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Abstract
Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM)
pathology and has been linked to increased risk of cognitive impairment and dementia. Although
the benefits of aerobic exercise for physical health are well-documented, exercise effects on
cognition have not been examined for older adults with poor glucose regulation associated with
prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57–83 y
old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic
exercise or stretching, which served as the control. The primary cognitive outcomes included
measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and
Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning),
measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose
disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of
insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40
and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p = 0.04),
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cardiorespiratory fitness (MANOVA, p = 0.03), and insulin sensitivity (p = 0.05). Across all
subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively
correlated (p = 0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to
controls (p = 0.07). The results of our study using rigorous controlled methodology suggest a
cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although
replication in a larger sample is needed, our findings potentially have important therapeutic
implications for a growing number of adults at increased risk of cognitive decline.
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INTRODUCTION
Abnormally high glucose levels in response to a glucose challenge suggest poor
glucoregulation, a condition that has been linked to impaired cognition in older adults [1–3].
Type 2 diabetes mellitus (T2DM) is a condition defined by insulin resistance and inadequate
compensatory insulin secretion that result in impaired glucose regulation. Poor glycemic
control may be present for many years before T2DM is detected, and can have deleterious
consequences for many target tissues without any noticeable symptoms. In the prodromal
phase of the disease, abnormalities in glucose regulation can be detected by measuring
glucose response to an oral glucose load. Impaired glucose tolerance (IGT) characteristic of
prediabetes is identified when 2-h tolerance test glucose levels reach 140 mg/dL but fall
below 200 mg/dL, while 2-h values that exceed this upper criterion indicate T2DM [4].
Abnormal glucose tolerance, a characteristic of prediabetes and T2DM, has been linked to
an increased risk of cognitive impairment including prodromal and frank Alzheimer’s
disease (AD) and vascular dementia [5–12].

Diet and exercise represent the first line of intervention in clinical practice to slow
progression of metabolic disturbance associated with prediabetes and T2DM. Although
increased physical activity has clear beneficial physiological effects for older adults with
glucose intolerance [13], exercise effects on cognition have not been examined in this
population. Physical activity has potent therapeutic effects on glucose regulation and
cardiovascular health, both of which when compromised may threaten cognitive integrity
[14–17]. Positive effects of aerobic exercise on cognition have been well documented in
animal models and in aging clinical populations [18,19]. In one set of clinical studies,
Colcombe and colleagues provide cross-sectional and prospective brain imaging data to
suggest that aerobic exercise ameliorates age-related volume loss for older adults, changes
that are most striking for brain regions that support executive control processes and memory
[20–22] yet most vulnerable to the effects of aging [23]. Inhuman studies, enhanced
executive function is the most frequently reported benefit attributable to exercise, and
includes abilities such as selective attention, multi-tasking, cognitive flexibility, and working
memory [19,20].

Although recent reports suggests that exercise can attenuate normal age-related cognitive
changes and deficits associated with mild cognitive impairment [24,25] and dementia [26–
28], it has not been established whether aerobic exercise improves cognition for cognitively
normal older adults with glucose intolerance who are at increased risk of cognitive decline.
We hypothesized that a 6-month program of aerobic exercise relative to a stretching control
would benefit cognition, particularly executive control processes in older glucose intolerant
adults. We also examined intervention effects on insulin sensitivity, and on plasma levels of
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cortisol, brain-derived neurotrophic factor (BD-NF), insulin-like growth factor-1 (IGF-1)
and amyloid-β 1–40 and 1–42 (Aβ40 and Aβ42), to explore putative mechanisms linking
exercise with improved cognitive function for an at-risk group of older adults.

