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ABSTRACT

This paper presents novel analytical results for

eigenvalues and eigevectors produced using discrete

time aerodynamic and aeroelastic models. An

unsteady, incompressible vortex lattice aerodynamic

model is formulated in discrete time; the importance

of several modeling parameters is examined. A

detailed study is made of the behavior of the

aerodynamic eigenvalues both in discrete and

continuous time. The aerodynamic model is then

incorporated into aeroelastic equations of motion.

Eigenanalyses of the coupled equations produce

stability results and modal characteristics which are

valid for critical and non-critical velocities. Insight

into the modeling and physics associated with

aeroelastic system behavior is gained by examining

both the eigenvalues and the eigenvectors. Potential

pitfalls in discrete time model construction and

analysis are examined.

INTRODUCTION

A standard procedure for solving a structural

dynamic problem is to employ eigenanalysis to

calculate the structural dynamic eigenvalues and

eigenmodes. Recently, this procedure has been

extended to unsteady aerodynamics, and to coupled

aeroelastic equations 1..,

Because applying eigenmode analysis to

aerodynamic and aeroelastic systems is fairly new,

there are many modeling issues that may not be

familiar to the analyst. The intent of this paper is to

discuss several of the many issues which are
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associated with these new aeroelastic techniques. To

accomplish this, we analyze relatively simple fluid

dynamics and aeroelastic models using discrete time

techniques and eigenmode analysis.

In computational fluid dynamics, CFD, there are two

approximations that are typically employed. One is the

construction of a computational grid, which determines

the limits of spatial resolution of the computational

model. The second is the approximation of an infinite

fluid domain by a finite domain. It is a principal purpose

of the present discussion to demonstrate that the

computational grid not only determines the spatial

resolution obtainable by the CFD model, but also the

frequency or temporal resolution that can be obtained.

Also, as will be shown, the finiteness of the

computational domain determines the resolution of the

eigenvalue distribution for a CFD model. Both of these

observations have important ramifications for assessing

the CFD model and its ability to provide an adequate

approximation to the original fluid model on which it is

founded. To these ends, a finite-wake, time-domain,

discretized vortex lattice aerodynamic model has been

utilized.

This paper presents results of aerodynamic parametric

variations. A detailed discussion of the trends produced

by these systematic variations will be presented. The

discussion includes the effects on both the discrete- and

continuous-time eigenvalues. These studies give new

insights into aerodynamic modeling in the discrete time

domain including how one may construct reduced order

aerodynamic models.

The aerodynamic model was also combined with time-

domain discretized structural dynamic equations to

examine the aeroelastic behavior of a typical section.

Aeroelastic analyses are also discussed in terms of

eigenanalysis results. Aeroelastic stability analyses

generally focus on the migration of the eigenvalues as a

function of the velocity or other flow parameter. Indeed,

much flutter analysis in practice today uses at best only

an approximation to the true aeroelastic eigenvalues 3-7

Here, the true eigenvalues are found for all aeroelastic
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modes without iteration. Also in this study, the

characteristics of the eigenvectors are examined as

the aeroelastic system becomes unstable.

AERODYNAMIC STUDIES

Aerodynamic Modelin2

A Vortex Lattice solution to Laplace's equation for

incompressible two-dimensional flow is utilized in

this study. We consider the flow over an airfoil with

a certain number of vortex elements on the airfoil and

in the wake. The airfoil is modeled as a 2-

dimensional flat plate. The airfoil and the wake are

divided into segments, referred to as aerodynamic

elements. Vortex lattice aerodynamics are generated

by placing vortices of strengths to be determined at

points on the airfoil and in the wake. Collocation or

control points, usually located aft of the vortex

locations, are points where the boundary conditions

must be satisfied. Typical placement is for the

vortices to be located at the tA-chord points of the

aerodynamic elements. The collocation points are

typically placed at the 3A-chord locations of the

elements.

The governing equations are presented by Hall in

reference 1; they are briefly summarized here. There

are 3 basic relationships, detailed in the following

paragraph, which are combined to form the matrix

equation

[a]{r'_÷' + [B]{r'_ ={w]_t (Eqn.l)

where n and n+l denote the current and the next

discrete time sample. F is a vector of vorticities and

w is a vector of downwashes at each of the

collocation points. The number of elements on the

wing is denoted M, while the total number of

elements is denoted N.

