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AERODYNAMIC CHARACTERISTICS OF AN 

ll-PERCENT-TmCK SYMMETRICAL SUPERCRITICAL AIRFOIL 

AT MACH NUMBERS BETWEEN 0.30 AND 0.85* 

By James A. Blackwell, Jr. 

Langley Research Center 

SUMMARY 

An investigation was conducted in the Langley 8-foot transomc pressure tunnel over 

a Mach number range of 0.30 to 0.85 to determine the aerodynamic characteristics of an 

ll-percer.t-thick symmetrical supercritical airfoil. The Reynolds number of the tests, 

based on the airfoil chord, varied with Mach number over a range of 3.60 x 106 to 

7.74 x 106. The geometric angle of attack varied from -0.50 to 10.50
• 

The results of the investigation indicate that the abrupt drag rise for the supercriti­

cal airfoil at zero-normal-force conditions occurs at a Mach number just above 0.82. The 

corresponding drag-rise Mach number for a conventional NACA 0012 airfoil is approxi­

mately 0.70. At zero-normal-force conditions, the level of supervelocity over the super­

critical airfoil is considerably reduced from that for the NACA 0012 airfoil. Also, the 

shock wave for the supercritical airfoil is substantially weaker than that for the NACA 

0012 airfoil. For a Mach number of 0.82 and zero normal force, the flow over the present 

ai: ~oil is supercritical; however, there is no discernible shock wave in the flow, indicating 

near-isentropic recompression. 

At moderate-normal-force conditions, the supercritical airfoil hu only a slight 

4. improvement over the conventional NACA 0012 airfoil in drag-rise Mach number. 

• INTRODUCTION 

The design of airfoil sections for helicopter rotor blades has progressed very slowly 

over the past few years. This is primarily because of the severe operating requiremer.ts 

for helicopter sections. The section must perform well at (1) high-transonic Mach num·· 

bers for low lift coefficients, (2) high subsonic speeds for moderate lift coefficients, and 

(3) low-subsonic Mach numbers for maximum lift. The sections are also restricted to 

little or nc camber as a result of pitching-moment conSiderations. 

tEft's JI .,. t. 

Ii 212 S8 1 



Presently, sections such as the NACA 4- and 5-digit series (or modifications 

thereof) are being used for helicopter blades. For advanced heHcopter systems, higher 

forward speeds with resulting higher tip speeds are required. This results in a large 

proportion of the advancing blade being immersed in transonic flow. Use of the afore­

mentioned s~ctions in these advanced helicopter systems would result in large transonic 

drag penalties. 

Considerable progress has been made in recent years in transonic airfoil aerody­

namics. In particular, marked imprO'\.ements have been found for cambered supercritical 

airfoils for application to transport aircraft (refs. 1 and 2). One of the primary results 

of these studies is the large delay in the transonic drag-rise Mach number obtained 

through proper design. 

These results have prompteti the NASA to take renewed interest in the development 

of advanced airfoils for rotor blades with special emphasis on the performance in the high­

transonic-low-lift range. To determine if the gains shown for cambered transonic air­

foils could be realized in symmetrical sections for helicopter application, wind-tunnel 

tests were made on a symmetrical "supercritical" airfoil incorporating the supercritical 

design concepts of references 1 and 2. 

The present investigation was performed in the Langley 8-foot transonic pressure 

tunnel over a Mach number range of 0.30 to 0.85. The Reynolds numbers of the tests 

varied with Mach number over a range of 3.60 x 106 to 7.74 x 106. The geometrical angle 

of attack varied from -0.50 to 10.50
. 
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SYMBOLS 

\ Cd 'c.1Z 
section drag coefficient, L 

point drag coefficient (ref. 3) 

Cm section pitching-moment coefficient, L Cpc ~(0.25 - ~) - L Cpc ~(O.25 - ~ 

2 

1.s. u.s. 

\ Cpc~ _ \ Cpc~ 
section normal-force coefficient, L L 

1.s. u.s. 
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p-p 
pressure coefficient, qoo 00 

pressure coefficient corresponding to local Mach number of 1.0 

chord of airfoil, in. (cm) 

free-stream Mach number 

local static pressure at a point on airfoil, Ib/ft2 (N/m2) 

static pressure in uncbaturbed stream, Ib/ft2 (N/m2) 

total pressure loss, Ib/ft2 (N/m2) 

jynamic pressure in undisturbed stream, Ib/ft2 (N/m2) 

airfoil-leading-edge ra:lius, in. (cm) 

Reynolds number based on airfoil chord 

airfoil thickness, in. (cm) 

ordinate along airfoil reference line measured from airfoil leading edge, 

in. (cm) 

ordinate vertical to airfoil rf)fe~ence line, in. (cm) 

slope of airfoil surface, dy /dx 

vertical distanct~ in wake profile, in. (cm) 

angle of attack of airfoil reference line, deg 

Abbreviations : 

1.s. lower surface 

u.s. upper surface 
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MODEL DESIGN 

When the flow over the airfoil exceeds a local Mach number of 1, a region of super­

sonic flow extends vertically over the airfoil (fig. 1). This supersonic region usually 

culminates in a shock wave. As the free-stream Mach number is increased, the shock 

wave for conventional helicopter sections becomes increasingly stronger with associated 

increases in drag. Ultimately, the shock wave becomes strong enough to induce the 

boundary layer to separate, resulting in the abrupt drag rise. These lncreases in drag 

severely curtail the performance of conventional sections. 

The airfoil shape that is proposed herein is intended to reduce the strength of the 

shock wave significantly and, hence, the tendency of shock-induced boundai"y-layer separa­

tion. An airfoil so designed would reauce the creeping drag rise and delay the abrupt 

drag rise well beyond the critical Mach number. 

In the present approach, the strength of the shock wave is primarily reduced by a 

careful profiling of the airfoil to reduce the level of supervelocity upstream of the shock 

wave. Physically, this may be done by requiring a large leading-edge radius and by 

requiring the airfoil surface rearward of the leading edge to be of small curvature. These 

requirements result in a high rate of curvature at the intersection of the nose radius and 

the airfoil contour. This high rate of curvature produces a large velocity peak at the 

leading edge. The "peaky" velocity distribution generates strong expansion waves which 

strike the sonic line. Through proper contouring, these expansion waves will reflect from 

the sonic line as Mach number decreaSing compreSSion waves in the vicinity of the shock. 