MATERIALS AND METHODS
Subjects

The study was approved by the University of Washington Institutional Review Board and
the Research and Development Committee of the VA Puget Sound Health Care System.
Thirty-four subjects with normal cognitive status as determined by neuropsychological
assessment and meeting criteria for abnormal glucose tolerance via oral glucose tolerance
test (2-h glucose ≥ 140 mg/dL [4]) provided written informed consent and were enrolled
into the study. Subjects included those meeting glucose tolerance criteria for prediabetes
(140 mg/dL ≥ 2-h glucose < 200 mg/dL) or newly diagnosed (at the time of study screening)
T2DM (2-h glucose ≥ 200 mg/dL). Exclusion criteria included unstable cardiac disease,
significant cerebrovascular disease, musculoskeletal impairment, or presence of other
medical conditions with significant psychiatric, neurologic, or metabolic sequelae. Only
sedentary adults (self-report of < 30 min of structured physical activity < 3 times/week in
last 6 months) were enrolled. Use of statins or anti-hypertensives was permitted while
current or prior use of diabetes medications was not. All subjects were newly diagnosed with
glucose intolerance as a result of study participation. Twenty-eight participants successfully
completed the trial and were comparable with respect to baseline general cognitive status,
cardiorespiratory fitness, adiposity, glucose tolerance, and fasting plasma levels of insulin,
glucose, and lipids (all ps > 0.22). Although all subjects met criteria for glucose intolerance
during screening (2-h glucose ≥ 140 mg/dL), 6 of 28 subjects (21%) met the more stringent
criteria for T2DM (2-h glucose ≥ 200 mg/dL), and 14 of 28 subjects (50%) also met criteria
for impaired fasting glucose (IFG, ≥ 100 mg/dL [4]). T2DM and IFG were proportionately
distributed across the two treatment groups, and for all cases, pharmacological treatment
was deemed unwarranted by the participants’ primary care providers. Baseline
characteristics for completers are provided in Table 1, and subject flow from initial contact
through study completion is depicted in Fig. 1 using a CONSORT-style diagram. Relative to
completers, the dropouts (n = 6 women) were younger (p = 0.04) and tended to have higher
baseline fasting LDL levels (p = 0.09) but were otherwise comparable with respect to other
measures at study entry.

Procedure
Participants were randomized using a 2:1 ratio to an aerobic exercise or stretching control
group. This schedule was used to offset an anticipated attrition imbalance across groups.
Cognitive testing and 12-h fasting blood collection occurred between 8 am and 10 am at
baseline and at months 3 and 6. Before and after the 6-month intervention, insulin sensitivity
(via hyperinsulinemic-euglycemic clamp), peak cardiorespiratory capacity (via graded
exercise treadmill test), and body fat (using dual energy X-ray absorptiometry) were
assessed for all subjects. Study personnel involved in collection of outcome measures were
blinded to randomization assignment.

Intervention protocols
Participants in both groups carried out their activity routines 4 d/wk for 45–60 min/session
for 6 months. Participants were instructed to maintain constant diet and extracurricular
activities for the duration of the study. The majority (90%) of exercise sessions were
conducted at local YMCAs. All subjects in both groups received individualized supervision
by a fitness trainer for the first 8 activity sessions. Thereafter, the trainer supervised 1
session/wk/participant. All subjects also received a weekly phone call to monitor
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compliance, and completed logs tracking exercise duration and heart rate (HR) monitor
measurements. Exercise duration and intensity were titrated up over the first 6 weeks, until
participants in the aerobic group were exercising at 75–85% of HR reserve [29] using a
treadmill, stationary bicycle, or elliptical trainer. This intensity was maintained for the study
duration. Participants in the control group carried out a prescribed routine of stretching and
balance exercises, maintaining HR at or below 50% HR reserve. Compliance data included
peak and mean HR measurements and exercise duration and frequency at the targeted HR
intensity recorded by the trainer and by the subject. An exercise physiologist regularly
reviewed these data to ensure that targeted goals were met, and assigned a weekly
compliance rating (1 = failed to meet goals; 2 = met goals; 3 = exceeded goals) for each
subject. When illness or travel prevented completion of 3 sessions/wk (n = 1 in stretching
group, n = 2 in aerobic group), total study duration was increased by 1 week. Compliance
outcomes are provided in Table 2, and were comparable across groups.