Three basic relationships determine the contents of

the A and B matrices seen in Equation 1. These

represent N equations with N variables. The first of

the three basic relationships equates the velocity

induced by the discrete vortices at the collocation

points to the downwash caused by the airfoil's

motion. This relationship accounts for M rows

within equation 1. Applying Kelvin's theorem

generates a second basic relationship utilized in

deriving equation 1. Quoting Hall, "unsteady

vorticity is shed into the wake; its strength is

proportional to the time rate of change of circulation

about the airfoil .... The time step is taken to be equal

to the time it takes the vorticity to convect from one

vortex station to the next." This relationship

accounts for the (M+I) row of equation 1. Once the

vorticity has been shed into the wake, it is convected

in the wake at the freestream velocity. This is the

third basic relationship and appears in equation 1 in rows

(M+2) through (N-I). Vorticity convection also

provides the final, Nth, row of equation 1. Because the

wake is modeled with a finite length, the last vortex

element must be treated specially. "Otherwise, the

starting vortex would disappear abruptly when it reached

the end of the computational wake, producing a

discontinuous change in the induced wash at the airfoil.

To alleviate this difficulty .... the vorticity is allowed to

dissipate smoothly by using a relaxation factor," wrote
Hall t

The formulation and analysis of the aerodynamic model

progresses in the following manner. Discrete, time-

marching equations are written, equation 1. Once these

equations are written, they inherently contain the

approximations of the finite wake and the discretization.

A discrete Fourier transformation is performed on the

unforced equations, producing the z-plane

representation, eqn 2.

zF0 =(_ A-IB_ (Eqn.2)

The discrete time eigenvalues, z, and the eigenvectors,

F., are extracted from these equations to determine

system stability. These eigenvalues are then converted

to the continuous time domain, _,-plane, through a zero

order hold transformation, equation 3.

= log(z) (Eqn.3)
At

Baseline Configuration

As the first of several numerical examples, we consider

the flow over an airfoil with 20 vortex elements on the

airfoil and 180 elements in the wake, equally spaced.

This will be referred to as the baseline case. The (finite)

length of the wake thus extends 9 chord lengths. The

eigenvalues and eigenmodes of the flow can be

computed by established methods I Because there are

200 elements in the model, 200 eigenvalues result.

The discrete time (z-plane) eigenvalues, extracted from

equation 2, approximately form a circle centered at the

origin, as shown in figure 1. In addition to these

eigenvalues, there are a finite number of eigenvalues at

the origin. The number of eigenvalues at the origin is

equal to the number of segments or grid points on the

airfoil. This conclusion follows from examining the

rank of the system matrices in equation 1, from the

numerical results obtained here, and appears to be

supported by the results presented in reference 1, though

it was not noted in this previous work. Eigenvalues at

the origin in the discrete time domain transform to

negative infinity in the continuous time domain.
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The continuous time eigenvalue distribution for the

baseline case is shown in figure 2. The real part of

the eigenvalue is indicative of the damping and the

imaginary part is the damped frequency of each fluid

eigenmode. Examining the eigenvalues of the

aerodynamic matrix in the continuous domain

produces several observations. The continuous

domain eigenvalues are discretely spaced and are

arranged in "arms" that emanate from the origin and

reach up and down in the left half plane.

Additionally, the real parts of the arms

asymptotically approach a limiting value.

The presence of aerodynamic damping is evidenced

by the arms lying in the left half plane. The primary

contribution to the damping appears to lie with the

overall flow field, however, there is additional

damping due to the presence of a vorticity relaxation

factor at the last wake element. The relaxation factor

used in the vortex lattice model provides energy

dissipation in the wake; as the relaxation factor is

decreased, more energy is dissipated and the

aerodynamic damping increases. If the number of

aerodynamic boxes within the wake is increased, the

last box will be a smaller percentage of the total wake

length and thus, the influence of the relaxation factor

will be diminished.

Parametric Variations

Three aspects of the aerodynamic modeling

significantly impact the eigenvalue distribution: the

size of the aerodynamic elements, the number of

these elements that lie in the wake, and the length of

the wake. The three aerodynamic configurations,

detailed in table 1, compared against each other two

at a time, produce the three comparison cases, which

are organized in table 2 and discussed next. The three

comparison cases are discussed in terms of their

discrete time eigenvalue distributions (z-values), their

discrete-to-continuous time domain transformations

(z-transformations) and their continuous time

eigenvalue distributions (_,-values).

