in a greater treatment efficacy than
attainable by either intervention alone.

In addition to the potential benefits that a combined
approach may have on symptom alleviation, the inclusion of
AE interventions may have further benefits to the well being of
patients. For example, the development of a psychiatric disorder
significantly increases the risk of psychiatric comorbidity (Fusar-
Poli et al., 2014; Avenevoli et al., 2015). AE is conversely
associated with lowering the risk of various other conditions
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developing that range from age- and dementia-related cognitive
decline to mood and anxiety disorders (Martinsen, 2008; Ahlskog
et al., 2011; Mammen and Faulkner, 2013). For example, a recent
systematic review concluded that AE was effective at reducing
the risk of patients with schizophrenia developing a comorbid
disorder (Firth et al., 2015). The inclusion of AE interventions
could be useful in reducing the risk of patients developing other
comorbidities, but AE may be of an even greater utility in helping
to reduce the risk of pharmacologically induced side effects.

Side Effects in Pharmacology
Pharmacological treatments are generally associated with
a higher risk of inducing adverse side effects than non-
pharmacological interventions in patients of MDD or
schizophrenia (Gartlehner et al., 2015, 2016). Both antipsychotic
(De Hert et al., 2012) and antidepressant (Anderson et al., 2012)
medications are associated with numerous adverse side effects
that range from more common and less severe symptoms like
headaches or nausea, to less common but more severe symptoms
like cardiovascular or metabolic dysfunction. Independent of
influences from medication, psychiatric populations are already
at an elevated risk of cardiovascular, metabolic or respiratory
dysfunction than the general population (Galletly et al., 2012;
Vancampfort et al., 2013) and this risk may be heightened further
by certain pharmacological treatments. Contrastingly, AE is
known to elicit comparatively few adverse side effects and is
associated with improvements in the social, physical and affective
well being of individuals with psychiatric disorders (Fiuza-Luces
et al., 2013). Moreover, AE is known to be preventative of
cardiovascular, metabolic and respiratory dysfunction, which
suggests that the inclusion of an AE intervention may be useful in
stemming the risk of psychiatric patients developing these severe
conditions (Caemmerer et al., 2012; Vancampfort et al., 2014).
Some evidence of this can be drawn from recent animal studies
that have demonstrated that AE ameliorates the metabolic, lipid
peroxidation and extrapyramidal side effects of antipsychotic
medication (Czéh et al., 2007; Teixeira et al., 2011; Baptista et al.,
2013; Boyda et al., 2014).

Concerns are also mounting over the growing length of
time in which a patient is subjected to pharmacotherapy, as
the long-term impact of these medications is unclear. There is
currently a distinct lack of longitudinal studies that systematically
evaluate the impact of long-term treatment with widely used
antidepressants like SSRI’s on brain and behavior (Popovic et al.,
2015). Some studies have suggested that long-term antidepressant
treatment (generally lasting more than 6 months) can have a
detrimental impact on executive function, memory, attention,
and motivation in patients with MDD (Fava et al., 2006; Popovic
et al., 2015; Bortolato et al., 2016). Worryingly, one recent
animal study demonstrated that the long-term administration
of fluoxetine at clinically relevant doses was associated with
impaired dendritic spine morphology leading to deficits in
hippocampal synaptic plasticity (Rubio et al., 2013). This is
particularly concerning given the increasing importance that
is being placed on the role of hippocampal synaptic plasticity
in the effective treatment of MDD (Duman and Aghajanian,
2012). Evidence is also accumulating to suggest that long-term

antipsychotic treatment in humans may be linked to a reduction
in both global gray- and white-matter volumes (Navari and
Dazzan, 2009; Ho et al., 2011; Vernon et al., 2011; Fusar-Poli
et al., 2013) as well as region-specific reductions in hippocampal
volume (Panenka et al., 2007).

There is an insufficient amount of data to make any definitive
statements about the long-term impact these pharmacological
interventions could be having on the brain. However, evidence
may continue to emerge that shows the long-term application
of widely used antidepressants and antipsychotics as having
a detrimental impact on neuroplasticity and cognitive
performance. The inclusion of AE interventions could be
useful in counterbalancing some of these harms, at least with
regard to the hippocampus, through the direct impact that AE
has on promoting neuroplasticity and cognition. For example,
recent animal studies have demonstrated that AE was able to
reverse most of damage caused to hippocampal volume and
hippocampal synaptic connectivity caused by antipsychotic
medication (Barr et al., 2013; Ramos-Miguel et al., 2015).
In addition, the aforementioned potential for a combined
pharmacotherapy/AE approach to have an additive impact on
symptom alleviating may mean that patients reach remission at a
faster rate. Thereby, the inclusion of AE interventions may also
reduce the total time a patient is exposed to pharmacotherapy,
lowering their risk of any adversities associated with long-term
use.

Developing further pharmacological interventions that
effectively alleviate cognitive symptoms in medicated psychiatric
populations will undoubtedly provide a more comprehensive
treatment approach, but it could also elevate the risk of adverse
side effects for the patient. AE has the potential to directly
combat these adverse side effects as well as contributing toward
the remediation of cognitive deficits, as well as various other
psychiatric symptoms that may be related to hippocampal
dysfunction. AE interventions are unlikely to represent a viable
standalone treatment for cognitive dysfunction, but may make
an important, low-risk adjunctive treatment to pharmacotherapy
that promotes the effectiveness and reduces the harms associated
with pharmacological interventions. However, this approach
must be considered in light of some limitations associated with
AE intervention.