Cardiorespiratory fitness assessment
Pre- and post-intervention, participants performed a modified Balke maximal-graded
exercise treadmill test [30], with HR and oxygen uptake monitored by an automated
metabolic cart (MedGraphics, St. Paul, MN). Subjects began by walking on a treadmill at a
slow speed and 0% grade. After 2 min, speed was increased to 3 mph at 0% grade.
Thereafter, only the grade was increased by 2% every 2 min. Peak oxygen uptake (VO2peak)
was measured at test termination triggered by the onset of symptoms or report of exhaustion.

Hyperinsulinemic-euglycemic clamp
Pre- and post-intervention, fasted participants underwent a hyperinsulinemic-euglycemic
clamp [31] to assess insulin sensitivity. Before the clamp, one catheter was inserted into an
antecubital vein for infusions, a second catheter was inserted into a brachial artery of the
contralateral arm for blood sampling, and subjects rested with intravenous lines in place for
a 30-min habituation period. Throughout the 2.5-h procedure, plasma insulin elevated using
an insulin infusion dose of 1.0 mU/kg/min. Glucose levels were measured in duplicate at 5-
min intervals using a whole blood glucose analyzer (HemoCue, Lake Forest, CA), at which
time a variable rate infusion of 20% dextrose solution (D20) was adjusted according to a
negative feedback algorithm described by Defronzo et al. [31] to maintain plasma glucose
concentration at 95 mg/dL. Two hours into the procedure, the 30-min quantity of D20
infusate needed to maintain euglycemia under the condition of steady-state hyperinsulinemia
was recorded. Plasma insulin levels were not measured during the clamp. Insulin sensitivity
was estimated using mean quantity of dextrose infused per minute over this 30-min period
adjusted for fat free body mass (kg).

Cognitive assessment
Three comparable versions of the cognitive protocol were randomly assigned in
counterbalanced order to the three assessment visits. An additional version was administered
prior to baseline to familiarize participants with procedures. The protocol included tests of
executive function and short-term memory with documented sensitivity to the effects of
aging or early neurodegenerative disease.

Tests of executive function
For the Trail-making Test [32], subjects drew lines to connect randomly placed
alphanumeric stimuli in ascending order. In the more difficult condition (Trails B), subjects
alternately tracked 2 different sets of stimuli (letters, numbers). Time to complete Trails B,
adjusted for Trails A time, was subjected to analysis. Task Switching [33,34] measures the
cost of switching between tasks. Pairs of stimuli including a letter and a number were
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presented clockwise around a 2 × 2 matrix displayed on a computer screen. Every 2 trials,
the task alternated between having to make an odd-even decision or a consonant-vowel
decision. Each new trial was triggered by the previous response. Mean reaction time,
adjusted for accuracy, was subjected to analysis. Stroop Color-Word Interference [35,36], a
test of selective attention and response inhibition, was administered via computer equipped
with a voice key. Color names were presented on a computer screen, one at a time, in
concordant or discordant font colors (e.g., the word “red” presented in red or green font).
Subjects were instructed either to read the word or to name the color as quickly as possible,
and voice onset latency and content were recorded. Each trial was preceded by a reminder
regarding task instruction to minimize memory load. The Self-Ordered Pointing Test
(SOPT) [37,38] is a computer-administered test of working memory where subjects were
instructed to touch each design of a multi-design array. After each touch, the designs were
rearranged within the array. This procedure was repeated 10 times (trials) for the 10-design
array, and 12 times for the 12-design array. Three consecutive trial blocks were completed
for each of the 2 multidesign arrays, and number of errors was recorded. Verbal Fluency
[39,40] was measured by the total number of words generated across four 60 s trials.
Subjects listed words beginning with specified letters of the alphabet for the first 2 trials and
that belonged to specified semantic categories for the remaining 2 trials.

Tests of memory
For Story Recall [41,42], a test of declarative short-term memory, subjects heard a brief
narrative containing 44 informational bits, and were asked to recall as much as possible both
immediately and after a 30-min delay. Credit was awarded for verbatim recall and accurate
paraphrases, and delayed recall scores were subjected to analysis. For List Learning [43],
subjects heard a list of 12 words and were asked to recall as many items as possible across 3
learning trials, and then again after a 20-min delay. Delayed recall scores were analyzed.