Comparison case I compares aerodynamic

configurations 2 and 3, examining the effects of

varying the size of the aerodynamic elements while

maintaining the number of elements which lie in the

wake. Because the number of wake elements remains

fixed, configuration #2 has a wake that is twice the

length of the wake in configuration #3 and elements

which are twice as large. Although not shown, the

discrete time eigenvalue patterns for configurations 2

and 3 are identical because the number of elements in

each wake is identical. However, changing the size

of the aerodynamic elements changes the

transformation, which must be applied to convert the

discrete time system to continuous time. This difference

in transformation produces the change in continuous

domain eigenvalues, as illustrated in figure 3.

It is easily shown that the frequency of each eigenvalue

scales linearly with the aerodynamic element size. The

maximum frequency of the arms can be determined a

priori by utilizing Shannon's sampling theorem s. The

aerodynamic eigenfrequencies are bounded from discrete

time considerations similar to those that predetermine

the discrete Fourier transform frequencies s.9. The

maximum frequency, (1),that can be resolved would have

1 cycle spanning two adjacent aerodynamic panels.

Using the velocity, U, to relate the spatial, Ax, and

temporal, At, sample sizes leads to

max(w)= nU (Eqn.4)
Ax

Thus, changing the aerodynamic element size changes

the frequencies of the aerodynamic eigenvalues. As the

size of the elements becomes infinitesimal, we speculate

that the eigenvalue arms will cover the frequency range

from +/- infinity.

It should be noted in studying Case I that the number of

eigenvalues has remained constant in going from

configuration 2 to configuration 3, while the frequency

range has doubled. Thus, the density of the eigenvalues

has halved. The implications of this will be further

discussed in studying Case III.

Comparison case II compares aerodynamic

configurations 1 and 2 and examines the effect of

varying the number of aerodynamic elements in the

wake while holding their size constant. The number of

aerodynamic elements in the wake determines the

number of discrete time eigenvalues comprising the

pseudo-circular pattern. As more elements are placed in

the wake, the more crowded pattern expands outward

towards the unit circle. As the element size decreases,

the radius of the pseudo-circular pattern asymptotically

approaches 1. In discrete time eigenvalue analysis, an

eigenvalue lying on the unit circle represents a neutrally

stable system. In the continuous time domain, the

imaginary axis is the line of demarcation for stability. It

is thus anticipated that the additional boxes in the wake

force the "arms" of the continuous time eigenvalues

closer to the imaginary axis. Figure 4 bears this out. As

more elements are added to the wake, the closer the

aerodynamic roots get to those associated with simple

harmonic motion. Thus, changing the number of

aerodynamic elements in the wake changes the damping

of the aerodynamic eigenvalues. As the number of

elements goes to infinity, we speculate that the arms will

move to the imaginary axis.
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It should be noted in studying Case II, as the wake

length is increased, leaving the size of the

aerodynamic elements constant, the frequency range

of the continuous time eigenvalues remains constant.

Doubling the number of elements in the doubles the

number of eigenvalues on the "arms." Twice as

many eigenvalues reside in arms of the same length.

Hence, the continuous time eigenvalue distribution

has become denser.

Comparison case III compares aerodynamic

configurations 1 and 3 and examines the effects of

varying simultaneously and in inverse proportion, the

number and length of aerodynamic elements in the

wake, such that the wake length remains constant.

The expected trends for the behavior of the arms of

the continuous time eigenvalues are difficult to

predict because, in going from configuration 1 to

configuration 3 there are multiple tendencies:

increasing the number of elements tends to move the

arms closer to the imaginary axis; decreasing element

size tends to extend the frequency range of the arms.
The combined result on the continuous time

eigenvalues, shown in Figure 5, is that the arms of

the eigenvalues lie approximately the same distance

from the imaginary axis, while the frequency range of

configuration 3 is twice that of configuration 1. This

corresponds to the effects of smaller element size of

configuration 3. Thus, the spacing of the eigenvalues

is approximately constant between the two analysis
runs.

An approximate formula for eigenvalue spacing is

derived using the frequency range and the number of

eigenvalues. The maximum frequency was found

using equation 4. Accounting for positive and

negative values, the frequency range is twice this.