In figure 1 this effect is illustrated schematically for a single expansion wave originating 

near"the leading edge of the airfoil. Following this procedure, the strength of the shock 

wave can be diminished to r~ar-isentropic recompression. (See ref. 4 for a full discus­

sion of the subjJ~ct.) 

The contouring of the region aft of the airfoil crest is done such that the level of 

supervelocity generally remains constant as the shock wave passes rearward over the 

crest. This prohibits the strength of the shock wave from increasing. The physical 

requirement to produce this type of pressure distribution is a shape that progressively 

increases in slope and curvature proceeding from the airfoil crest to the trailing edge. 

It is well known that a large airfoil-leading-edge radius is favorable for generating 

maximum normal force at low subf:lonic speeds. Therefore, it appears that the shape 

required for optimizing the transonic normal-force characteristics is compatible with 

the shape required for obtaining maximum normal force at low subsonic speeds. 

An airfoil that has been designed on the basis of the aforementioned requirements is 

presented in figure 2. The slope diagram for the airfoil is presented in fi~ure 3. The 

ordinates and slopes are tabulated in table 1. 
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The shape is governed by the f'lllowing formulaJ: 

0.007 ~ J ~ 0.400 

• 

• 

(~) = 0.0550 - 0.1l2107(~ - rc -0.002124 t 
0.403 ~! ., 1.000 

(~) = ~.05482 - 0.1127955~ - 0.403/ - 0.249488~ - 0.403/·~ 

f = 0.022275 

The model chord was 24.8 inches {63.0 em} in length. 

In figure 4 the thickness distribution of the supercritical airfoil, the NACA 0011 air­

foil, and the NACA 16-011 alrioil are compared. It can be seen that the present airfoil is 

similar to the NACA 0011 airfoil on the forepart of the airfoil and similar to the NACA 

16-011 airfoil on t!:" afterpart of the airfoil. The NACA 4-digit airfoil excels primarily 

at low-subsonic Mach numberfl and at maximum normal-force coefficients; however, 

the high-transonic Mach number characteristics are very poor. The opposite trends are 

noted for the NACA l6-series airfoils. Comparing the shapes and characteristics of the 

three airfoils in figure 4, it appears that the present airfoil is an attempt to combine the 

best features of both airfoils. 

APPARATUS AND MEASUREMENTS 

Wind Tunnel 

The investigation was performed in the Langley 8-foot transonic pressure tunnel. 

~hls facility is well suited to the investigation of two-dimensional models since it has 

solid side walls and slots in the upper and lower walls. The tunnel side ,valls act as end 

• plates for the two-dimensional model, while the slots allow a development of the flow field 

in the vertical direction approaching that for free air (ref. 5). The slot opening at the 

position of the model was approximately 6 percent of the upper and lower walls. 

The model was attached rigidly to the tunnel walls and completely spanned the width 

of the tunnel. The angle of attack of the model was changed manually by rotating the model 

about pivots in the tunnel sAe Walls. The model was tested in an inverted poSition in 

order to make use of an existing angle-of-attack mount. 

dl I spTp'Z 5 i 
I 



r, . 

SS£6&ESsJ& 

Transition Strips 

Boundary-layer transition s~rips were located on both the upper and lower surfaceEi 

of the model at 0.05c unless otherwise indicated. The strips were 0.10 inch (0.25 cm) 

wide, consisting of No. 100 carborundum set in a plastic adhesive. 

Surface-Pressure Measurements 

The lift and pitching-moment forces acting on the airfoil were obtained from 

surface-pressure measurements. Surface pressures were measured with orifices located 

in a chordwise I'OW at a spanwise station of 0.28c from the center line of the tunnel. Air­

foil surface pressures were measured with the use of electronically actuated pressure­

scanning-valve units. The maximum rangt of t~le transducers in the valves was ±10 Ib/in2 

(68947 N/m2). 

Wake Measurements 

The drag forces acting on the airfoils were derived from vertical variations of the 

wake total and static pressures measured with the rake shown in figure 5. The measure­

ment station of the rake was approximately 1 chord !ength rearward of the trailing edge of 

the airfoil. The total-pressure tU~leS we:e closely spaced (see fig. 5) in the region of the 

wake associated with skin-friction boundary-layer losse6. In this area, t.bese tubes were 

flattened horizontally. Outside this : egion, the tube spacing progressively widened. The 

static-pressure tubes were distributed as shown In figure 5. The rake was attached to 

the conventional center-line sting mount of the Langley 8-foot transonic pressure tunnel. 

During the investigation, the rake was moved vertically to center the close concentration 

of tubes on th~ boundary-layer wake. 

The total pressure and static pressures were measured with the use of electroni­

cally actuated pressure scanning valves. The maximum range of the gage in the valve con­

nected to total-pressure tubes intended to measure losses in the boundary-layer wake was 

5lb/in2 (34474 N/m2); the corresponding range for measuring shock losses was 1Ib/in2, 

(6895 N/m2), and that for the static pressures was 1 Ib/in2 (6895 N/m2). 

TEST CONDITIONS 

The investigation was conducted over a Mach number range of 0.30 to 0.85. The 

Reynolds numbers of the tests varied with Mach number over a range of 3.60 x 106 to 

7.74 x 106 (fig. 6) based on the model chord. The geometric angle of attack varied from 

-0.50 to 10.50 • The total temperature was held constant at approximately 5800 R (322° K). 
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REDUCTION OF DATA AND CORRECTIONS 

Calculation of cn and cm 

The section normal-force and section pitching-moment coefficients were obtained 

by machine summation of the local pressure coefficients measured at each orifice multi­

plied by an appropriate weighting factor. This procedure was checked by hand integra­

tion and was found to be accurate within 1 percent. 

Calculation of cd 

To obtain a section drag coefficient from the total and static pressures behind the 

model, point drag coefficients for each of the total-pressure measurements have been 

computed by using the procedu:.:~ of reference 3. These point values have been summed 

by machine using appropriate weighting factors. Because of the special spacing of the 

total-pressure tubes, the errors of the results obtained by the procedure are estimated 

to be less than 1 percent. 

