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PREFACE 

The planetary or atmospheric boundary layer is that region of the atmospneric surface 
layer which is directly affected by the friction between the ground and the 
atmosphere. Since the atmospheric air is a real fluid, the velocity gradients transmit 
the surface shear from the ground to higher elevations, up to a certain height h called 
the thickness of the atmospheric boundary layer, above which ground effects are no 
longer important. This thickness h varies with local terrain conditions and is typically 
of the order of 100 to 1000 m. It is many times smaller than typical horizontal 
length scales of the atmosphere, and we can consider the flow in the surface layer to 
be of boundary-layer nature, i.e., vertical velocities are small everywhere as compared 
with velocities parallel to the ground. 

Under these conditions the air flow of the planetary boundary layer becomes 
uncoupled from the air flow aloft, i.e., the planetary boundary layer is affected by the 
outer atmosphere but not vice versa. Strictly speaking, this is of course not true 
because the atmospheric motions are strongly affected by the ground and in particular 
by orographic terrain features of large magnitude. Locally, however, and over a terrain 
that at most exhibits small-scale configuration changes, the planetary boundary layer 
can be considered as shaped by the boundary conditions impressed by the 
noninteracting outer atmosphere and by the lower boundary conditions set by the 
terrain characteristics. 

In the planetary boundary layer, air motions are induced by the pressure gradients 
imposed by large-scale atmospheric pressure fields and by the diurnal heating cycle set 
up by solar radiation. The resulting temperature and velocity fields represent the 
natural conditions of the atmosphere in which most human activities take place. 
Man-made modifications of the environment affect and are affected by the planetary 
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boundary layer, and in some areas these interactions have become strong enough to 
make it desirable that they be understood and predicted Because of recent 
developments in techniques for constructing high-rise buildings, the structural engineer 
should know the maximum wind conditions with some accuracy Agricultural 
meteorologists wish to make better predictions for erosion protection of soils, or of 
evaporation from lakes and irrigated surfaces Urban authorities would like to have 
available techniques by which to set standards for air pollution or determine which 
source of pollution must be eliminated before air quality has deteriorated to an 
unacceptable level To solve these problems, and many more of a similar type, we need 
to calculate wind and temperature distributions in the planetary boundary layer, or at 
least in its lowest part 

In the last few decades, many meteorologists, physicists, and engineers have 
contributed to such an extent to our understanding of the planetary boundary layer, 
and in particular of its lowest part, that a reasonably complete physical picture of the 
flow processes in it is available One of the purposes of this report is to summarize 
rather completely what is known about mean flow conditions in the planetary 
boundary layer The discussion goes considerably beyond the well-known presentation 
of Lumley and Panofsky (1964) and Priestley (1959) m the coverage of mean velocity 
and temperature distributions, whereas the subject of turbulence has only been 
mentioned when necessary to obtain closures to the equations of motion and energy. 

The subject has been developed in four chapters In Chap 1 the two-layer model for 
the planetary boundary m neutral conditions is developed A consistent formulation 
for mean velocity distributions in both layers is given which yields the logarithmic law 
near the ground This law is discussed in some detail because it is fundamental not 
only for micrometeorological situations but also for modeling of the atmosphere in 
wind tunnels The chapter contains a discussion of canopy flows and ends with some 
considerations on modehng 

Chapter 2 covers the stratified boundary layer near the ground Stability and its 
effect on the turbulence structure are discussed, and formulations for mean 
temperature and velocity distributions are reviewed on the basis of the 
Monin—Obukhov similarity theory The structure of free-convection layers is treated 
in Chap 3, from which it becomes clear that in an unstably stratified boundary layer 
the Ekman-type planetary boundary-layer models are not useful Finally, in Chap 4, 
disturbed boundary layers are discussed The two problems considered are the 
two-dimensional boundary layer developing downstream of a crosswind discontinuity 
in roughness and the flow downwind of a shelterbelt 

The purpose of this report goes beyond giving a state-of-the-art review of what is 
known about the planetary boundary layer It also contains a series of suggestions for 
future research to extend the limits of our knowledge, with particular emphasis on 
laboratory experiments For many years I have worked on aerodynamic modeling of 
the lower part of the atmospheric boundary layer in a wind tunnel, and I feel that its 
possibilities as a basic tool for research m fundamental problems of the lower 
atmosphere are far from exhausted Some of the areas which mvite wind-tunnel studies 
are outlined bnefly at the end of each chapter 
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THE NEUTRALLY STRATIFIED 

BOUNDARY LAYER 

OVER UNIFORM TERRAIN 

INTRODUCTION 

The reference case for all investigations of the structure of the atmospheric boundary 
layer is the neutrally stratified wind over uniform terrain. The effect of temperature 
on the wind profile, or the change in profile due to nonuniform terrain, is measured in 
terms of the deviation that is caused by the actual profile from this reference 
condition. It is therefore appropriate to devote Chap. 1 to a discussion of this case. 

It has recently been recognized, in particular by Blackadar and Tennekes (1968) and 
Csanady (1967), that the planetary boundary layer consists of two layers, each of 
which is governed by a different set of flow parameters. This flow structure is quite 
similar to that in the turbulent boundary layer along a flat plate. The lower layer is 
very closely analogous to that found in the aerodynamic boundary layer, in both cases 
resulting in a profile shape that is logarithmic. This analogy is essential for representing 
the boundary layer of the atmosphere by the boundary layer along a flat plate in a 
wind tunnel, and a demonstration of the analogy yields a post facto vahdation of 
wind-tunnel modeling of mean velocity profiles for purposes of determining wind 
loads on structures and similar problems. 

A difference between the two situations exists in the outer part of the boundary 
layer. No direct analogy exists because the planetary boundary layer is driven by both 
Coriolis and pressure forces. The balance of these forces provides a means of sustaining 
a motion without changing the momentum of the fluid, i.e., there can exist a 
constant-thickness turbulent planetary boundary layer with a velocity distribution that 
depends on the vertical coordinate only. Then a very simple asymptotic equation for 

1 



2 NEUTRALLY STRATIFIED BOUNDARY LAYER OVER UNIFORM TERRAIN 

the shear-stress distribution in the outer part of the boundary layer can be derived, as 
has recently been discovered by Swinbank (1969), which can be used to obtain the 
asymptotic form of the velocity distribution near the outer edge of the planetary 
boundary layer. With this equation we can construct a self-consistent and 
dimensionally homogeneous set of parameters describing the profiles, by means of a 
few experiments, which have been reported in the literature. The methods of obtaining 
the asymptotic profiles are outlined in the first half of this chapter. 

The remainder of this chapter covers special forms of the logarithmic law for 
different surfaces, with some consideration of flow within very large roughness 
elements, i.e., canopy flow. Discussed last is modeling of the atmospheric boundary 
layer in a wind tunnel. 

THE EQUATIONS 

OF MOTION 

Momentum Equations for Turbulence Flow 

Throughout this chapter a right-hand coordinate system will be used. This coordi-
nate system is placed on the surface of the earth in such a manner that the z-axis is 
perpendicular to the gravitational equipotentials, pointing upw^d, and x- and y-axes 
are in a tangential plane to the earth surface, as shown in Fig. 1.1. In such a coordinate 
system, the rotation of the earth gives rise to a centrifugal acceleration, which because 
of the large radius of the earth can be neglected, and to a Coriolis acceleration, aj. 

ac=2c jk 'xv (1.1) 

where v is the velocity vector at the location considered, co is the rotation of the 
earth = 27r/24hr = (7.29)(10~') sec"', and k' is a unit vector in the direction of the 
axis of rotation. Thus the Coriolis acceleration is perpendicular both to the axis of 
rotation and to the plane of the velocity vector, v. 