Dividing this range by the number of elements or

eigenvalues in the wake, and recognizing that the

element size times the number of elements in the

wake is the wake length, L_ke, produces the

relationship

2xU
ACO= _ (Eqn.5)

Lwalce

The reader may recognize that this is similar to

determination of the discrete Fourier transformation

frequencies, as determined by the length of the time

record. The eigenvalue spacing is approximate due

to the eigenvalues not lying on the imaginary axis,

that is, due to the discretization-induced damping.

For the case of the element size becoming

infinitesimally small, the formula is exact.

Thus, the effect of the finite wake is to produce

discretely spaced eigenvalues, instead of a continuous

line. As the wake length becomes infinite, we speculate

that the arms of discretely spaced eigenvalues form

continuous lines emanating from the origin.

Discussion

The study of aerodynamic eigenvalues using the vortex

lattice code has led to some basic ideas. The eigenvalues

have been shown to be artifacts of the discretization and

the finite length wake.

The effects of discretization are controlled by two

independent factors. The size of the elements

determines the range of frequencies covered by the

eigenvalues, while the number of elements in the wake

drives the damping. Their effects are shown to be

independent, as one controls the transformation from

discrete to continuous time, and the other controls the

discrete time eigenvalue pattern. The effect of the finite

wake is to produce discretely spaced eigenvalues, instead
of a continuous line.

We offer the following speculations regarding the

limiting cases. As the size of the elements becomes

infinitesimal, the eigenvalue arms will cover the

frequency range from +/- infinity. As the number of

elements goes to infinity, the arms will move to the

imaginary axis. As the wake length becomes infinite,

the arms of discretely spaced eigenvalues form

continuous lines emanating from the origin.

AEROELASTIC STUDIES

With the ability to model aerodynamic eigenmodes as

well as structural modes, we now have the capability to

investigate the coupled fluid/structural modes or

aeroelastic modes. We study these in this section of the

paper and thereby gain additional insight into the

behavior of such system. One intriguing finding,

previously foreshadowed in the literature, is that the

critical mode may originate in an aerodynamic mode
rather than a structural mode.

Aeroelastic Modelin2

The discrete time aerodynamic model can be coupled

with a discretized structural dynamic model to produce

the following time-marching aeroelastic equations of

motion t which can then be analyzed to determine the

behavior of the system

D2qn+l + Dlqn _ f,_+l = 0 (Eqn.6)

where the vector q contains the structural dynamic

degrees of freedom, the vector f represents the
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aerodynamic loads and the matrices DI and D2

describe the structural dynamic behavior of the

typical section.

The coupling between the aerodynamic and the

structural dynamic quantities is present in an

aeroelastic system because the vorticity distribution

results in the aerodynamic loads, f, which can be

expressed in terms of the vorticities, F.

fn+l = c2rn+l + CIFn (Eqn.7)

For an unforced response, the downwash on the

airfoil, w, is produced by the motion of the airfoil.

w"= _" (_n.8)

Combining equations I, 6, 7, and 8 produces the

unforced aeroelastic system equations.

c21f'ql"+'AJ[FJ +[ Dl c'llql°
BJlFJ

(Eqn.9)

Aeroelastic Configuration

A typical section with only a single pitch degree of

freedom, figure 6, is analyzed in this paper. For these

analyses, 10 aerodynamic elements were placed on

the wing; 90 aerodynamic elements were placed in

the wake. The structural parameters are given in
Table 3.

The stability of this system was analyzed by

calculating the equations of motion for a series of

reduced velocities. Reduced velocity, V, is defined

as the velocity, U, normalized by the pitch frequency

and semi-chord. Eigenanalyses of the discrete time

systems were performed on each set of equations and

the system eigenvalues tracked. The eigenvalues

were transformed into the continuous time domain

using a zero order hold transformation. Stability can

be inferred from either the discrete or the continuous

time root locus- both are examined here.

Discrete Time Eigenvalues - The discrete

time root locus is presented in figure 7; only the

portion of the complex plane near the unit circle's

intersection with the real axis is shown. The coupled

pitch mode-originating eigenvalue and the

aerodynamic-originating eigenvalues, referred to as

the aeroelastic eigenvalues, migrate as the reduced

velocity is increased. The single structural dynamic

eigenvalue can be seen near the unit circle, indicating

that it is more lightly damped than the aerodynamic

eigenvalues.