Limitations of AE Interventions
Psychiatric patients often view pharmacological interventions
more negatively than by the doctors who prescribe them (Nosè
et al., 2012) and it is possible that patients may perceive a non-
pharmacological adjunctive approach more favorably. Psychiatric
patients have previously reported having a favorable perspective
of AE treatment (Stanton and Reaburn, 2014), however, this is
not necessarily reflected in actual AE engagement (Vancampfort
et al., 2016). Motivating psychiatric patients to engage in regular
AE is likely to be the greatest obstacle in both researching
and implementing AE interventions in treatment, as epitomized
by the high dropout rates in AE interventional studies in
psychiatric samples (Stubbs et al., 2016; Vancampfort et al., 2016).
Amongst those who are physically able to exercise, the lack of
motivation is a significant factor preventing individuals with
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schizophrenia (Soundy et al., 2014) or MDD (Krämer et al.,
2014) from adhering to AE interventions. It is possible that
certain pharmacological treatments may contribute to this issue
as psychiatric patients have previously reported medication side
effects as a primary factor that inhibits their capacity to engage
in regular exercise (Glover et al., 2013). While many studies
investigating AE interventions in psychiatric patients do now
incorporate motivational strategies (e.g., motivational interviews
or goal setting) to encourage AE engagement, motivational
factors are rarely included as a primary outcome measure
(Farholm and Sørensen, 2016). Increasingly, efforts are being
concentrated on promoting adherence to AE interventions in
psychiatric patients (Knapen et al., 2015). For example, the
integration of action video games with AE interventions has been
shown as a promising method of enhancing the adherence of
patients with schizophrenia to improving their aerobic fitness
(Kimhy et al., 2016b). However, more research must be dedicated
to directly studying the relationship between motivation and AE
in psychiatric populations in order to measure and improve the
effectiveness of motivational strategies.

Another issue in the conceptualization of AE treatments is
the lack of consensus as to what type, intensity or length of
exercise sessions has the strongest impact on the brain (Prakash
et al., 2015). For example, some studies argue that a high-
intensity exercise is optimal for reducing symptoms in MDD
(Singh et al., 2005), while others have suggested that that a mild
(Dunn et al., 2005) or a moderate intensity exercise intervention
would be optimal (Stanton and Reaburn, 2014). It is possible
that exercise intensities may vary depending on the purpose
of the intervention, for example it has been suggested that
improving cognitive performance may require high-intensity,
interval training but preserving cognitive function in an aging
brain may require a lower intensity, more continuous protocol
(Duzel et al., 2016). Exercise type may also be an important
factor. Although most of the current literature has focussed
on AE, other forms of exercise such as yoga (Lin et al., 2015)
or weight training (Suo et al., 2016) may also be beneficial in
promoting brain health and cognition. Given the growing interest
in exercise as a therapeutic intervention, it is surprising that only
a handful of studies have attempted to systematically establish the
most effective way in which it should be applied in psychiatric
populations (Perraton et al., 2010; Stanton and Happell, 2014;
Stanton and Reaburn, 2014; Kimhy et al., 2016a). It is important
that future research concentrates on establishing the merits of
different forms of exercise and fully outlining the dose-response
relationship between the intensity and length of AE intervention
and therapeutic outcome in each psychiatric population.

CONCLUSION

Research demonstrating the potential for AE to promote
hippocampal structure and function is growing at an impressive
rate as more and more work is translated from animal to
human models. Importantly, the beneficial impact that AE has
on the brain may have a useful clinical application in treating
disorders in which hippocampal damage is a significant factor
that underlies its symptomatology. There is currently a particular

need to develop effective strategies that alleviate cognitive
dysfunction and targeting deficits in the neuroplasticity of crucial
areas to cognition like the hippocampus, is a promising approach
to remediating cognitive dysfunction. AE interventions represent
an effective method of promoting hippocampal neuroplasticity
and function that encompasses few risks and several additional
benefits to the patient, such as combating pharmacologically
induced side effects. This paper has highlighted two promising
examples of how AE interventions could improve the treatment
of schizophrenia and MDD, but AE interventions could well
have a broader application in mental health such as in treating
substance abuse (Zschucke et al., 2012).

However, several issues must be addressed for AE to be
successfully implemented as an adjunct to pharmacotherapy.
Firstly, more RCTs are needed to systematically establish a causal
relationship between AE with neural and cognitive outcomes.
Future RCTs could benefit from a more hippocampus-focussed
approach with particular regard to the choice of cognitive tasks
used in the study. The use of techniques like multimodal imaging
and peripheral biomarker assays should also be incorporated
to build a comprehensive account of the impact that AE has
on the brain. A greater focus should be placed on investigating
the impact of AE in psychiatric populations both in terms of
neuroplastic changes and therapeutic efficacy. An interesting
avenue of research is to assess to what extent AE could
interact with current pharmacological treatments to reduce
side effects and have a synergistic impact on neuroplasticity
and symptom reduction. Finally, future research should strive
to establish standardized methodologies for investigating AE
and the most effective method in which an AE intervention
would be implemented to maximize therapeutic outcome.
Improving our understanding of the role that lifestyle factors
such as exercise play in maintaining and promoting brain
functioning could have major implications for the way in
which we treat, or even prevent, psychiatric and neurological
disorders.
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