In the contemplated situation of the planetary boundary layer, the vertical 
velocities are everywhere small and only that portion of the vector cok' contributes to 
the Coriolis acceleration which is perpendicular to the x—y plane, i.e., in the z 
direction, and whose magnitude is co sin X, where X is the geographic latitude. The 
Coriolis acceleration then becomes 

2cok'X V * 2a; sin Xk X V (1.2) 

where k is the unit vector in the z direction. It is customary to introduce the Coriolis 
parameter f defined to 

f = 2co sin X (1.3) 
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Fig. 1.1 Orientation of a local coordinate system with respect to the rotating earth. 

which will be used for expressing the effect of the Coriolis acceleration. 
With the Coriolis acceleration the equation of motion for a viscous fluid becomes, 

in vector notation. 

A 1 

^ + ( v V ) v + f k x v = — V p - vV''' V (1.4) 

and the equation of continuity is 

V v = 0 (1.5) 

In these equations, incompressibiUty of the air has been assumed. The justification for 
this approximation will be given in Chap. 2. 

Since the flow is turbulent, all quantities appearing in Eqs. 1.4 and 1.5 will be 
separated into a time-average part, denoted by an overbar, and a fluctuating part, 
defined by the operation 

n4/;udt 

u = u -̂  u 

(1.6) 

(1.7) 
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Therefore the time average of u' is equal to zero. During the averaging process the 
averaging time T is to some extent arbitrary. Supposedly the time T is short compared 
to the time scale of the changes in boundary conditions for the planetary boundary 
layer but long compared to the decay time of turbulent fluctuations that are generated 
by the interaction of the turbulent shearing stress with the mean velocity gradient. 
These time scales will be defined more precisely in the following section of this 
chapter; here it suffices to point out the ambiguity in defining time averages. 

By introducing fluctuating and mean quantities into the equations of motion and 
continuity and then averaging, we obtain the equations for the mean motion: 

| - - + ( y v ) v = - - V p + J 'V^v-(v ' •V)v'-fl{X V (1.8) 

V - v ' = 0 (1.9) 

Subtracting these equations from Eqs. 1.4 and 1.5 gives two equations for the 
turbulent motion: 

^ + (v -V )v + (v • V)v' = - - V p ' + pV^y' - fkx v' (1.10) 

and 

V-v ' = 0 (1.11) 

These equations have to satisfy the boundary conditions that are imposed on the 
planetary boundary layer. Above the surface layer the motions are due to synoptic 
pressure changes that set the outer boundary conditions on the surface layer. An often 
used set of boundary conditions depicting this situation is obtained from the 
requirement that at z = h the velocity u be equal to a reference velocity, Ujgf. For 
example, the geostrophic velocity Uj.gf = G, to be defined below, or the condition 
Ujgf = ujj, where Ujj is the velocity measured at some height h. In contrast to the 
geostrophic wind, the velocity uj, cannot be predicted from synoptic information; on 
the other hand, it is a real quantity that need not be inferred from such relatively 
crude information as maps of isobars. 

The lower boundary conditions for the equations are given by the condition of the 
ground. The flow in the atmospheric surface layer will reflect topographic and surface 
influences of the terrain from a large area over which it developed. As shall be 
discussed in more detail in Chap. 4, a layer of thickness h is affected by an upstream 
area of at least 10 h in longitudinal extent, and the vertical structure of the wind field 
above a point has integrated into it all terrain features of the approach area. A 
description of the local surface layer above a highly nonuniform terrain is not 
generally feasible; and most of the significant results have been obtained for flow over 
uniform terrain. Fortunately such a restriction is not too severe as long as uniformity 
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exists on the average over a large area because localized strong gradients in the velocity 
profiles are rapidly flattened by local mixing of the fluid. If the elements causing the 
localized gradients are randomly spaced in a uniform pattern, then it can be expected 
that at some distance above the surface the wind structure is homogenized and can be 
treated as if the terrain were uniform. 

Dimensionless Parameters of the Turbulent Motion 

A discussion of the equations of mean motion in nondimensional form is useful for 
finding simplifications that facilitate a study of the velocity distributions in the 
planetary boundary layer. For this purpose let Tj^ be a reference time, Lĵ  a reference 
length, VR a reference velocity, and PR a reference pressure. If nondimensional 
quantities are denoted by a subscript 1, then we obtain Eqs. 1.8 and 1.9 in the form 

V v i = 0 (1.12) 

and 

| R f .Vi P^^ ^ ^ 
TR 9ti LR PLR L ^ 

- ^ ( v ; - V ) v ' , - f V R k X V i (1.13) 

Dividing by VR/LR and dropping subscripts yield 

The nondimensional numbers appearing in each of the terms are indicative of the 
relative magnitudes of the terms as compared to convective acceleration terms. Large 
numbers imply that the corresponding terms are large when compared with the inertia 
terms. 

A small dimensionless time, L R / V R T R , implies that the flow behaves as if it were 
steady. In the fluid layer near the ground, whose characteristic vertical scale can be set 
equal to its thickness h, the condition of steadiness is satisfied if the boundary 
conditions change so gradually that a characteristic time reflecting this change, such as 
TR = G/(dG/dt), is large compared with characteristic times reflecting the boundary-
layer adjuslfment, such as h/u* (very roughly), where u# is the shear velocity defined 
by 

(1.15) u* = yf 
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with To the shear stress at the ground level and p the fluid density. The latter time 
scale is of the order of 1 hr, so that a pressure pattern that remains constant for a few 
hours can be expected to create a steady flow field. 

The pressure or Euler number, PR/PVR, usually is of the order 1 or larger because 
the pressure-force term is the one that drives the velocity field. The parameter 
determining the order of the viscous term is the Reynolds number 

Re = ̂  (1.16) 

which in the planetary boundary layer is very large. Thus only when the 
nondimensional inertia terms are very small compared to V^v can the viscous term 
contribute to the momentum balance. This is the case near sohd boundaries where the 
no-sUp condition leads to very small velocities and very large velocity gradients. If the 
flow were laminar, then the viscous term alone would support the momentum flux to 
the wall in a thin, viscous boundary layer. In the presence of turbulence, the turbulent 
inertia term has a component that acts in the same manner as the viscous term except 
that it is much larger near the wall. The result is that, for the same shear stress at the 
wall, the layer which is affected by the wall shearing stress is thicker in turbulent flow. 

The similarity in the action of the turbulent inertia term and the viscous term leads 
to the inference that the Reynolds number also governs the turbulent inertia term. 
However, the effect of the Reynolds number here is not as clear as for viscous action. 
As will be shown in a later chapter, we can often neglect the effect of Reynolds 
number changes if the Reynolds number is large enough. The Reynolds number must 
exceed the critical Reynolds number at which transition from laminar to turbulent 
flow takes place. But the magnitude of the Reynolds number above which a change in 
the Reynolds number no longer affects the flow pattern is not well established and 
depends on the geometry of the situation. 

The last nondimensional number in Eq. 1.14 is the Rossby number 

R o = ^ (1.17) 
VR 

which determines the relative magnitude of the Coriolis acceleration as compared to 
the convective acceleration. A large Rossby number makes the convective acceleration 
terms negligible as compared with the other terms, a situation that will be considered 
in this chapter. The presence of the Coriolis force gives rise to a force that can balance 
the shear terms and the pressure forces without requiring a momentum change of the 
fluid. Thus a possible product, under ideal conditions, is a constant-thickness layer, in 
which the mean velocity depends on z only. The homogeneity in planes z = constant 
requires not only constancy of v but also of the turbulent mean quantities, and we 
find that 

, 3w 
( v ' - V ) v ' = v ' ^ (1.18) 
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With this expression the equations of motion for the mean flow become, in 
component form: 

o = - i | p + - f f , p - 7 7 ) + vf (1.19) 
p ox az \ dz I ^ ' 

0 = - l | P + f ( . | l - A 7 ) - u f (1.20) 
pay az v 9z / ^ ' 

1 ap a 
0 = - - T ^ - f ( w " ) (1.21) 

p az az ^ ' 

in which the equation of continuity has been used to write 

(v' • V)v' = (V • v')v' - -^ (w'v') (1.22) 

Equation 1.21 can be integrated directly to yield 

p = p ( x , y ) - ^ (1.23) 

and since w ^ is a function of z only, the gradient of p in the x—y plane is a function 
of X and y only, i.e., it is the same at the height h as it is at the ground. It is therefore 
impressed by the outer boundary conditions. 