An instability occurs when an eigenvalue lies outside the

unit circle. For this system, the instability is observed by

examining the real aerodynamic-originating eigenvalues

on the positive real axis. Figure 7 shows the migration

of the structural-dynamic-originating eigenvalue, and

also the interplay with several aerodynamic eigenvalues.

The lowest complex aerodynamic eigenvalue is clearly

influenced, as well as the real aerodynamic eigenvalues,

one of which destabilizes. It is difficult to further study

system behavior from these graphs because each velocity

produces eigenvalues that essentially belong in different

z-planes. This will be discussed in detail in a subsequent

section of this paper. For a more intuitive interpretation,

we turn now to the continuous domain eigenvalues for

this aerodynamic model.

Continuous Time Eigenvalues - The systems

are converted to the continuous domain by zero order

hold transformations. The behavior of the continuous

time domain eigenvalues is shown in figure 8. For

clarity, only the region near the origin is presented. The

influence of velocity on the aerodynamic eigenvalues is

now evident. As velocity increases, the eigenvalues'

frequencies increase at constant damping. This

particular configuration destabilizes at zero frequency,

termed divergence. In figure 8, the eigenvalues at the

divergence velocity, V=2.3, are indicated by square

symbols.

It is interesting to note that the eigenvalue of the pitch

mode does not go to zero as divergence occurs. The

pitch mode eigenvalue maintains a non-zero frequency

as the system destabilizes, as one of the real

aerodynamic roots migrates into the right half plane.

This is contrary to conventional wisdom regarding

divergence, although several similar phenomena have

been reported by Dashcund 10, Edwards i l, Rodden and

Stahl 12, and Rodden and Bellinger _3. The mechanism

responsible for the divergence of this configuration

appears to have its origin in the aerodynamic terms.

Further work is planned to determine the physical and

mathematical significance of this discovery.

Modal Participation - Often neglected when

interpreting the results of an eigenanalysis, the

eigenvectors provide much interesting information.

Afolabi, Pidaparti and Yang 14 studied aeroelastic

stability from the standpoint of system eigenvectors. In

their work, they discuss the orthogonality between

eigenvectors associated with the different modes of the

system. The approach taken in the current work is to

examine the eigenvectors associated with individual

modes. The eigenvector associated with a particular

eigenvalue can be viewed as the set of modal

participation factors for each degree of freedom. Note

407



that the eigenvectors are invariant under the

transformation from discrete to continuous time

domain.

In a numerically stiff set of ordinary differential

equations _s, the system behavior is seen to be

dominated by the lightly damped and unstable

modes. The disparity in the time scales of

components of the system allows the overall behavior

to be studied by observing only a few eigenmodes of

the system. Thus, in studying the system behavior,

only the modal participation factors associated with

the least stable dynamic mode and with the least

stable static mode were examined. Here, the

complex mode corresponds to the one that originated

as the structural pitch mode, and the real mode

corresponds to an eigenvalue that originated in the

aerodynamics.

Vorticity Associated with the Pitch Mode-

The modal participation at a low reduced velocity,

V=0.2, is presented for the mode which is primarily

the pitch de_ee of freedom, figure 9. The

corresponding eigenvalue is identified in figure 8 by

the diamond symbol. For clarity, only the real part of

the modal participation is plotted as a function of

chord-wise or downstream position. At this low

velocity, the aerodynamics are being driven at the

frequency of the structural mode. The portion of the

eigenvector associated with the vorticity at each

aerodynamic control point, referred to as the vorticity

participation, shows that most of the aerodynamic

energy associated with this mode is in the wake. The

first ten participation factors correspond to elements

on the airfoil. Only these vorticities can produce

forces on the airfoil. At this velocity, there is very

little aerodynamic energy being imparted to the
airfoil.

The wake portion of the vorticity participation

appears as a negatively damped sinusoid when

viewed spatially, as in figure 9. The eigenvector

provides a snapshot of the vorticity distribution.

Initial examination of the data in figure 9 may lead

one to conclude that the system is unstable. In fact,

the opposite is indicated. For a stable system, the

vorticity being shed from the wing into the wake will

decrease as time advances. The vorticity on the last

wake element at time n is the same as the vorticity on

the first wake element at time n-Nw_ke. Thus, the

spatial vorticity distribution could also be thought of

as a time history, where time originates at the wake

trailing edge and proceeds towards the airfoil.