Corrections for Wind-Tunnel Wall Effects 

The major effect of the wind-tunnel wall on the results presented herein is a sub­

stantial u!l-flow at the poSition of the inverted model so that the real aerodynamic angle 

of attack is Significantly less than the geometric augle. The mean value of this up-flow 

at the midchord of the model, in degrees, as determined by the theory of reference 5, is 

3.00 times the section normal-force coefficient. For the present investigation, wherein 

the lift, drag, and pitching-moment characteristics have been obtained by surface-pressllre 

and wake measurements, this deviation has little effect on the validity of these results. It 

merely causes a change of the ge'lmetric angle of attack at which a given set of results 

are obtained. The angles of attack used in the results presented herein have lIot been 

corrected for this up-flow. 

The theory of reference 5 indicates that the tunnel-wall blockage effect is small. 

Rl.SULTS 

The results of this investigation have been reduced to coefficient form. Selected 

data representing these results are presented in the figures listed in the follOWing table: 
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Figure 

Variation of section drag coefficient, angle of attack, and section 

pitching-moment coefficient with section normal-force coefficient for 

various Mach numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 

Variation of section drag coefficients with Mach number fC'r zero section 

normal-force coeffict~!lt . . . . . . . . . . . . . . . . . . . . . . . . . 

Variation of drag-rise Mach number with section normal-force coefficient 

for the supercritical airfoil and the NACA 0012. airfoil ...... . 

Chordwise pressure distribution at as: 00 for Mach numbers from 

0.40 to 0.84 .............................. . 

Wake profiles at a = 00 for Mach num '!)ers from 0.70 to 0.84 . . . . . 

Oil-flow photographs at a. 00 for Mach numbers from 0.40 to 0.85 

Comparison of chordwise pressure distributions for the supercr1t1cal airfoil 

and the NACA 0012 airfoil at M r. 0.80 and as: 00 • . • . . • • • • 

Chordwise pressure distributi'lns at a liZ 5.50 for Marh numbers from 

0.40 to 0.74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

Effect of '.JOundary-layer transition on the airfoil chordwise prflssure 

distribution. M = 0.70; 6: = 5.50 •••.•••...•..•.•.• 

Chordwise pressure distributions at M = 0.40 for angles of attack from 

00 to 10.50 
••••••.••...••..••...•..•...•.••. 

DISCUSSION 

Normal-Force and Drag Characteristics 
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11 

12 

13 

14 

15 

16 

Zer(i normal force.- As bdicated in figure 8 for nonlifting conditions, the supercri­

tical airfoil experiences a shallow drag rise from a Mach number of 0.70 to 0.62. The 

Mach nUJl1ber for abrupt drag rise for the supercrit1cal airfoil is approximately 0.12 

higher than the drag-rise Mach number of approximately 0.70 for the NACA 0012 airfoil 

of reference 6. This represents P. lIugnlf.cant 17 1Jercent increase in the abrupt-drag-rise 

Mach number. 

The pheuomer .. associated vrith these drag effects are provided by the pressure dis­

tributions of figure 10. The subcritical pressure distributions lndicate the presence of a 

leading-edge velocity peak. As the Mach number is increased, the strong expansion waves 

from the leading edge reflect from the sonic line as compression waves (fig. 1) and cancel 

the expansion waves generated by the crest. 

At a Mach number of 0.82 (a s: 00), the full compressive effect resulting from the 

leading-edge expansion waves is felt near the shock wave. This may be seen from the 

p:-essure distribution results (fig. 10(b» and the oil-flow photographs (fig. 12) which 

indicate no discernible shock wave in the flow. Hence, the design goal of obtaining 
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near-18entropic recompreliiion has been obtained. At a Mach number of 0.83, a aUght 

increase in drag 10 shown in the wake surveys of figure 11, although the wave is stlll of 

insufficient strength to appear in the oU-flow photographs of figure 12. At M. 0.84, the 

shock moves rearward and increases in strength. In addition, the shock pressure rise and 

the steep pressure recovery near the traiUng edge merge (fig. 10(b», requiring the bound­

ary layer to traverse two successivl' adverse gradients, thus leading to the Significant 

increase in drag shown in figure 8. 'l':'~ shock noVi appears in the oU-flow pattern (fig. 12). 

To ind1c ... te the success of this design approach in reducing the level of superveloc1ty 

over the airfoH and, hent.. ... the strength of the shock wave, a comparison Gf the chordwise 

pressure distributions between the supercrltical airfoil and the NACA 0012 airfoil are 

presented in figure 13 for a Mach number of 0.80 and a = 00. For the example shown, 

the level of velocity is considerably reduced for the supercritical airfoll with respect to 

the NACA 0012 airfoil. Also, the shock wave for the supercritlcal airfoil is very weak 

in comparison to the strong shock wave for the NACA 0012 airfoil. 

In figure 7(a) the effects of artificial boundary-layer transition on the section drag 

are indicatett for zero normal force. As expected, there is a reduction in the drag with 

natural transit10n as a result of the ir.creased extent f)f laminar flow on the airfoll. 

Moderate normal force.- When the heUcopter is in the hover condi1tlon, the typical 

blade experiences moderate normal-force coefficients (ordp.r of cn IS 0.4 to 0.6) and Mach 

numbers in range of 0.50 to 0.65. At moderate normal-fvrce coefficients, it appeau the 

crossover point in performance between the NACA 0012 airfoil and the .,upercritical air­

foil (fig. 9) is just above a Mach number of 0.50. Therefore, in the moderate normal-force 

range, the supercritical airfoil has only 44 sUght improvement over the NACA 0012 in drag­

rise Mach number. The data for the NJlCA 0012 airfoil in figure 9 (taken from refs. 6 to 

8) is represented by a band. Small variations in the results were indicated in these ref­

erences due to the various differences in the test conditions and model conditions. 

, The oerformance of the supercritical airfoil at moderate normal forces and at low 

transonic Mach numbers was diminished as a result of the heavy emphasis placed on the 

zero-normal-f(\rce high-transonic Mach number ~Jndition. This can be seen by referring 

to figure 14. The subcriticalleauing-edge velocity peak generl1ted at zero normal force 

(fig. 10(a» increasee substantially with angle of attack (fig. 14(a». The velocity ~a.1t in 

figure 14(a) is of such magnitude that as the Mach number increases, a strong shock wave 

is generated at the leading edge and moves rearward (fig. 14(c», thus precipitating the 

drag rise. 