The Energy Equation for the Planetary Boundary Layer 

To Eqs. 1.19,1.20, and 1.23 we can add the energy equation, which is obtained by 
dot multiplying Eq. 1.4 by v' and averaging with respect to time. From Eq. 1.10, we 
obtain the energy balance of the component velocities: 

v' • (v • V)v' = - V - [v'(v' • v')] = - ^ w ' ( v ' • v') (1.24a) 

1 au ^ , ^ ^ au 1 (ap a —r-n. 
TT-T— + UW r - = U ^ - - ^ W U 
2 at az p ax az 

\'m-w*mm\^^ <-> 
lav^ ,-r-/av 1 ,ap a—T-T̂ -
- ^r—+ V W r - = V - r ^ - ^ W V ' 
2 at az p ay az 

>(^)-4(i^/*fJ*(il-^ "-• 
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iaw'=̂  1 ,ap' a — ^ 1 / a v ^ \ 
2-ar = -p^-ar-a-i^ ^r[-^^) 

-m^^K^ (1.24d) 

Note that the derivatives with respect to x and y of the turbulent velocities 
instantaneously can well be different from zero, so that a variance of these derivatives 
exists. 

Of considerable interest is the role played by the Coriolis force. It acts as a 
redistributing agent, provided that u'v' exists, removing energy from the v component 
and moving it into the u component of the turbulent energy. However, for a 
constant-thickness layer with constant velocities in planes z = constant, the turbulence 
components are uncorrelated in such planes, and consequently u'v' must be zero. 

Since the mean flow is steady, it follows that the turbulence must be steady also. 
Summing the energy of all components yields the total energy balance. If we rearrange 
the viscous term and introduce tensor notation, the energy equation becomes 

au^-r-7av_ 1 a r -T-T-—n .„^ , , ' ( ^^ i . ^^ i \ , nT^\ 
uw - + VW — - - - - [ w ( p +pq'] + »'ai:"j(^a^+a^j-e (i-25) 

az az p dz 

in which 

/au[ auj \ auj 
\axj ax; / axj 

(1.26a) 

is the dissipation and where the summation in ttie viscous terms has to be extended 
over both i and j . Furthermore, 

q ' = ^ ( u ' ^ + v ' ^ + w ' 2 ) (1.26b) 

is the kinetic energy of the turbulent motion, and the pressure term has been rewritten 
using the equation of continuity. It is usually assumed that the first two terms on the 
right, the energy-redistribution terms, are small quantities that can be neglected. The 
two terms on the left represent the generation of turbulent energy by interaction of 
the turbulent shearing stresses with the mean motion. To this approximation the 
equation can be expressed, in vector notation, by 

r - | = pe (1.27) 
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Fig, 1.2 Definitions of a planetary coordinate system in the x-y plane. The x-y coordinates are 
oriented with x in the direction of the ground shear, the x —y coordinates have the x -axis 
tangential to the isobar. 

where T is the shear-force vector per unit area. In absolute values it follows that, for a 
coordinate system oriented with the x-axis in the direction of the ground shear stress 
as in Fig. 1.2 and with the notation of Fig. 1.2, 

p e = | T | | | | c o s ( a ' - / 3 ) (1.28) 

where a is the angle between the x-axis and the vector d\/bz. 

To gain more information from this equation, we need to find an independent 
relation for the angle a. Such a relation can be found by postulating that the total 
dissipation of the boundary layer is a maximum. This assumption is occasionally made 
in attempts to close the set of turbulence equations, such as in the theoretical model 
of Malkus (1956). In general, its validity cannot be estabUshed (see Reynolds and 
Tiederman, 1967). 

Since e is always positive, a condition for maximum dissipation is that locally the 
dissipation has a maximum compatible with the dynamics of the problem. This 
evidently is obtained when the angle (a — (3) between shear stress and velocity 
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gradientf is zero because by definition |T| and |9v/az| are independent of |3 and a. 

Interestingly, this result is a basic assumption which is made in applying mixing-length 
theories to the planetary boundary layer (see Blackadar, 1962). Recent numerical 
calculations of Deardorff (1969) based on an analytical model which yielded realistic 
results for integral parameters, like the drag coefficient of the surface, also appear to 
confirm this conclusion. 

Further progress in obtaining a solution for Eqs. 1.19 and 1.20 can only be made if 
the factors of proportionality in the relation between shear stress and velocity gradient 
are known. Such a relation can take the form of a function of z describing the 
dependency of the eddy viscosity on height (Prandtl, 1965; Blackadar, 1962) or can 
postulate a height dependency of the angle between r and the vector A = G — v in 
Fig. 1.2(Lettau, 1962,1970). 

THE PLANETARY 

BOUNDARY LAYER 

The Basic Equations 

The equations of motion for the planetary boundary layer are conveniently 
discussed wdth reference to a coordinate system whose x-axis points into the direction 
of the shear stress at the ground. We may then introduce a shear-stress vector as shown 
in Fig. 1.2, 

T = r^i + ryj (1.29) 

whose y component equals zero and whose x component is equal to TQ at Z = 0. The 
components T^ and Ty are interpreted as kinematic quantities, stresses per unit mass, 
which are related to the velocity field by 

T^ = v^-u'w' (1.30) 

and 

^ y = ' ' 9 ^ - v w (1.31) 

tin the meteorological literature it is customary to denote the velocity gradient by the term 
"wind shear." This confusing terminology shall be avoided as much as possible, but, when the term 
"shear" is used alone, it is implied to mean "gradient." 



PLANETARY BOUNDARY LAYER 

In terms of these quantities, the governing Eqs. 1.19 and 1.20 become 

_ f v = - i | P + ^ (1.32) 
p ax dz ^ ' 

r- 1 ap dTy 

pay dz 
(1.33) 

The pressure gradient is set up by the geostrophic field and is directed normal to the 
isobars of weather maps. It is useful to define the geostrophic wind components u 
and Vg as those wind velocities which exist at an elevation where the shear-stress 
gradients can be neglected, so that, as indicated in Fig. 1.2, 

u | + v | = G ^ 

G = Ugi + Vgj = G cos aoi + G sin aoj 
(1.34) 

where 

so that Eqs. 1.32 and 1.33 become 

- f (v -vg) = ^ (1.36) 

f ( u _ u ) = - / (1.37) 
dz 

At the edge of the surface layer, the geostrophic wind is parallel to the isobars, but 
inside the surface layer the direction of the wind vector is modified by the shear 
stresses in such a way that in the northern hemisphere (where f is positive) the velocity 
vector is rotated to the left of the geostrophic wind vector. 

Laminar Ekman Spirals 

A solution of the system Eqs. 1.36 and 1.37 requires that a relation between T and 
V be found. For laminar flow, this relation is stated in Eqs. 1.30 and 1.31, where the 
turbulent stresses are equal to zero, and the well-known solution of Ekman (see 
Batchelor, 1967) is obtained: 

ug = G(l - e''<̂ ^ cos kz) (1.38) 

VE = Ge-'̂ ^ sin kz (1.39) 
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with 

k = y f (1.40) 

Here the velocity components are given in the primed coordinate system of Fig. 1.2 
whose y-axis Ues in the direction of the negative geostrophic pressure gradient. The 
solution is found by putting U£ — G = Ae'̂ ^ and V£ = Be^^. If this solution is inserted 
into Eqs. 1.36 and 1.37, with the laminar part of Eqs. 1.30 and 1.31 used for shear 
stresses, it is seen that a solution satisfying the boundary conditions can only be found 
if X** = — {ilvf • Among the four complex roots of X, the two that have a positive real 
part cannot satisfy the boundary conditions, and the two that have a negative real part 
lead to Eqs. 1.38 and 1.39. The solution is in the form of a spiral (as shown in 
Fig. 1.3a) whose velocity vector at the ground is rotated clockwise by 45° from the 
direction of the pressure gradient. 