Near the divergence reduced velocity, the eigenvector

associated with the structural-dynamic-originating

mode contains significant participation from both the

structural dynamic and the aerodynamic states. Figure

10 shows the vorticity participation spatially for a

velocity just below divergence, V=2.3. The number of

oscillations to be expected in the wake, Ncydn, can be

estimated using the frequency of the associated

eigenvalue, _e, the reduced velocity, V, and the

discretization, N_k, and M:

Ncycles = a_rn°deNwake (Eqn.lO)
O_aMgV

Using the values for the divergence condition results in a

prediction of 0.8 oscillations; the vorticity participation

in figure I0 therefore looks reasonable.

Vorticity Associated with the Real Aerodynamic Mode-

The aeroelastic system studied destabilizes as a real

eigenvalue moves into the right half plane. It is

interesting to examine the progression of the

characteristics of this mode as the reduced velocity

increases. Regardless of reduced velocity, the associated

vorticity participation factor resembles a pressure

coefficient distribution on the airfoil elements, while the

wake contains almost no participation except for the last

element. The vorticity participation factor at an example

reduced velocity, V=2.3, is presented in figure 11. As

the reduced velocity changes, it is the participation of the

last wake element which is interesting. The magnitude

of this term is plotted versus reduced velocity in figure

12. As this plot is examined, note that these

eigenvectors have an overall magnitude of 1. Initially,

nearly all of the vorticity participation resides in the last

element of the wake. Just prior to divergence, the

participation drops sharply. At the divergence velocity,

all of the vorticity participation is on the airfoil; the wake

factors are zero. As the system moves beyond the

divergence velocity, the behavior of all of the vorticity

participation factors change. The last wake element

quickly becomes influential again, but now with vorticity

that is negative, or out of phase, with the airfoil vorticity.

As velocity is further increased, the participation of the

last wake element smoothly, asymptotically, approaches

zero. Also beyond divergence the overall wake vorticity

participates.

Transition from stability to instability produces dramatic

changes in the associated eigenvector. While the

eigenvalue smoothly traverses across the imaginary axis,

the character of the vorticity participation changes

sharply. Future work will focus on understanding the

nature of this instability through examination of the

eigenvectors.
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Computational Issues for Simultaneous Solution

of Aerodynamic and Structural Equations

Transformation Compatibility - To

incorporate the discrete time aerodynamic model into

aeroelastic equations, the structural dynamic model
must be cast in discrete time also. The structural

dynamic equations contain first and second

derivatives that could be approximated using a

central difference technique. While this is

convenient and easy, this method results in a

mismatch of discrete time transformations. Central

differencing produces discrete time equations to
which a first order Tustin transformation 9

2 (z- 1)
2 = (Eqn. 1 l)

At (z+l)

must be applied to obtain the proper continuous time

results. The Tustin transformation is equivalent to

the first term in a series expansion of the zero order

hold transformation presented in equation 3. In these

transformations, the sample interval, At, establishes

the relationship between the discrete time

eigenvalues, z, and the continuous time eigenvalues,

_.. The aerodynamic equations which were generated

with a zero order hold discretization, are solved

simultaneously with the discretized structural

dynamic equations. Thus, it is desirable to have

structural dynamic equations that would also be

correct when a zero order hold transformation is

applied. This is easily accomplished through
standard 9discretization techniques . Accepting the

mismatch in the transformations results in a

phenomenon that resembles aliasing. However, as

the time step becomes small, the zero order hold

transform and the Tustin transform become

approximately equivalent.

Aliasing The equations have been
constructed in the discrete time domain. Given data at

discrete times, we can utilize a transformation to

approximate the response in continuous time. There

are limitations to discrete time transformation

methods; aliasing is the primary concern s. 9. To

avoid aliasing, a continuous time signal must have 2

samples per period of period of the highest frequency

to be resolved. The aerodynamic equations arose

from the fundamental concept of vorticity being

convected downstream at a velocity, U. The

equations are valid only if the relationship U=Ax/At

is maintained. It is thus observed that the minimum

velocity, at which the system may be accurately

analyzed, is set by the spatial discretization and the

maximum frequency that is important to the problem.

Another interpretation is that for frequency and

velocity ranges of interest, the minimum number of

aerodynamic elements required to avoid aliasing can be

approximated. This can serve as a guideline in selecting

the spatial discretization required for a given problem.