Improvements could probably be obtain~\1 in the drag-rise Mach number at moderate 

normal-force coefficientlf if the velocity peak were reduced. TNs could be achieved by 

slightly reducing the leading-edge radius; however, this would probp.bly result in a trade­

off with the high-transonic characteristics. 
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The eUect of natural boundary··layer transltion on the airfoil section character~t1cs 

is shown in figure 7 for moderate normal-force coefficients. For the llmltt"<l data avail­

able with natural boundary-layer tranattlon, there appears to be a reductlon in normal 

force and an increase in the positive pit!!hing moment in comparison with the data for the 

boundary layer flxed artUidally near the l~ad1ng edge. These effects can be explained by 

the dlUerencu indicated in the pressure distributions of figure 15. With natural boundar,­

layer transition, the boundary layer in the vlci:nty of the shock wave and 8t the alrfoU 

tralllng edge is much thinner (due to the increased chordwise extent of laminar flow) 

which results in a dlUerent boundary-layer shock interaction than would be obtained when 

the boundary-layer transition is flxed near the l~ading edge. In figure 15 it appears that 

for both cases a bubble forms just aft of the shock wave. The boundary-layer thlcknefls 

in this area apparently affects the size and extent of this bubble. Also, since the overlLl! 

boundary layer 1s thinner with natural transitlon, the flow is much more .ensitive to the 

8uA'face shape; hence, the velocities are increased over the lower surfQce, especially near 

the tralllng edge of the airfoil. It i& .pparent from figure 15 that wlth natural transition 

the above eUeets '1;enerally comhine to reduce the normal force and increase the positlve 

pitching moment for a given angl~ of attack. 

Maximum normal force.- In figures 7(b) and 16 the effect of angle of attack on the 

airfoil normal-ft-rce characteristics and chordwise pressure distribution, respectlvely, 

are 8hown at 8ubso.uc speeds. Th~ maximum-normal-force characteristics in the range 

of Mach I'umbers from 0.40 to 0.50 .'ppear to be considerably lower (by approximately 

0.25 in cn) in comparison with thove for an NACA 0012 airfoll (refs. 6 to 8). However, 

the data at Mach numbers of 0.30 to 0.35 indicate that the ma."timum-normal-force charac­

teristics signUicantly improve at these Mach numbers. 

No conclusion may be reached from this series of tests as ~'egard8 maximum nor­

mal force at the low subsonic Mach numbers since there 18 not l'ufficient data availal.tle. 

Pitching-Moment Characteristics 

It is desirable for an airfoil that 'f;111 be used for a helicopter rotor blade to have 

near-zero pitching moments. The pitching moments (referenced to the quarter cherd) 

8hown in figure 7(c) are generally small in magnitude; however, (or the subsonic Mach 

number8 an increase in positive pitching moment l8 j.Nl~cated as the normal force is 

increased. The aerodynamic center at subsonic MilCh numbers ia approximtdely 0.2c. 

In comparison, the 8ubso!\ic aerodynamic center of the NACA 0012 airfoll (ref. 8) is 

located at the airfoll quartel' chord. The forward location of the 8upercrlUcal airioll 

aerodynarnic center l8 prlmarUy a result of the decreased load carrled near the airfoU 

traUlng edge with respect to conventional NACA 4-dig1t alrfoU ... 
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At transonic speeds the ~'lilgnitude of the upper-surface leading-edge velocity peak 

dlmln18hes (l1g. 1.4) and, w:~h increasing Mach number, forms a shock wave that move" 

rearward on theUrfoU. Tbe resulting pressure dlstrlbution u transonic speeds moves 

the aerodynamic center re.lrW8rd to the quart~r chord, reducing the pitching moments 

to near-zero values. 

CONC LUSIONS 

A wind-tunnel invt sUgatlon has been conducted at Mach n·.mbers from 0.30 to 0.85 

on a two-dimensional ll-percent.thtck eymmetrical supercr1tlcal airfoil. Re~ults of this 

investigation have indlcated the following: 

1. At zero-normal-forr,e condItions the abrupt drag rine for the supercritical airfoll 

occurs at a Mach number Just above 0.82. The corresponding drag-rise M~cb number for 

a conventional NACA 0012 helicopter airfoP. is approximately 0.70. 

2. At zero-normal-force conditions, tht' level of superveloc1ty over the supercrlt1-

cal airfoil!s considerably reduced from that for the NACA 0012 airfoil. Also, the shock 

wave for the 'ilupercrlt1cal airfoil is subata!ltia1ly weaker than that for the NACA 0012 

airfoil. 

3. For a Mach number of 0.82 and zero normal force, the flow over the present air­

foU is supercritical; howe:;·c:-. thert'! is no dlscern~ble shoclr. wave in the flow, indicating 

near-isentropic recompreS~1(ln. 

4. At moderate-normal-force ct)nditions, the Bupercritical airfoil has only a sUg.\t 

improvement over the conventional NACA 0012 ai:ioll in drag-rise M41ch number. 

Langley Research Cel.~er, 

National Aeronautics and Space Admirdslration, 

Langley Station, H~.mpton, Va., April 24, 1~69, 

126-13-01-29-23. 
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TABLE 1.- SUPERCRITICAL AIRFOIL ORDINATES AND SLOPES 

x/c y' y/c 

0 ----- 0 

0.0020 ----- 0.009225 

.0065243 1.0000 .015751 

.0125 .6121 .020323 

.0250 .3',56 .026208 

.0375 .2800 .030242 

.050 .2250 .033373 

.075 1612 .038117 

.100 .1237 .041643 

.125 .0983 .044400 

.150 .0797 .046615 

.175 .0653 .048421 

.200 .0537 .049905 

.250 .0361 .052125 

.300 .0231 .053588 

.350 .0120 .054467 

0400 .0007 .054783 

.450 -.0106 .054571 

.500 -.0219 .053758 

.550 -.0334 .052376 

.600 - .0454 .050410 

.625 -.0517 .049198 

.650 -.0583 .047824 

.675 -.0653 .045281 

,700 -.on8 .044556 

.725 -.0810 .042635 

.750 -.0900 .040499 

.775 -.0999 .038127 

.800 -.1110 .035492 

.825 -.1235 .032564 

.850 - .1375 .029306 

.875 -.1533 .025676 

.900 -.1711 .021625 

.925 -.1914 .017099 

.950 -.2143 .012034 

.975 -.2401 .006361 

, . I 1.00(' -.2694 0 

SeNZEEI.·' 13 



Expansion 

M----

+ 

Schematic flow field 

• ~f'''' 