Assays
Plasma glucose was measured in duplicate using a HemoCue glucose analyzer (Hemocue,
Lake Forest, CA). Radioimmunoassay was used to quantify plasma concentrations of
insulin, total IGF-1 and IGF-binding protein 3 (IGFBP3) as previously described [24], and
total cortisol (DSL Cortisol RIA kit, Diagnostics Systems Laboratories, Webster, TX)
according to the manufacturer’s protocol. Plasma BDNF and platelet factor-4 (PF4) were
quantified using BDNF Emax ELISA (Promega Co., Magison WI) and Zymutest PF4
ELISA (Aniara Co., Mason OH) according to the manufacturer’s instructions. Although
BDNF is highly concentrated in the nervous system, it is also stored and released by
activated platelets in the blood [44]. Thus we assayed PF4 as an estimate of platelet activity
that could be used to adjust total BDNF levels in plasma for the contribution of activated
platelets. Plasma Aβ40 and Aβ42 levels were determined using ELISA as previously
described [45]. All assays were performed in duplicate, and pre- and post-intervention
measurements were randomly distributed across plates when more than one plate was
required.

Statistical analysis
Cognitive measures, reflected as difference scores (month 6 – baseline), were subjected to
separate MAN-COVAs by domain (i.e., executive function, declarative memory), with
treatment group serving as the independent variable. Age and gender were included as
covariates in these analyses. Treatment effects on cardiorespiratory outcomes obtained
during the treadmill test (VO2peak, treadmill grade, time to exhaustion) expressed as
difference scores were examined using a similarly structured multivariate analysis.
Significant findings from an omnibus test were examined using separate ANOVAs or
ANCOVAs. Secondary analyses examined treatment effects on insulin sensitivity (glucose
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disposal during hyperinsulinemic-euglycemic clamp), cardiovascular outcomes (lipids,
blood pressures), adiposity (%fat), and other AD biomarkers (plasma levels of cortisol,
IGF-1, BDNF, Aβ) using one-way (treatment group assignment) ANCOVA. Age, fasting
plasma insulin, and Dementia Rating Scale (DRS) score at baseline were initially included
as covariates in the biomarker analyses, in light of scientific evidence to suggest a link
between these outcomes, but dropped from the model if not contributory. For all analyses,
pairwise comparisons were performed using t-tests when appropriate. Multiple regression
and correlation procedures were used to examine exercise-induced associations between
cognition, cardiorespiratory fitness, insulin sensitivity, adiposity, cortisol, BDNF, IGF-1,
and Aβ. Positively skewed distributions were log-transformed prior to analysis. Adjustments
for missing clamp data (unable to gain venous access for 5 individuals, n = 2 controls) were
made using multiple imputation linear regression (STATA [46]). Imputations for missing
data due to spoiled samples or testing error were not performed given the limited number of
occurrences (< 5%).

RESULTS
Cardiorespiratory fitness

A 6-month trial of aerobic exercise versus stretching improved cardiorespiratory fitness
(F3,23 = 3.63; p = 0.03) as measured by treadmill measures of VO2peak (L/min: +9% vs.
−1.3%, p = 0.03, Table 1), treadmill grade (+70% vs. +8%, p = 0.002), and time to
exhaustion (+59% vs. +5%, p = 0.001). These results were not altered when the statistical
model was adjusted for β-blocker use.

Cognitive function
Six months of controlled aerobic exercise had a beneficial effect on executive function (F5,16
= 3.01; p = 0.04). The results of univariate analyses for the constituent cognitive tests and
associated effect size estimates (Cohen’s f) are described below. Relative to controls,
performance in the aerobic group improved on Trails B (f = 0.36, p = 0.04; Fig. 2A), Task
Switching (f = 0.39, p = 0.03; Fig. 2B), and interference trials of the Stroop (f = 0.38, p =
0.04; Fig. 2C). Trends in the data suggested improved performance for the aerobic group vs.
controls on SOPT (f = 0.29, p = 0.10; Fig. 2D) and Verbal Fluency (f = 0.25, p = 0.11; data
not shown). Consistent with other reports in the literature [19,21,47], benefits were confined
to executive control processes and did not impact memory (F2,22 = 0.56; p = 0.58). Analysis
of cognitive outcomes collected 3 months into the study (6 weeks following titration to
maximum intensity) failed to reach significance.