There are additional implications of the discrete time

effects when the aerodynamic equations are combined

with the structural dynamic equations or control laws.

Methods of Stability Analysis - The aeroelastic

stability analyses, which require variation of the

velocity, were performed using a single spatial

aerodynamic discretization. This was accomplished b

adjusting the temporal discretization to produce the

proper velocities. There are several complications in

performing the analyses in this manner: (1) a separate

transformation rule must be applied for each velocity;

and (2) interpreting the discrete time eigenvalues is not

intuitive. The aerodynamic matrices were unchanging

for different velocities, but the matrices which couple

them to the structural dynamics were not. The resulting

aeroelastic eigenvalues change with each velocity. The

migration of the eigenvalues in the discrete time domain

is not due solely to the velocity change, but to a

combination of velocity and sample rate change.

A brief study was conducted to look at the results when a

consistent sample rate was utilized, meaning that as the

velocity changed, the spatial discretization changed.

This required constructing a new aerodynamic model at

each velocity. There was negligible effect on the

continuous time eigenvalues. The discrete time

eigenvalue pattern associated with the structural dynamic

mode changed significantly. It was observed, however,

that the discrete time eigenvalue pattern in this case is

nearly identical to the pattern produced when the

eigenvalues from the nominal analysis method are

rediscretized using the consistent sample rate.

CONCLUDING REMARKS

Aerodynamic and aeroelastic eigenanalyses were

performed utilizing a time-domain vortex lattice

aerodynamic code, coupled with discretized structural

dynamic equations. The study of aerodynamic

eigenvalues using the vortex lattice code has led to some

basic ideas. The eigenvalues have been shown to be

artifacts of the discretization and the finite length wake.

The effects of discretization are controlled by two

independent factors. The number of elements in the

wake drives the damping, while the size of the elements

determines the range of frequencies covered by the

eigenvalues. The effect of the finite wake is to produce

discretely spaced eigenvalues, instead of a continuous

line.
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Aeroelastic analyses were performed to examine the 12

stability and modal character as a function of reduced

velocity. Insight into the modeling and physics

associated with system behavior can be gained by

examining the eigenvectors. A novel determination 13

is that under some circumstances an eigenmode of

aerodynamic origin can be the critical mode for

aeroelastic instability.
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Aero Config Airfoil Wake

No. No. of

elements

I
20

(Baseline)

2 20

4O

Normalized

element size

Normalized

airfoil length

1

No. of

elements

Normalized

element size

I 180 I

1 1 360 1 2

1/2 1 360 1/2 1

Table I. Aerodynamic Configurations

Normlized

wake length

I

Comparison

Case No.

I

II

III

Aerodynamic Configurations

Compared

1 2 3

,/ ,/

,I ¢

,/ ,/

Parametric Variation Quantity Held Constant

Size of aerodynamic Number of aerodynamic

elements in wake elements in wake

Number of aerodynamic Size of aerodynamic
elements in wake elements in wake

Size and number of Length of wake
elements in wake

Table 2. Comparison Cases for Parametric Variations

Semi-chord, (b) 2.875 inches

Distance from midchord to elastic axis,

Non-dimensionalized by semi-chord, (a)

Span, (S)

-0.1304

4 inches

Radius of Gyration,(ra) 0.41

Mass ratio, (g) 23.1

Pitch frequency, (o_a) 50.2 radians/second

Distance from aerodynamic center to elastic axis, 0.37
non-dimensionalized, (e/b)

Table 3. Structural Parameters of Typical Section
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Figure 1 Eigenvalues for baseline case

Discrete time eigenvalucs, z

8O

6O

4O

2O

Imag Part 0

-20

-4O

-60

-8O

rody,w,_¢Conr,gu,ae_ e3 J

I I I I I I I I I

-1.0 -0.9 -0.8 -0.7 -0.6 .0.5 -0.4 -0.3 -0.2 -0.1 0

Real Part

Figure 3 Case I: Influence of varying the size of the

aerodynamic elements. Continuous time eignvalues, 1
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Figure 2 Eigenvalues for baseline case
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Figure 4 Case II: Influence of varying the number of

aerodynamic elements in the wake.
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Figure 5 Case ]_: Influence of simultaneously varying

the size and number of aeredynamic elements in the wake,

maintaining a constant wake length.
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Figure 6 Typical section with pitch freedom.
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