The angle of 45° exceeds any of the angles observed in wind spirals of the 
atmospheric surface layer. We find distributions whose hodographs are more like the 
one shovm in Fig. 1.3b because the air flow is turbulent. In turbulent flow it is not 
possible to relate the turbulent stresses of Eqs. 1.30 and 1.31 to mean flow quantities 
on the basis of first principles. Empirical assumptions will have to be made, on the 
basis of experience with laboratory flows, and some of these will be discussed in a later 
section. It is, however, possible to obtain some important results on the nature of the 
velocity distributions in the planetary boundary layer by considerations of the 
asymptotic behavior of the profiles alone without previous knowledge of the 
shear-stress distribution. 

Dimensional Considerations and the Inner Law 

of the Planetary Boundary Layer 

The energy required to maintain the motion near the ground is ultimately taken 
from the air flow outside the surface layer, and consequently the conditions above the 
planetary boundary layer will set a velocity scale for the wind profile in the surface 
layer. Near the ground, however, it is more likely that the flow is determined by the 
interaction of velocity field and shear stresses, much as in zero-pressure-gradient 
turbulent boundary layers in an aerodynamic environment, where the momentum lost 
at the ground is balanced by a gain of momentum through entrainment of higher 
energy fluid near the edges of the boundary layer. 

Under these conditions, in close analogy to the turbulent boundary layer along a 
flat plate, we need to consider the atmospheric surface layer as made up of two 
sublayers: ( l)an outer sublayer, whose mechanics are determined by the interaction 
of pressure gradient and Coriohs force and whose characteristics are determined 
mostly by the conditions near the edge of the surface layer, and (2) an inner sublayer, 
whose structure is determined by the flux of momentum to the ground which depends 
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on the nature of the ground surface. This conclusion permits us to construct a velocity 
profile for the atmospheric boundary layer, much as was done by Clauser (1954) for 
the turbulent boundary layer along a flat plate. In doing this, we will use the x-y 
coordinate system of Fig. 1.2. 

Over uniform terrain the velocity distribution at zero pressure gradient is fully 
specified for the inner layer by a velocity scale, u#, and a length scale, ZQ, such that 
(with overbar dropped from mean velocities) 

-^ = fj±\ ^=(y(^) (1.41) 

where f(z/zo) is a universal function and u* is defined by Eq. 1.15. The length ZQ is a 
characteristic of the surface, is independent of the flow conditions, and must be given 
as part of the boundary conditions. 

A simple estimate of the asymptotic form of the functions fy(z/zo) can be 
obtained by remembering that in the chosen coordinate system the shear stress 
component Xy is zero at the wall, and so we find, by developing v in a Taylor series 
about z = 0, that asymptotically the velocity distribution is given by a straight line 

V Ty(0) 

JL = o.|.-A— z + . . . (1.42) 

or 

^ = 0 
u# 

Thus fy = 0 near z = 0. From Eq. 1.36 it follows also that to the same approximation 

the shear stress, x^, varies linearly with z and is equal to pu* near the ground. 
At the outer edge of the surface layer, the flow is determined by a velocity scale 

and a length scale that pertain to the outer layer only. Csanady (1967) and Blackadar 
and Tennekes (1968) have shown that the velocity scale for the outer layer is also the 
shear velocity, u*, and that a length scale is readily found to be equal to h ~ UH=/f. 

A nondimensional velocity-distribution law of the form u/u* and v/v* would 
depend for z = h on the geostrophic velocity G. Since G/u* presumably depends on 
the Reynolds number and configuration of the surface roughness, u/u* could not be a 
universal function. However, the velocity-defect laws 

U - U g / z f \ V-Vg / z f \ 

• - ^ = Sx(^j ^ = ^y[Tj 0-43) 

do not have these shortcomings because both functions approach zero at z = h. 
Equations 1.41 and 1.43 depend on three parameters: the Reynolds number, which 
determines the ratios Ug/u*, v /u*, etc., a Rossby number, defined to 
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Ro = 5f-̂  (1.44) 
u* 

and the height parameter % = Z/ZQ For large Reynolds numbers, which almost always 
occur under natural conditions, the Reynolds number effect is no longer noticeable, 
and the profiles depend on Ro and % only 

The asymptotic Eqs 1 42 and 1.43 require that, in the "matched region" where 
both equations are to hold, the velocity distribution be logarithmic. This fact, which 
was already determined by Clauser (1954) for the similar case of the boundary layer 
along a flat plate, has been formalized for the case of the Ekman layer by Blackadar 
and Tennekes (1968) who used the method of matched expansions (van Dyke, 1964) 
We will derive the velocity distnbution in the matched region by means of this 
method 

In the matched layer, Eqs 1.41 and 1 43 are vahd, so that 

Since both h = u*/f and Ug/u* (= a drag coefficient) depend on the Rossby number 
only, we can write 

^ + fx(?) = gx('̂ ?) (146) 

where the notations 0(Ro) = Zo/h and % = Z/ZQ have been used The parameters 0 and | 
are the independent variables of the problem By differentiating Eq. 1.46 first with 
respect to Ro and then with respect to | and eliminating gx(0?) from the two resulting 
independent equations, we obtain 

r(f)=-^^C^-^V' (147) 
^''^^' dRou*VdRo/ ^ ' 

The left side is a function of §, the right side is a function of Ro only, consequentiy 
both sides are equal to a constant, 1/k, say, and integration yields 

iL = i l n - (1.48) 

U* k ZQ 

^ = - l ( l n ^ . A ) (1.49) 

Similarly, equating Eqs. 1.42 and 1.43 for v yields 
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where the constant +B/k is universal and must be found from experimental data. The 
constant was chosen in this form to correspond to the terminology employed by 
Csanady (1967). Essentially identical results, but with G/fzo used instead of u*/fzo, 
were also given by Kasanski and Monin (1960) and by Csanady (1967). The 
coefficients A and B are constants that must be determined by experiments, and this is 
convenienfly done using experimental data for the deviation angle, OLQ, of the 
geostrophic wind from the surface shear direction, 

+Vg Bu* B /-I c i \ 
smao=-g^ = - j ^ = - ^ C g (1.51) 

and for the geophysical drag coefficient. 

"g Ĝ  
cl = '^=cl(Ro) (1.52) 

The evaluation of these parameters from measured profiles is not an easy matter 
because small errors in velocity profiles may be reflected in large errors in the 
parameters and because profiles must be taken over great heights and will therefore 
show potentially large errors due to terrain inhomogeneities of the approach area. 
Accurate profile evaluations were made, in particular by Lettau and his associates 
(Lettau, 1950, 1957, 1959, 1962) (Lettau and Hoeber, 1964), who evaluated a 
number of selected wind profiles for this purpose, and from these we can infer that for 
k = 0.4, B is approximately 4.3 and A is about 1.7. Csanady (1967) has given the 
following relations, in terms of the Rossby number G/zof: 

sinoo = -10.7Cg (1.53) 

and 

to express the relation between geostrophic drag coefficient and Rossby number and 
angle between ground shear and isobars. The experimental data of Lettau and his 
coworkers have been plotted according to Eqs. 1.51 and 1.52 in Figs. 1.4 and 1.5 
where, in addition to the data used by Csanady, the Lakewood data of Johnson (1956) 
are indicated. The Lakewood data, taken over an extensive and dense forest, yield 
surprisingly large friction factors, which are, however, in agreement with the general 
trend of the data analyzed by Blackadar (1962) and by Russian workers (Zilitinkevich 
et al., 1967). Average curves through the collection of Blackadar's data are also shown 
in Figs. 1.4 and 1.5. 
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Fig. 1.4 Angle of ground stress against isobars, as function of geostrophic drag coefficient (from 
Csanady, 1967). The dotted line has been constructed from the average curves given by Blackadar 
(1962). 