Insulin sensitivity, lipids, and adiposity
Glucose disposal during the 30 min steady-state period of the hyperinsulinemic-euglycemic
clamp improved for the aerobic group relative to controls (F1,26 = 4.09; P = 0.05, Table 1).
Across all subjects, treatment-related changes in glucose disposal and cardiorespiratory
capacity were positively correlated (treadmill grade: r = 0.52, p = 0.005; time to exhaustion:
r = 0.49, p = 0.01). At the end of the trial, adiposity and plasma triglyceride levels decreased
for both groups relative to baseline (Table 1). Plasma levels of LDL trended down over the
6-month trial for all statin users (p = 0.08) but did not interact with treatment group.

Aβ, cortisol, BDNF, and IGF
Exploratory analyses were conducted to examine intervention effects on aging- and AD-
related biomarkers. Plasma levels of Aβ42 were highly variable but nonetheless trended
down for the aerobic group relative to controls (p = 0.07, Table 1). For this analysis, age,
fasting plasma insulin, and DRS score were included as covariates. Mean plasma
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concentration of cortisol and BDNF increased for the stretching group and decreased for the
aerobic group, consistent with our earlier findings [24], but this difference failed to reach
statistical significance in the present study. Mean plasma levels of bioactive IGF-1 (total
IGF-1 adjusted for IGFBP3) were higher for men than women at baseline (118 pg/mL vs. 89
pg/mL), but were not affected by treatment manipulation.

DISCUSSION
Six months of aerobic exercise improved cognitive performance on tasks of executive
function including selective and divided attention, cognitive flexibility, and working
memory in older adults with glucose intolerance. In addition, circulating levels of the AD
biomarker Aβ42 tended to decrease for subjects in the aerobic group relative to controls.
Although similar effects of aerobic exercise on executive control processes have been
previously reported in normal adults [19], this is the first study to demonstrate that aerobic
exercise can improve cognition in older adults with glucose intolerance who are at increased
risk of cognitive decline associated with progression of T2DM pathology and AD.

Our results suggest that aerobic exercise has favorable effects on cognitive processes of
executive function compromised by T2DM [48–50] and AD pathology [51,52]. Diabetes has
numerous harmful consequences for peripheral systems but is also characterized by
deleterious neurophysiologic and structural changes in the brain that adversely affect
cognition [49] and ultimately increase risk of dementia [53–55]. Such neuropathological
changes are believed to begin in the early stages of diabetes, conferring increased risk of
cognitive decline for adults with prediabetes as well [17,56,57].

In the present study, executive function and insulin sensitivity improved with aerobic
exercise, a finding that implicates a potential benefit of improved glucose metabolism on
cognitive processes. Although it is not possible to specify the mechanisms underlying these
effects in our study, in animal models, exercise-induced cognitive benefits have been linked
to improved energy metabolism and insulin signaling in the brain [58]. Executive control
processes are supported in large part by frontal brain regions [21,22] that are particularly
vulnerable not only to the effects of aging [23], but also to the effects of T2DM
pathophysiology [59]. In epidemiological studies, glucose intolerance is linked to cognitive
impairment in non-diabetic older adults [55], while in controlled studies pharmacological
treatment of dysglycemia with consequences for insulin sensitivity is associated with
improved cognitive function [60]. In light of the potent insulin sensitizing effects of aerobic
exercise, it is conceivable that exercise-induced enhancements in cognition may be
supported in part by improvements in glucoregulation.