Oi o .' .~ • ; 

OF P' . . .. l 
'-'v.~ '_ --

Weak shock wave 

ORIGINAL PAGE I.S 
OF pOOR QUALfrYl 

---- - ---- -.",------

x/c 

Chordwise pressure distribution 

Figure L- Schematic illustration of supercritical phenomena a\ a = ~ and M = 0.83. 

14 5 M2£& 



c= ___________ -------?3> 
Figure t,- Airfoil section shape, 

oc .,' . , ... 

. , 



. 
-tOitIms rIA 

loT (:" ~'. 
J 

()f- l- .. j -. 

'l .6 
I 

J 
y 

.2 

I I I I I I I I 

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

x/c 

.3 

.2 
ORIGINAL PAGE 
OF POOR QUAJI"I"'-

.1 

I 

Y 0 

-.1 

-.2 

-.3 I I I I I I I I I I 
0 .1 .2 .3 .4 .5 .6 • 7 .8 .9 1.0 

X/C 

Figure 3. - Chora.vise distribution of slopes, 

16 .u 



.12 

.10 

.08 

t/ c .06 

. 02 

/ /'" 

~ /' 
/ 

... 

Supercritical airfoil 
NACA 0011 
NACA 16-011 

"-

" " 
" "-

"-
'-

\ . 
'\ 

\\ 

--~~~--~--~--~------~--~--~--\~ 

, ") , 

o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

x/c 

Figure 4. - Comparison of chordwise thickness distributions. 



Airflow 

18 

E II 

c::!~~ .. ~·~~· >~, 

OF PO ... ;rt Q~;\Li rt 

-r 
Static-pressure probe--

1.15 t (4.45) 

.50 
(1. 27) 

stat ie-pressure nrt>!UI·-/ 

Tubes flattened and 

I:=- 6.00 I 
I- <15.24>1 

Tunn e 1 \. ---=r--

Total-pressure probe 

Diameter~0.06(.15) 

3.00 
(7.ti2) 

24.00 
(60.96) 

~J 
FI1ure 5.- Orawing of rake used for drag measurements. All dimensions in inches (centimeters in parentheses)' 

IKa 22tlt1IAL 



x 

7 

6 
I 

R 

5 

/ 

V 
4 

/ 
~/ 

~ 
V 

V 

.4 .5 

II 2 

/ 
v 

.6 

M 

V 

./ 
V 

.7 

Figure 6.- Variation with Mach number 01 test Reynolds number. 

V 
V 

-

.8 .9 

19 



.02 

.01 
f-}fft ." -TTl-l 
. J j j 84r J r -+ i,' 

- 1.1 1111 
~ j i 1 ° tr~ I 1'1 i 

~'_0/151 I', 1 I' ~~; ~.83t: ; jilt I .~ .. ! 1
1

, t· 
or I I _y---l' I 1 I " 1!, I i 

1 I ' t-t' 

i"0j.8_4
i
i 'j 1_ j 1 i Yr·e~ I' -J! i li·f 

oL i V I ,j.81 I '. te 

(at 0 rag coefficient. 

.. ~ 
I 

. r' I'~­
I i 

1--

Figure 7,- Variation 01 'ection drag coefficient, angle of attack, and section pitching-moment coefficient with section normal-force coefficient 
for various Mach numbers. (Flagged symbols indicate transition off.) 

20 



, 

• 

8~ 

7r-l-+- -
r-

6 I--+-+-+-+--+-

3 

a,deu 2~---+--1----'-+ 

r-
, ~+--+-+---11--

f-

o .1 

O
""l~-' -
I ' 

'-, I ... 

.n •• -

I 

I 
t t 

- . 

.. t t ' t 

! 

j ; 

t t f 

+ 
I 

t, -~-t 
! i 

i i 

t t t , , I 

1 I I I 

J j j L_1 
.4 .5 .6 

(bl Angle ~ attack, 

Figure 7.- Continued. 

saus? •• 

i 
t 
I 

t I 
I 

t t 

4 

I , 

! . 

t 

1 j 

. , 
j 

f5! ; 1 

t- + j ! 

I I 

1 1 

-+- t 
I , 
I t , • I 

I , 
t + 
I 
I 

t 
I 

I , 
, 

t f 
I 

, 

~ i· 
I i 

, ! 

; t 

I 

~ _ ~ L _ ~_ -L - j 

.7 .8 .9 1.0 

ORIGINAL PAGE ~~ 
OF FOOR QuALfI 

21 



'tlf •• 

L I 1. 
I 

J I. J 
0 .1 .2 .3 .4 

en 

(b) Concluded. 

Figure 7.- Continued. 

22 mE 

.7 

ORIG~.;<,·~. r;" 
OF PC:., < 

+ I I I t-j 
-r r--rt-1 

.74 I 1 I 1 

.8 .9 

1 

'1 , 

l 
! 