The Outer Part of the Planetary Boundary Layer 

It is of great importance that asymptotically the velocity-distribution law near the 
wall become logarithmic law, Eq. 1.48, and, since at the ground dv/dz = 0 as well as 
V = 0, it is likely that over the lowest portion of the atmospheric boundary layer the 
influence of the CorioUs force can be neglected. The angle ao as observed in moderate 
latitudes does not exceed about 23°; therefore it is not likely that its influence is felt 
in the region near the ground. In the outer flow, however, the v component has this 
important dynamic function: It is a major component in the motion down the 
pressure gradient which is the cause of reducing and ultimately eliminating the 
pressure gradients, thus equalizing atmospheric highs and lows. Therefore we need to 
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consider both velocity components in the outer flow and to find a solution for 
Eqs. 1.36 and 1.37 vaHd for the outer layer. 

At the edge of the planetary boundary layer, the distributions of velocity and 
shear stress smoothly join the flow aloft, where r = 0, u = Ug, and v = Vg everywhere 
independent of height. This condition requires that at the edge of the planetary 
boundary layer the first derivatives of the shear stresses, according to Eqs. 1.36 and 
1.37, be zero. With this result the behavior of the flow field can be inferred by 
expanding r in a Taylor series about z = h and calculating the resulting profiles. The 
calculations are aided if it is assumed that the velocity vector and the shear-stress 
vector are parallel at all elevations z. These conditions have been used by Swinbank 
(1969) for determining the flow field near h. 

When 

and 

as well as 

T = r cos Q: i +T sinqj ^ '''x "*"'"y (1.55) 

V = V cos a i + V sin aj V^ = u^ + r (1.56) 

G = Gcosoioi + G sinaoj (1-57) 

where OQ is the angle between the ground wind direction and the direction of the 
geostrophic wind (positive counterclockwise), then the equations of motion, Eqs. 1.36 
and 1.37, become 

-f(V sina - G sintto) = ^ ( 1 " cosa) (1.58) 

—f(Vcosa — G cosflo) ^ '^(T'sina) (1-59) 

Multiplying Eq. 1.58 by cos a and Eq. 1.59 by sin a, and then adding, eliminates V, 
and with the identities 

9 2 9i" . 9 a 
cos a-r-T cos a = cos a-:— T cos a sm a T— 

9z 9z 9z 
(1.60) 

z 9z 9z 
9 . • 2 9T , . 9 a 

sin a r - T sin a = sm a -r— + r cos a sin a 

it follows that 
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9r 
9z 

= — fGsin (a - a o ) (1.61) 

To complete the solution, Swinbank (1969) expanded r in a Taylor series about z = h, 
and since at z = h we have a = OQ , it follows that: 

L2ZI 
2 9z^ 

(z - h)^ = ^fG 
da 
2dz 

( h - z ) ^ (1.62) 

where Eq. 1.61 has been used to eliminate 9^T/9Z^|J,. Thus the shear-stress 
distribution is quadratic in (h - z), whereas the angle (a - ao) depends on z as 

sin (a \ J. da ( z - h ) (1.63) 

The hnear distribution of sin (a — ao) and the quadratic dependency of T on (h — z) 
were surprisingly well confirmed over most of the planetary boundary profile, at least 
for the well-known "Leipzig" profile used by Lettau (1950) and Swinbank (1969). 

We should note that the questionable assumption v parallel to T was used only in 
the derivation of Eq. 1.61 and that Eq. 1.61 was used only for yielding the derivatives 
of T at z = h. Therefore it is useful to see if there are not other ways of deriving 
Eq. 1.61 without Swinbank's assumption. Inspection of Eqs. 1.36 and 1.37 reveals 
that the vector dr/dz is perpendicular to the vector A = G — v in Fig. 1.2, and thus 
Eq. 1.61 is seen to imply that the vector A is perpendicular to v. Since this condition 
has to hold near z = h only, it follows that the conclusions arrived at by Swinbank 
would result if near z = h the wind veered in such a way that the hodograph of v is a 
semicircle with radius '72 G centered at % G on the x'-axis of Fig. 1.2. It is significant 
that this condition is not far from observed data (for example, see Lettau, 1970) and 
also corresponds to the laminar flow solution. Apparently Eq. 1.61 is valid near z = h, 
even though Swinbank's assumption leading to it may be incorrect. 

The quantities da/dz|j^ and h must be determined to complete the solution. 
Expressions for them are readily found by assuming that the outer profile is 
everywhere determined by its asymptotic form and thus also in the overlap region of 
the inner and outer profiles. Then Eq. 1.53 can be considered appHcable, and it 
follows for z = 0 from Eq. 1.63: 

smao 
da 
d^ 

-,0.7H? (1.64) 

and the nondimensional distributions of sin (a — a©) and T become, respectively, 

s i n ( a - a o ) = + 1 0 . 7 ^ ( ^ ^ ) (1.65) 
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and 

uj 2 u* \ h / 

But h = au#/f,t and thus, with a factor of proportionahty of a, 

^ = .5 4 a ( ' l ^ ) ^ (167) 

Since at z = 0, r /u | = 1, the factor a is equal to 1/5 4, and thus the following 
expressions for h and da/dz|j| are obtained 

h = 5 \ ^ (168) 

and 

da 

d^ 
-58 9 ^ (1 69) 

It IS remarkable that, when this estimate for h is applied to the Leipzig wind profile, 
for which Csanady (1967) gives f = 1 14 10"* sec"' and u* = 0 63 m/sec, it follows 
that h = 1030 m, in almost perfect agreement with the value of h = 1070 m inferred by 
Swinbank (1969) for the same data The value also is in good agreement with 
h = 0 2 u*/f, assumed by Clarke (1969) as an average value for a large number of 
profiles observed near Kerang, Victoria, and Hay, New South Wales, Australia, over 
sites that have been described by Swinbank and Dyer (1968) Individual profiles were 
found, however, to deviate considerably, especially for thermally stratified flow 

VELOCITY DISTRIBUTION 

NEAR THE GROUND 

The derivation of the logarithmic law by asymptotic matching cannot give any 
information on the thickness of the layer in which it is vahd In a turbulent boundary 
layer along a smooth flat plate, i e , for measurements hke those of Klebanoff (1955), 
the logarithmic part of the profile extends to a distance of about 0 15h. In pipe flow, 
on the other hand, the logarithmic law is vahd almost to the center of the pipe, and 

•fNote that instead of setting h oc u*/f, we could have left h unspecified, except by postulating 
that Zo/h = F(Ro) only Then Eqs 1 67 and 1 68 would have yielded not only the numerical 
constant a but also the functional form of h as well 
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the distance to which it is applicable is therefore about h. One reason for this 
difference in pipe and flat-plate boundary-layer flows Ues in the difference of the 
turbulence levels. In turbulent pipe flow, the turbulence is everywhere, whereas near 
the edge of the boundary layer the flow is intermittently turbulent, i.e., the turbulent 
eddies are sharply separated from the nonturbulent fluid that is entrained from outside 
the boundary layer. A velocity-measuring probe, such as a hot wire held at a fixed 
distance from the wall, will therefore sometimes see a turbulent signal and sometimes a 
calm flow (Townsend, 1956; Sandborn, 1959). The calm flow is more likely at a 
velocity closer to the free-stream velocity because, owing to the lack of turbulence, 
there is no strong shear coupUng between adjacent strata and the entrained fluid does 
not feel the presence of the boundary. The turbulent fluid, on the other hand, is 
strongly coupled to lower strata. Suppose for a moment that in the turbulent portion 
the logarithmic law is vahd and that in the calm fluid the velocity equals the 
free-stream velocity. The mean flow then would show a profile that has velocities lying 
between the free-stream velocity and the logarithmic velocity. Such velocities are 
indeed observed. If the free stream were also turbulent, then it is likely that the 
mean velocity profile would be logarithmic over a larger part of the boundary layer 
than for the case of very low free-stream turbulence. That this is what happens was 
shown by Wieghardt (1944). 