We and others have demonstrated that the effects of exercise in humans are greatest for tasks
of executive function mediated by frontal brain regions. These regions, and the cognitive
processes they support, are particularly susceptible to deleterious neurophysiological and
structural changes associated with aging [21–23]. Consistent with the idea that T2DM
pathology represents a model of accelerated aging [6,61], these areas are likely affected to
an even greater extent for prediabetic and diabetic adults. Adults with poor glucose
regulation and reduced insulin sensitivity have impairments in executive function [2,62–64],
and metabolic and structural disturbances in frontal cortex relative to controls [48,49,59].
Impairments in executive function have been linked to reduced vasodilation with
pronounced effects on frontal-subcortical circuits that are particularly susceptible to
microvascular dysfunction [65]. Thus, aerobic exercise may have its greatest remediating
effect on frontal brain regions that are most vulnerable to aging, and for glucose intolerant
adults with an increased risk of cognitive decline and AD, to deleterious consequences of
diabetes- and AD-related vascular dysfunction [48,66,67].
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The failure to observe consistent beneficial effects of exercise on memory in this and other
studies is somewhat surprising given that a number of animal studies show benefits for
spatial memory, a task supported by the hippocampus [68]. In human trials, the absence of
exercise-induced memory benefits may relate to the type of tests administered (not tests of
spatial memory) or the specific task demands that rely more heavily on brain regions other
than the medial-temporal lobe and surrounding structures. Alternatively, as noted above,
positive effects of aerobic exercise may be most noticeable for brain regions that are most
compromised by age.

Impaired glucoregulation is implicated in a number of AD-related pathophysiological
processes, including altered Aβ metabolism. Plasma Aβ42 levels are elevated for adults at
high risk of AD [69], and increase in response to acute alterations in glucose load,
particularly in the context of AD pathology [70,71]. In animal models of AD, exercise
reduces Aβ burden in brain [72–74]. The results of our study suggest that aerobic exercise
may also have an impact on circulating Aβ42 given that plasma levels tended to decrease for
subjects in the aerobic exercise group relative to controls. Although we also reported a
similar change in Aβ42 levels in response to a 6-month trial of aerobic exercise for older
adults with mild cognitive impairment [24], the significance of this finding remains to be
determined.

The limitations of our study include small sample size and disproportionate representation
by gender across groups. Despite a high risk of type II error, an inherent disadvantage of
trials with small n, we detected exercise-related improvements across several tasks of
executive function. In larger trials, it is conceivable that subtle effects involving memory
could be detected. In addition, we chose to exercise adults at a high level of intensity to
maximize our ability to detect a true effect. Consequently, we were conservative regarding
inclusion criteria to ensure patient safety and minimize liability, and this selection process
potentially limits our ability to extrapolate the results to larger, older adult populations.

Increased physical activity is a potent non-pharmacological intervention for physiological
symptoms associated with impaired glucose metabolism and T2DM, conditions that confer
increased risk of AD. Our results suggest that exercise also has a positive effect on cognitive
function for older adults with glucose intolerance, without the cost and adverse side effects
associated with most medication therapies. The cognition-enhancing effects of aerobic
exercise were confined to executive control processes and did not include declarative
memory. Exercise-induced improvements in insulin sensitivity, cerebral blood flow, and
other metabolic parameters may contribute to the observed cognitive benefits. The results of
this study also suggest that 6 months of moderate to high intensity aerobic exercise may
influence circulating levels of Aβ42, a finding with potential implications for AD pathology.
Future controlled trials of aerobic exercise that include brain imaging measures of glucose
metabolism and blood flow will likely help to identify specific mechanisms to account for
cognition-enhancing effects.
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Fig. 1.
Subject flow from initial contact through study completion.
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Fig. 2.
Treatment effects on cognitive outcomes of executive function. Means (standard error of
measurement) represent 6-month change relative to baseline, expressed as difference scores.
All means are adjusted for age and gender as well as other task-specific variables when
indicated. A) Trails B time to complete the task (seconds, log transformed, adjusted for
Trails A time) was faster for subjects in the aerobic group relative to controls, p = 0.04. B)
Task Switching response latency for all trials, adjusted for accuracy, was faster for the
aerobic group relative to controls, p = 0.03. C) Stroop voice onset latency to interference
stimuli was faster for subjects in the aerobic group versus controls, p = 0.04. D) SOPT
performance, indexed by number of correct responses across all trials, tended to improve for
aerobic exercisers relative to controls, p = 0.10.
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Table 1

Baseline subject characteristics and treatment effects on physical and physiological outcomes