," Ii'" 
_ ",J 

, 
.... , , 1 



.08 

.04 

r 1 
! , 

C!?~C'''(·~!_ r I'" ~ ~~ 

OF t-'0:]n QU!~UTY 

I 

, 
MeO.3C 

t 1 -'-i I 
~~~~~--~--+-4-~-+~--~+-~~~~~T-~-+~--~+! ~ 

I 

-t 

I 

i 
~ + 

-i1 

, ' 
~ ~-+ 1 

! ' 

I 

-t ~ 

I t 
O~.~~~--"~-+~~~~,-'--~l~--~~-r-*--r-~-~-*--~*-~ 

~~ i j 1ft + -j ! ' 
-. 04 LlJ~ _1. i _ - U.l.._.l. -1~ . .l._ L~_ i 

-.2 -.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

en 

(cl Pitching-moment coefficient. 

F iqure 7.- ::oncluded. 

~& as 23 



·020 
r 

.016 

.012 

.008 

f-

.004 

o 
.60 

I 
I 

i 

.64 .68 

Supercritical airfoil 

NACA 0012(ref.6) 

I 

I 

/ J 
II II / , 

v J L , 
J v/ - .,. 

-
I 

.12 .16 .80 .84 
M 

Figure 8. - Variatior al <echon dra~ coefficipnts "ith Mach numbN for zero section normal-force coefficient. 

. , 

J--.J 
.88 

00 
~n ~ 

-~ ''1 

, 

\ .. 



, 1.0 

~ 

.8 
I'\, 

~ 

.6 

f---

.4 r-

.2 

o 
.4 

~ / , 
~ 

-............ 

~ 
~ 

, 

.5 

S2DLtcIMIV 

.--- --

.-~ 
NACA 0012(refs.6-B~ 

~. 

~ ~ S~percritical a 

" 
~ "'( ,.-

irfoil 

~ "" ~ ~~ 
'\ 

"-, ~ '" " .6 .1 .8 .9 
M 

Figure 9. - Variation of drag- ri~e Mach numbfr with seclion normal-force coefficient for the supercritiC<1i airfoil and the f'tACA 0012 airfoil. 

FE 

ORIGINAL PAGE IS 
OF I'DOR QUALITY 

25 



26 

tUd. 
C!R?~,-'· " .. > ~ -&~~ 

OF P(.i.." i...: ~,.c-,. 'I 

o M=O.40 I _ -+-1-1-- f---Ll I I ~ " 

I i I Il J.\ 
.21--, [ I [" 
f--i-+-+-_I. I , I--l-l-+: 

-.6~-t-+-+- +-_+-+-+-+-+-+i-+i-+
I
-+- j " '1= 

_ • 4 Ii Oi:l IF. _-+--+--'-. I 
'1oI1"--1~ - , 

, 

1 i'--, 

T 1---iJ--...!:t---c 
+-+-+-+-+-+ 

"t 

i I 'q I 

~. 

!:\ 
I--+-+--+--+---+-+-t--+--r-

I -+--~--+-+---- f--
i I 

I i I 
+-"-1 -+I--!-- --t--+--+--+--+--+--+--+--+---i 

-+--+-+- t--T--. !--e-'~~f--1I--1I--1I--1--1--t-1 

~~~-r~-+-~~~~ 
=t.-'I/--l' I I 

+--+-+-+-+--TI--r-f--+ 1 I ~I ,,~-~r-

&-·~f----i~·-t~I-+I-+-+-+I-+-+--+--t--+--+-'-PI~\-+-~i 

x/c 

(a) M = 0.40 to M = 0.8!l. 

Figure 10.- Chor~i~e pre~sure di~tributions at a = (JO for Mach numbers from 0.40 to 0.84. 

C$J7777un' ED 



cur" au! lMa 

_Ie 

(bl M" 0.82 to M = 0.84. 

Figure 10.- Concluded. 

7. 4 !i dAll ) 27 



28 

-.28 

-.24 

-.20 

f--

- .16 

-.12 

-.08 

-.04 

o 
M=O.84 

t----

--

o 
M=0.83 

1- ~ 

o 
M=0.82 
I I 

o 
M=0.80 
--. 

M=0.70 
o .1 

I.. & SEa 

r--

.-',---

~ -- -
I 

I' ~ 

~ 

11 

I~ 
f ~ ~ 

1£ A I ~ 
.Lmi: IA ~ fH:>.. ~- N.-

'~ 

II 

~+l* 
,~ 

I ii IP ~ 
I 

I ..N\'f, 

.rn 

.2 

~I I ~ ). 
~ Ii'> 

I~ 

I 
j 

I~ 

J~ rh 
9 ~ ~ 

[ d ~ 
~ ~ 

£'( 
9 1\ 
£ ~ \ tn. 

'( 

~ ( 

X 16 

.r? ~ 
.3 .4 .5 

x/c 

+ t-

l----1 

--

.6 .7 

Fig'Jre 11.- Wake profiles at a = ()O for Mach numbers from 0.70 to 0.84. 

ceu •••• Itt 



~~ 
1"dC1 
8~ 
~~ 
§I"d 
iP-;J> 
t"'G"l 
-(%j 

~-

t-:) 

<C 

, . . . . . . 

'~"'." "lr., • - , . ". . , . 

I, , 

\ . ." . 

. . 

M=0.4-0 M=0.60 

M=0.79 M=0.80 

M=0.83 M=0.84-

Figure 12, ' Oli -tlow photoyraphs al a = (jJ tor Mach numbers trom 0.40 to 0.85. 

.. 

M=0.70 

M=0.B2 

M=0.85 

L -69-1361 



~ -1.0 

-.8 
!----o- ~ 

.r:r-L.---
V 

/ 
~ 

-.6 / ~ 

~ 
P'7~ ) 

~ ,\ 

-.4 I ~7 "\ ~ 

7J 
'f 

C.p - .2 
~ 

o 

II· 
.2 

.4 

. 6
0 • 1 .2 .3 .4 

'\ 
1\ 
\ 
\ 

""\lI--. 1 

.5 

x/c 

.~ 

\ 

.6 

o Supercritical ai rfoil 
o NACA 0012(ref.8) 

Cp,sonic 

~ ~ I 

~tl 

'" ~b 

" t'u. \~ 
I 

~ 
........... ~ 

I, 

~ tb 
~ 

• 7 .8 .9 1.0 

Figure 13.- Comparison 01 chorl~ise pressure distributions ror the supercritical airfoil and the NACA 0012 airroil cit M = 0.80 and a = 00. 

GC) 
." >} 

-Un 
C.

' .• 
.. ' 
c; 
;~,,: '"c • 
~, . 
c.. 
;l .. 

t:; I' 

:<.~ 



-2.6 

-2.4 

-2.2 

-2.0 

-1.8 

-1.6 

-1.4 

-1.2 

-1.0 

-.6 

-.4 

-.2 

o 

.2 

.4 

.6 

.8 

1.0 
o 

~ 

....... ,. .. 