The atmosphere outside the lower atmospheric boundary layer is usually not free 
of turbulence. This stems partly from the fact that topographic features 
and nonhomogeneities of the upwind terrain generate turbulence that remains for 
some time in the boundary layer. Therefore we expect a larger portion than the lowest 
15% of the atmospheric boundary layer to be logarithmic. Unambiguous evidence for 
this behavior is, however, not available. 

The logarithmic velocity-distribution law is determined by the parameters k, Zo, 
and u#. As long as k is a universal constant, its value is known; ZQ is a property of the 
roughness, and u* follows from the upper boundary parameters, as indicated by 
Eq. 1.54. However, when the lower boundary layer is treated independently of the 
planetary boundary as a whole, as is done in most micrometeorological work, the shear 
velocity, u*, cannot be predicted from the boundary conditions. Therefore a frequent 
suggestion has been the use of a drag coefficient referred to the velocity at some fixed 
height, say 10 m, i.e., to define a drag coefficient Cjo =u*/uio, where UIQ is the 
reference velocity at 10 m. But in a layer that is described by the logarithmic velocity 
distribution, this is just another way of expressing the roughness height ZQ, as can 
readily be seen by inserting z = 10 m and u = UJQ into Eq. 1.48. Consequently, if ZQ is 
given, it follows that the ratio Uio/u* is also given at each value of z. Thus, if a 
particular Uio is assumed for a given ZQ, the wind profile is fully specified. A better 
way of obtaining u* is direct measurement of the wall shear stress, but this requires 
elaborate experimental equipment such as drag plates. In micrometeorological work it 
is usual to infer the shear at the ground from measured profiles of wind-velocity 
distribution, a procedure that works satisfactorily in neutrally stratified boundary 
layers. 
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Velocity Profile Along Smooth Walls 

Experimental evidence has shown that the logarithmic velocity distribution, 
Eq. 1.48, yields a valid description of mean velocity conditions in at least the lowest 
16 to 20 m of the atmospheric boundary layer, down to very small distances from the 
ground. How far down depends on the configuration of the surface. When the surface 
is very smooth with no geometric obstructions hindering the motion of the air, 
viscosity might affect the flow very near the ground because the no-shp condition at 
the ground does not permit the existence of turbulence fluctuations. Under these 
conditions the shear stress at the ground is purely viscous, given by 

2 9u 
pu% =To=pv-^ 

and the velocity distribution can be developed in a Taylor series expansion, 

1 9^ir , 

(1.70) 

u(z) = u(0) + | ^ z + 
2!9z 

(1.71) 

For very small z the higher order terms can be neglected, and, in view of the no-sHp 
condition and Eq. 1.70, the velocity profile becomes 

where 0 [(u*z/y)^] stands for the higher order terms. We notice that a length scale, 
5g ~ ij/u* (the thickness of the laminar sublayer), arises in a natural fashion for the 
velocity distribution near the wall, whereas the velocity scale is u*. In the outer part of 
the inner layer, the velocity distribution is logarithmic but is governed by the same 
length and velocity scales, so that 

- ^ = f l n ^ + C (1.73) 

where the factor of proportionality between Zo and î /u* has been absorbed into C. 
Experimental evidence, obtained in many laboratory tests, has resulted in a value of C 
of about 5.6 (Clauser, 1954), but it depends to some extent on the choice of k. 

The most commonly accepted value of k is 0.4, and we will use it whenever a 
numerical value is needed. Experimental evidence exists for values of k ranging from as 
low as 0.2 to as high as 0.8. However, no systematic dependency of k on Reynolds 
number, roughness, or admixtures to the flow has been found. A recent study of the 
value of k, by Slotta (1963), failed to lend support to any value of k that differs much 
from 0.4 in zero-pressure-gradient flow. 



NEUTRALLY STRATIFIED BOUNDARY LAYER OVER UNIFORM TERRAIN 

The logarithmic profile, Eq 1 48, naturally cannot be valid for z smaller than some 
positive number, because below a certain level the velocities would be negative 
Experience has shown that the transition region between the velocity profiles in 
Eqs 1 72 and 1 73 is rather thin, and so it is possible to specify the distance from the 
wall at which the validity of Eq 1 73 begins by the intersection of Eqs 1 72 and 1 73 
A typical experimental curve is shown in Fig 1 6, which is taken from Hinze (1959) 
The corresponding distance z = 5 g ~ lli^/u* is called the viscous sublayer thickness, 
where the viscous sublayer is that region in which the effect of molecular viscosity 
dominates the exchange processes 

This situation is in effect not changed if the ground surface is not fixed but 
moving, for example, if the velocity profile over a surface of water is considered The 
wind induces a current, with a component û  in the direction of the wind profile, 
relative to which Eq 1 73 is vahd Relative to a stationary observer, the local velocity 
Ug = u + Uj, where u is given by Eq 1 73 When the logarithmic law is applied to 
experimental data of Ug, we find that 

i k 4 i n ^ + C+ i i ^4 ln^ -^ + Ce (174) 
u * k I' u# k y 

so that the effective coefficient Cg is increased by u^/u* The surface then appears 
smoother than a smooth solid surface, and this may explain the fact that over the 
ocean a ZQ value smaller than ~lli ' /u* is often observed (Roll, 1965) That for a 
smooth water surface the constant Cg is indeed equal to 5 6 + Ug/u* was shown by 
Plate, Chang, and Hidy (1969) for wind blowing over the water surface in a laboratory 
channel 

Velocity Profiles Over Rough Surfaces 

Very few surfaces of natural ground can quahfy to be called smooth Airport 
runways or highways, perhaps reasonably uniform snow covers, and the surface of 
bodies of water at low winds exhibit smooth surface character The particular 
distinction of smooth surface character is that the length scale ZQ depends on the wind 
velocity Most ground surfaces are aerodynamically rough, a state that is determined 
by arrays of individual rough elements protruding from the surface, from which the air 
flow separates For separation to occur, it is of course necessary that the local velocity 
and the roughness element combine to form a Reynolds number that exceeds a critical 
value If the height of the roughness is denoted by d, then it is reasonable to assume 
that the reference velocity for the critical Reynolds number is given by the velocity at 
the top of the element, or the average velocity over its height, and the height d 
Experience has shown that the critical Reynolds number is very small, so that 
separation is avoided only if d is very small Then the velocity distribution over the 
height of the element is described by Eq 1 72, and consequently the critical Reynolds 
number is given to 
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U*d 
R^crit - -y critical (1-75) 

This number will depend on the geometry and arrangements of the roughness 
elements. When separation occurs, the shear velocity is determined by the form drag of 
the individual roughness elements. Since the form drag depends on the shape of the 
element as well as on the mutual interference of the wakes of adjacent elements, it is 
not surprising that there does not exist a one-to-one correspondence of roughness-
element height and length scale Zo. Only when shape and arrangement of roughness 
elements are kept constant while the scale of the elements is changed can there be a 
relation between ZQ and the dimension of the roughness element. Typical for this 
behavior is the classical uniform sand roughness of Nikuradse (see Schlichting, 1968) 
for which Zo = d/30, where d is the diameter of the sand. The sand behavior is 
aerodynamically rough only when 

• ^ > 7 0 (1.76) 
u 

which implies that, in that Reynolds number range, separation occurs at all elements. 
The Reynolds number, Eq. 1.76, can be interpreted as the ratio of the roughness 

height d to the thickness of the viscous sublayer (Schhchting, 1968). This has led to 
the interpretation that a surface is aerodynamically rough when the roughness element 
"penetrates the viscous sublayer," and it is smooth if the sublayer covers the roughness 
element. This concept is, however, not particularly satisfactory, because it ignores the 
essential interactions of the roughness element with the flow, while relating rough flow 
behavior only to the height of the elements rather than to their aerodynamic 
characteristics. 