Stretching Aerobic

Baseline Month 6 Baseline Month 6

Total subjects, n (males) 9 (1) — 19 (9) —

IFG, n (%) 5 (56) — 9 (47) —

T2DM, n (%) 2 (22) — 4 (21) —

Taking a β-blocker, n (%) 3 (33) — 6 (32) —

Taking a statin, n (%) 3 (33) — 5 (26) —

Age, y* 66 (6.0) — 71 (7.5) —

MMSE 28.8 (1.0) — 28.6 (1.2) —

DRS 140 (2.0) — 139 (3.2) —

2-h glu, mg/dL 163 (31.8) — 184 (46.0) —

VO2peak, L/min‡ 1.69 (0.3) 1.65 (0.3) 1.79 (0.6) 1.97 (0.7)

BMI, m2/kg† 30.1 (7.2) 29.6 (7.3) 30.6 (3.9) 29.7 (3.5)

Fat, %*† 42.6 (7.1) 41.0 (7.6) 37.7 (6.6) 36.1 (6.0)

FPI, mU/mL 9.8 (3.9) 8.4 (5.0) 11.1 (9.0) 9.0 (4.4)

FPG, mg/dL 94 (11.4) 91 (8.2) 105 (30.0) 100 (20.0)

GDR, mg/kgFFM/min‡ 7.6 (2.5) 6.7 (2.7) 5.9 (3.3) 6.5 (3.0)

TG, mg/dL† 146 (77.3) 108 (34.3) 170 (114.3) 137 (68.1)

HDL, mg/dL 58 (16.2) 60 (11.0) 55 (11.9) 56 (11.8)

LDL, mg/dL 102 (16.8) 100 (21.2) 110 (29.5) 114 (33.4)

Aβ42, pg/mL § 58.9 (66.6) 79.9 (43.8) 87.1 (64.9) 66.0 (42.7)

Means (SD) are provided unless otherwise indicated. Abbreviations: IFG = number of subjects (% of group total) meeting criteria for impaired
fasting glucose (≥ 100 mg/dL); T2DM = number of subjects (% of group total) meeting 2-h tolerance test glucose level criteria for type 2 diabetes
mellitus (≥ 200 mg/dL); MMSE = Mini-Mental Status Exam (maximum score = 30); DRS = Dementia Rating Scale (maximum score = 44); 2-h
glu = 2-hour plasma glucose concentration during oral glucose tolerance test performed at screening to assess study eligibility; VO2peak = peak
oxygen uptake measured during maximal-graded exercise treadmill test; BMI = body mass index; Fat = Percent fat distributed across the body,
excluding head, measured using dual energy X-ray absorptiometry; FPI = fasting plasma insulin; FPG = fasting plasma glucose; GDR = mean 30-
min glucose disposal rate 120 min into the hyperinsulinemic-euglycemic clamp, adjusted for fat free mass in kgs (kgFFM); TG = fasting plasma
triglyceride levels; HDL = fasting plasma high density lipoprotein concentration; LDL = fasting plasma low density lipoprotein concentration;
Aβ42 = fasting plasma levels of amyloid-β 1–42.

*
Trend for baseline difference across treatment groups, p = 0.09; Decreased at month 6 vs. baseline for both groups, p < 0.05; Treatment-related

improvement for aerobic group relative to controls, p = 0.05; Trended down at month 6 for aerobic group relative to controls, p = 0.07.
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Table 2

Compliance

Stretching (n = 9) Aerobic (n = 19)

Mean (SD) Range Mean (SD) Range

Total weeks of exercise 23 (0.5) 22–25 23.9 (0.7) 22–26

Sessions/week* 3.76 (0.7) 3–5 3.74 (0.8) 3–5

Weekly compliance ratings* 1.97 (0.07) 1.8–2.0 1.87 (0.44) 1–2.6

*
Tabled values for exercise sessions per week and weekly compliance ratings by the exercise physiologist (3-point scale: 1 = did not meet goals; 2

= met goals; 3 = exceeded goals) reflect data collected from week 6 (end of acclimation period) through the end of the study. Compliance outcomes
did not differ between groups.
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