Ii 
1,\ 
\ 
'I 

~ 
~In 

'\ 
"-.. 

~ 

~ 
, ..-Itr 

kf 
1/ 

.1 .2 .3 

'-1: ~ 

,......-! Ir--' 

.4 

1112£1£' 

~I 

f--. 

h 

tJ--I 

.5 

x/c 

0 
[J 

p-...., 
h 

i 
.6 

i 

(a) M = 0.40. 

OF PC ~.: 

U-Upper !lurface 
Lower surface 

i 
I 

.......... 

""-
~ 

.~ 
~ 

\: }, 
~ 

-.;; 

--+--

.7 .8 .9 1.0 

Figure 14.- Chordwise pressure distributions at a = 5.50 for Mach numbers from 0.40 to 0.74. 

[ 2 22 & Jrl 

• t:'.~ 

.~ .~ 

,_ .. ·:._.i i'Y 

31 



'SEd 

-2.6 -

-2.2 

-1.8 

-1.4 

-1.2 

-1.0 

- • 6 It---i- I I 

-.2W-+-t+Mla-l~4~...., I I 

.2 

.8r.-Mil I 

(b) M = 0.60. 

F igu re 14.' Conti n ued. 

32 17 7 7 

r· .... 
.... ; ~ . 

.. . . , 
, 

.... 



" •• 2SllS 

c-

, 
-2.0 

~ffffFt]--,- E ~:~:; ::;:::: -~ 
-1.8 If--~~~f'·· , r I-F .,-J.L I :=1. 
-1.6 -ti i++-i--r-- ------r-- -II 

1- - r---r- _. .. -- -- f----- r--- -- - -- -+---

-1 . 4 --f--~. - . -- ---- -r---+_ 
-1-- t-- ---1--

-1.2 -f----+-4--~+-~~_+~~-+-4_~_+-~--+_4_~_+-.~~ 

---it--f--t--+-- - -....,f----t--cf---+--+-----t-t---+ --

I 

~- --t-- ----i

I
------4--..-+-- ;----, -----j--t--+---+--+-----j--t--+-+---1 

- 1. 0 .. -l---+---+--+--+----1-~~:~:=:- .... --+t--.~~:=::~-:-_+-t__+_...., 
I '\ 

-.B~~~--r-t_i~~~~--L-J~r_t_~_t-_t--r_t_i 

1\ 9p,sonic 
It--+--+---t- --i--- -+-1-'1\--+----.--,- +--+-e--+-+ --+--+---+_+--

C p -. 6 tt---+_~-+--t -t---+---t-Tt-\ 

--

I 
----

--

- • 411---+-+ -f--+---+-

.9 1.0 

Ie) M = 0.70. 

Figure 14.- Continued. 

SU Lz:... 33 

.-~ 



-1.4 

-, • <: 

-1.0 

-.8 

-.6 

-.2 

o 

.2 

.4 

.6 

34 

-f. 
ls:>-<) h.u 
t-~ 

c'-. 

-l 
.~ 

; 

I 

1"---< 

r~ 
1"'-

Id 
--t--

~ 

r! 
r-- -+- I--

_1 I I 

L- o-r---

tr± 
I 

--- i-

.1 .2 .3 

0 Upper 
0 Lower 

\ 
1 
\ 

1\ 
'1 

.:J Cp,sonic 

\ 

~ 
1'\ 

C'--
.-1lr---' 

h---" 

--- t--- --

- ~ +---- --r--

JI 
- --r-

.4 .5 

xl c 

(d) M = 0.74. 

.6 .7 

Figure 14.- Concluded. 

L!2IAES 

surface r---surface 
-- ~ 

i 

r- --

r--r--

-~- r--
I 

fi- r--

r--- t-- r-

j 
-l-r--

~ 
----., 

t'::::, 
~-~- r--

~ t, 

I ~\ I r--r-- IV" ~I 

1----

~ 
i 

-- r-- ---
I 

-i -

.8 .9 1.0 



-2.0 

-1.8 
f 

-1.6 

-1.4 

-1.2 

-1.0 

-.8 

-.4 

-.2 

o 

.2 

.4 

.6 

,It 

Figure 15.-

r:j 1,,-, 

I~ ~ ft3:. .. 

I"---~ 

\ 
1 

-

i. 

~ 
'\ ~ 
(K\ 
\ ~~ 
\ 1\ 
\~ 

....!If :.,..; !t::d ~ 

rllEP ~ 

r1 W 
j!~ 

J 

T 

.1 .2 .3 .4 

0 Upper surface 
0 Lower surface 

t-~-

Cp,sonic 

':'"--i~ -., 
~~ 

~ 

11 .-/ ..l W---' ~ L,. 

.5 

x/c 
.6 .7 

--~ 

~ 
."'I ~ 

~ ~ tf 

~ ~\ 
'l~ 

11 

-- t----

I 

_L 
.8 .9 

I .. 
r--

--

~ 

, 

~~ 
t---

t--

-- -

1.0 

iA boundary-laYH transition on the airfoil chonMise pressure distribution. M = 0.70; a = 5.50. (Plain symbols indicate 
~rtificial transition on and flagged symbols indicate natural transltion.l 

35 



CCIt.lSd! 22 

0",,..,·' .. 
P. . 

OF PL. '. 

-.6 I • --;- -, : ~ - --- -- - -

j ,j I, ' i l' I (, Upper lur,fac. 
J i ! i il f' Lo •• r lurf.ce 

1 rT1 I I I I I 

"'"",,,--'- ~ttt-}, t~t+JJ,' 
[I'i t t ~" 

-.4 

.2 

-.8 

-.6 

- • 6 

-.4 

j 
--+- --

I 

+----+ r I ; i i I -i i i , j 

1 
I 

I j I i i - j 
I I 

.4
0 

.. , , , 1 , 
.1 .2 .3 .4 .5 ,6 .7 .8 ,q 1.0 

x; c 

la) a = rfJ to a = 'fJ. 

Fioure 16.- Chorltliise pressure distributions at M:: 0.40 for anglps 0/ attack from rfJ \0 10.50. 