An interesting way of interpreting Eq. 1.48 for a rough surface is in terms of 
Eq. 1.74. We may write Eq. 1.48 in the equivalent form 

iL=fln£H* + c+-H^ (1.77) 
u* k I' u* 

where 

_ i i i = l l n 5 2 H l + c (1.78) 
U * K U 

in which Uj is a sort of slip velocity (Hama, 1954). The quantity Uj/u* is positive if the 
surface moves in the direction of the flow; it is negative if the surface moves in the 
opposite direction. A rough surface is thus seen to correspond in its effect to a smooth 
surface that moves against the wind at the velocity Ug given by Eq. 1.78, or the air 
flow is slipping at the surface at a velocity Uj instead of being zero at the surface. 
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For many vegetative covers that are not too closely spaced, we also find a single 
length that describes the surface roughness. In that case Eq. 1.48 is found valid in the 
form 

- = f l n ^ ^ ^ (1.79) 
u« k Zo 

where do is the zero-plane displacement, introduced by Rossby and Montgomery 
(1935). The extensive experiments of Paeschke (1937) on natural crops have yielded 
the Zo values given in Table 1.1. They correspond approximately to a relation between 

Table 1.1 

PROFILE PARAMETERS OF CROPS* 

Crop 

Plane, snow covered 

Grassy surface 

Flat country 

Low grass 
High grass 

Wheat 
Tan and Ling: 
(in Lemon, 1963) 

Beets 

Zo, cm 

0.49 
1.73 
2.14 

3.20 
3.94 
4.5 

3 to 4.8 

6.4 

he, cm 

3 
10 

10 

20 
30 

130 

45 

C(5 m) X 10^ 

3.25 

4.90 
5.5 
6.4 

7.2 
8.1 

8.8 

c(10 m) '< 

3.9 
6.2 

6.9 
8.3 

9.3 

10.7 

11.9 

* After Paeschke (1937). 

crop height h^ and Zo given to ZQ = 0.15hc. This relation was also found to hold for 
croplike elements that were tested in a wind tunnel by Plate and Quraishi (1965). A 
set of field data similar to Paeschke's has been published by Priestley (1959). It is 
based on profiles that had been measured by Deacon (1953) and agrees approximately 
with the data of Paeschke. However, ZQ values quoted by Priestley for snow and 
similar surfaces are considerably lower than the ones given by Paeschke, perhaps 
because they correspond to approximately aerodynamically smooth or transitional 
surfaces. It is possible that the same surface type has a value of Zo for the low-velocity 
conditions of Priestley, which is in the smooth regime, whereas at higher velocities the 
flow is rough. An increase in wind speed increases the Reynolds number and may lead 
to a rough surface with a larger effective value of Zo. 

Some of Deacon's Zo values are shown in Fig. 1.7 plotted against hg, together with 
wind-tunnel values on real and artificial grass by Chamberlain (1966), wind-tunnel data 
on artificial trees by Hsi and Nath (1968) and data obtained from wind profiles over 
tall vegetations by Kung (1961). Kung described his data by an empirical relation: 

logzo =-1.24+1.19 log he (1.80) 
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which is indicated in Fig 1 7 The equation of Kung is, however, not particularly 
satisfactory because it is not dimensionally homogeneous Also, it is likely that the 
derivation of the Zo values for large plant heights is seriously affected by the 
measurement technique of Kung Another empirical equation, by Tanner and Pelton 
(1960) log Zo = log he - 0 8 8 , is readily seen to reduce to Zo =0 14hc, in good 
agreement with the relation given above, and the line drawn into Fig 1 7 

A change in Zo with wind speed may also occur for a fully rough surface A special 
case IS a wavy water surface where the wind produces waves that in turn affect the 
wind profile Other surfaces, for example, certain crops, form flexible coverings and 
are deformed by strong winds It is a common observation that a surface covered with 
long grass becomes smooth in appearance at high winds because the individual grass 
leaves are bent away from the wind High leaves are more exposed to the wind drag 
and are therefore bent more strongly than short leaves, with the result that the surface 
becomes more level as the wind increases This is found reflected in the Zo values 
(Deacon, 1953) which decrease with increasing wind 

The only crop hsted by Paeschke which does not obey even approximately the 
relation ZQ = 0 15 he is wheat This is no experimental error, since Paeschke's ZQ value 
of 4 5 cm IS in very close agreement with the range of ZQ values from 3 to 4 8 cm 
obtamed for wheat by Tan and Ling (in Lemon, 1963) It should be attributed to the 
denseness of the crop, which makes the surface of the crop smoother than a cover of 
more widely spaced stalks A method has been designed by Lettau (1969) for 
incorporatmg roughness-element spacing and shape into an equation for Zo 

The zero-plane displacement do in Eq 1 79 was introduced to account for the 
origin shift that must be expected to occur for rough surfaces It is readily seen that 
the ground elevation does not have any significance in the dynamics of the air flow 
above the roughness Typical is the flow over a forest There is no reason to assume 
that low trees with exactly identical crowns as high trees should have, with respect to 
the crowns, different origins for the profile of the above-mentioned wind velocity The 
zero-plane displacement has been found, for dense crops to an excellent approxima-
tion, equal to the cover height (or do = he) both in the field (Paeschke, 1937) and for 
a model crop in the wind tunnel (Plate and Quraishi, 1965) In general, however, we 
must expect do to differ from he when the density of the roughness elements is sparse 
Flows over such arrangements are usually not fully rough, and special investigations, 
possibly in a laboratory environment, must be made for them The difficulties 
associated with defining a suitable zero-plane displacement m such cases are well 
known (for example, Sayre and Albertson, 1963, and the discussion of their paper) 

The existence of a zero-plane displacement does not imply that the mean velocity 
profile IS logarithimc for all z > do The cited experiments by Paeschke (1937) and 
Plate and Quraishi (1965) indicate that the logarithmic law becomes valid roughly for 
z > 2h^ as seen in the examples in Fig 1 8 Below this height the air flow is 
determined by the nature of the roughness elements The flow withm the roughness 
cover, the "canopy flow," is of some importance in its own right because it determines 
the microclimate within the plant cover, i e , the exchange processes of heat, gases, and 
moisture 
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Fig. 1.8 Velocity profiles over crops: (a) field data of Paeschke (1937), where do is the zero-plane 
displacement that is only approximately equal to the crop height h^; (b) laboratory data of Plate 
and Quraishi (1965). 
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Fig. 1.8 (Continued) 

Canopy Flow 

To fully describe the wind field at a site covered with roughness elements, we need 
to also consider the flow between roughness elements, i.e., for 0 < z < h c . From 
vegetative covers, or canopies, the flow between the roughness elements has received 
the name canopy flow. Canopy flow determines the microclimate in forest and crops, 
by governing exchange processes such as evaporation and diffusion of heat, 
insecticides, or pollutants. Quantitative expressions for the velocity profiles in the 



NEUTRALLY STRATIFIED BOUNDARY LAYER OVER UNIFORM TERRAIN 

canopy must be based on a model for the interaction between canopy stems and leaves 
on the one side and wind shear on the other. For fairly densely spaced crops, Plate and 
Quraishi (1965) attempted to avoid the complications arising from the three-
dimensional nature of the flow by introducing similarity theory, i.e., by plotting 
u/Ufef vs. z/zref- The obvious reference length is the crop height he; for a reference 
velocity they chose the velocity uj, at z = he. Figure 1.9 is a plot of field data from 
many different sources. We see that profiles pertaining to one particular type of crop, 
for example, the wheat profiles, are well-defined by a universal curve. It could be 
sufficient to specify the canopy flow by the type of crop that produces it. This 
method does not work, of course, when the eddy diffusivity or a turbulence quantity 
must be predicted for a roughness whose characteristics are not known. The least that 
needs to be known then is the shear-stress distribution in the canopy. 