36 



7 bilLiE" 

-1.8 Tn ! 10 u-~Ptr lurfacIl-

-1.6 

j I I i 
[) low.r lurf.c. 1 

, !: i I 

t I J j 
~ I lj 

-1.4 -f f I 
1 I t 

1 
I; t j 

-1.2 

~ I t 
i , , 

I 

1 j I ! , 

-1.0 t I " 

1 

, f r I 1 
I 

-.8 t ' J r 
t i t 

1-\11 ' j 1 

; , 
! I I 

, 

Cp - .6 -- ; V-I! j , I , 

I \ lfN! t , j I' j , 

- .4 i - t '. t--¢; 1'-1-
I t 

, J • 1 j , i 
-.2 

- ! t_+ ~ 
1 

0 

I I • 

! 1 

, • ! 

_1 -\ ~ I 1 j L-
.2 .4 .5 .6 .7 .8 .9 1.0 

./ c 

Figure 16.' Continued. 

I 

em I a 3%* 37 



- .. 

-2.6 

-2.4 

- 2.2 

-2.0 

-1.4 

-1.2 

-1.0 

- .6 

-.4 

- .2 

.2 

.4 

38 

- • 

+ -t 

.--<1"'--' 
I ,x", 

-t pf . , i 

f' , 
[~; ~ 

.1 .2 

SSEa 22 

+ 

.3 .4 

i- - -4 - +-

i 
~~ 

.5 
_/ c 

Oti~C ~~.: ~. },. 

OF PCG(l Qu;.\:...:TY 

-+ 

.6 

Upper lurfaci 
:J lo •• r aurf.e. 

t- -+ 

l. 

! 

j-

I 

! 

j 

.7 

j 
: i 

~ ~~-t 

! 

~ t ' 

t~-l 

1 

--i 
ttl t I : I 
t--- -----+- ~ -- 1 
I I : I 

-t 1~~+1---< 
, I j I i 
I-! I t 1 
, J 1 I' 

I i 
~. . t-· 

-1 

-~ 

j 
1-

4~ 

.8 .9 1.0 

Figure 16~· Continued. 

.. , 222& 



IlElEL 

-2.4 

-2.2 't I 

Upper • 
II lo.. urfaci 

-. . r,lurflel 

-2.0

1 

~ 
-'.8 -i 

t • 

-1.6 • • 

-1.4 -~\ + 

-L' iN: 
-1.0; .• ,\t t ! t-. 

• 1 · I 

• 'i/o; 

"-

• i 

~ . 
• " t 

o 

· . 

I t 

j . .Jtr-~'t-
~,.,.....- . 

I ·)f ' 

. y: :: 
.e~r 

1.0, I 

1. 2 - i 

o .1 .2 .3 

r.. 

.4 .5 
xl < 

(dl a " 8,5°. 

+. I 

.6 

Figure 16 ,- Continued. 

w .. 

-5 

-, 
o 

j 

.1 

.\ 
"'t, , 

• 1 • 2 .3 
./ c 

.8 .9 1.0 

39 



40 

CCit ... U 

CR.~· 
.. 

OF PC:'i~ ('~J"_:(Y 
-3.2 

-3.0 

-2.8 

-2.6 

-2.4 

-2.2 

-2.0 

T- T 

--t-

-- t 

t 
t 

I ' 

1 
~ -~--t- t· 

: ; i 
+--1"- -----J....- ___ -;--

~---~--------+---I-----+ 

+-

I 
-+--

, .. 
! 

i -( 

o Upper surfacei 
o Lower surf.ell 

I 

1 

- ~ 

., 

t· 

I i 

r-l 
'1 

.~ 

4-
i 
t 

--t--- +---+'~T -~ r- --t 

-1.6[' + I -~+ + \ .,t-; t- +-+'i'-r--+-+--~ -- .t-t -,--t.' -,-- t··t + L -!--t -r--+--t--I t-
",,' _.+', .. t' +-+ i.! i +! i I ; I : ! I 

~ --t--+--~-t'-T- --t--r--+---~-'-1 -t 

ti 
I i I: ' i ' I I I i I ! -', -r" -j- -j ~., t I I t ~+-""'T --r-,- ~ 

-1.2 ",. I ~l-~-~ ~~ _~. -l-__ J -1-1 I 
, : Ii! I i L, .. , '!'! i ~ 

-j~-t·- t:-..L-·;·· +- j ! t ; T 1 

-1.0 J I I" +- ~ I --J..-', i 

['f t ~_ :. +.L~.-;_:_.l_=-_,_~~+-rl '1 
, : I I ~ I! I I 

C~ -.8 .i-+-tTl--r~+~=rj~:J~L~-~~1~ 
i I : : ; I '\1 Iii I " 

- .6 -+--+ + ' :"--J.- -t....."....,'N i I I .,-+ 
I : i : I I : I I I 

-t--:- -t--- -+- . -' r- -+- --t- I -+ -T +-; ,- -+--

- .4 ,-t-l -1 -+- ~ 1: 4~t---+-t-r- .L--+._ 
t ! I I I I I ;~, l- I ! 

i • t -~ T - '; -',: ~ , T : • :1 
- • 2 -.,..t---T--+---i~--"""'" ~ i t·:----··~1k.A··-::, ---r~~i.J. l 

~-+ -t '~'-~~-~N 
o " ,~ ",,' 

·i--+,-~.·'I: :-.,.-"::,-~'::' t 
I I :, ! i ' -+, ' -+ .. .; -- ---+-+--+- ··---;-·-"'--+---+--!-1 

I j ., " . i:! 
: . ~. j -+ .+ ...... --+. -' .. r 

.2 

! i ,IV i I I' i : : , ' 

.4 -;--tt!'t-+-:--;i; -t ,-~+--; -~--+-""--j 

-~ I +~ j ~--i i r-~-----

.6 l ~ i • tl';--;~-~ ~ . t- ~ nt. • 

.8 n L t ; 1 I +=1 jf t ; r T t r-l:t ~ .~ 
1. 0 t I _fI=+l -! rrl LJ-~~~~l-LT--' 

~ I' I I I"· I r -t + . ~ 1 ~ ···t 1 i ! - 1 i +, ttl t-1 
1. 20 I .1_1 .2 -L-j-.i .5' J j.~ 1. .8-:9--L..1~0 

xl c 
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Figure 16.- Concluded. 
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