The shear-stress distribution inside vegetative covers depends on many factors, 
such as stalk spacing, leaf area exposed to the wind in the canopy, and shape and 
surface configuration of leaves. It is therefore very difficult to generate a general 
model applicable to all types of crops. Nevertheless, a few conclusions on the 
shear-stress distributions can be drawn. Consider the idealized crop of height he shown 
in Fig. 1.10. When the flow is fully estabhshed and the pressure along the x-axis is 
constant, then the shearing stress at the surface, pu«, is transmitted to the ground by 
the drag of the stalks and by friction at the ground. 

In canopies the flow can be highly channeled, such as in man-planted crops. In this 
case the flow in between the rows obeys the simple shear-stress relation: 

drxz - 2rs 
dz b 

(1.81) 

where TXZ is the average shear across the x—y plane, and T^ is the shear stress in the 
X—z plane, along the stalks. This equation serves to show that, among otherwise 
identical crops, more momentum is taken out of the flow by narrow rows than by 
wide rows. In general, the flow is not channeled; for random plant orientation the 
equation becomes 

dz 
+D (1.82) 

where D is the drag force per unit volume of plant cover (Uchijima and Wright, 1964; 
Cionco, 1965, among many others). Finally, it is possible to express the drag by the 
aerodynamic formula 

D=pcdA(z)-u^ (1.83) 

where cj is the drag coefficient and A(z) is that area of the leaves which blocks the 
motion of the air flow. Practical models for solving Eqs. 1.82 and 1.83 depend on 
suitable assumptions for A(z), C(j, and the relation between shear stress and mean 
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Fig. 1.10 Definition of the geometry of canopies. 

velocity For A(z) it is possible to use the cumulative leaf area, an example of which is 
shown in Fig 111 for a mature cornfield (from Allen, Yokum, and Lemon, 1964) 
The drag coefficient is most frequently assumed constant, but Uchijima and Wright 
(1964) found, from the analysis of many different wind profiles in a cornfield, that cj 
can vary over a very wide range, in their case from 0 055 to 0 542 This variation can 
be partly attributed to uncertainties in determining the aerodynamically active leaf 
area It is readily apparent that the leaf-area index is not a suitable measure of the 
aerodynamic resistance, since leaves will orient themselves m the direction of the wind 
or will cause additional drag by fluttering Under these conditions a rough 
approximation with a constant leaf area might be equally suitable, and when, in 
addition, the observed fact is used that the shear-stress distribution (or the velocity 
distribution) is approximately exponential, then Eqs 1 82 and 1 83 give also an 
exponential wind profile (or shear-stress distribution) Apparently this approximation 
leads to results of eddy viscosity e which are in as good an agreement with 
observations (Uchijima and Wright, 1964) as more elaborate models using a refined 
eddy-viscosity assumption and a variable leaf area (Cionco, 1965) 
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DEPTH, cm 

Fig. 1.11 Leaf-area index for corn as function of distance from the ground. The crop height is 
about 3 m. From Allen, Yokum, and Lemon (1964). 

The Shear-Stress Distribution in the Planetary 

Boundary Layer Near the Ground 

Equation 1.67 has been given as an estimate of the dependency of the shear stress 
on z near the edge of the planetary boundary layer. Near the ground a relation for the 
shear stress can also be found by using the asymptotic forms of the equations of 
motion. As was shown, asymptotically, v for z->0 becomes zero, and thus we find 
from Eq. 1.36 that 

9TX 

9z 
+fv„ (1.84) 

which can be integrated to yield 

Tx(z) . 

u | 
1-3 

ku* 
(1.85) 

For f = 1.14 • 10"'* sec"', u* = 0.2 m/sec, and with B = 4.3 and k = 0.4, the shear stress 
is seen to decrease by about 10% in a distance of 10 m. It is customary to neglect the 
variation of shear stress with height in the lowest layer of the atmosphere where the 
constant-stress assumption is assumed to imply that the shearing stress varies by less 
than 10% from its mean value at the ground. Lumley and Panofsky (1964) infer that 
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this region has a thickness varying from 10 to 100 m, depending on the ground shear 
stress, whereas Eq 1 85 would tend to lead, for the range of values of u* and Cg that 
are usually encountered in the atmosphere, to a thickness of from 10 to 50 m This 
estimate is, however, low because the effect of v m decreasing the shear correction is 
not considered in Eq 1 85, and it is possible that the thicknesses obtained by including v 
are in the range given by Lumley and Panofsky 

Making the assumption of a layer of constant shear stress near the ground leads to 
two important consequences First, in all considerations of siimlanty, the distribution 
function of the shearing stress need not be considered since it is fully described by TQ 

Second, a knowledge of such a simplified shear-stress distribution can aid m 
establishing the relation between the shear stress and the velocity field 

The relation cannot be developed from first principles and must be established in 
an empirical manner For a fully viscous flow, the shear stress is related to the velocity 
gradient, i e , 

. = . | (.86) 

and in analogy to this equation, we can write for turbulent flows 

- K ^ f (187) 

where the quantity Kj^ is termed Boussinesq's eddy viscosity, which has the dimension 
of kinematic viscosity, le , cm^/sec A solution for u requires an assumption about 
K^ Clearly, an assumption Kjy = constant, analogous to the molecular viscosity, leads 
to a linear velocity distribution in a constant-stress layer, which is contrary to 
observations Rather, it must be expected that Kj^ cannot be predicted, in general 
Not only does it depend on the location inside the flow field but also on the outer 
boundary conditions, i e , on the pressure gradient and the growth rate of the 
boundary layer In general, K|̂  is a function of the development history of the 
boundary layer, and only in some special cases can it be expected that Kj^ is predicted 
by local conditions only 

For that part of the constant-stress layer in which the logarithmic 
velocity-distribution law is vahd, the eddy diffusivity Kĵ ^ is found from Eqs 1 15 and 
1 87 to be 

(0' K^ = u* ( - ^ j = u*kz = u*/ 

where / is the well-known "mixing length" of Prandtl Note that Eq 1 88 does not 
contain ZQ that arises as an integration constant This absence has important 
consequences in the interpretation of ZQ and for the extension of the logarithmic law 
to diabatic boundary layers 
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Prandtl (1925) originally derived the logarithmic law on the basis of postulating 
the existence of a mixing length proportional to z, but his arguments for the existence 
of a mixing length were flawed, and the idea of a physically significant mixing length 
was for many years discredited. Recently the concept of the mixing length has been on 
more rational foundations by associating it with a length scale of the turbulent 
motion. In the present context the mixing length arises in a formal way as the length 
scale of the eddy diffusivity. 

The result of Eq. 1.88 gives some indication of the structure that the eddy vis-
cosity must have. It is the product of a characteristic velocity—in this case the shear 
velocity—and a characteristic length of the turbulent motion. The characteristic 
length must express the size of the dominant eddies that contribute to the turbulent 
shearing stress. Such eddies are among the larger ones of the turbulent motion, and the 
mixing length / = kz expresses the notion that the larger eddies are about of the 
magnitude of the distance from the waU. AU heuristic arguments leading to different 
forms of the eddy viscosity are essentially based on different conceptual models of the 
dynamics of turbulence, models yielding different characteristic lengths and velocities. 
For example, a turbulent wake with center velocity defect u^ax and width b at some 
distance x from the origin has an eddy viscosity proportional to Ujjiax ^ I' 
(Schhchting, 1968); the outer part of the turbulent boundary layer of thickness h 
forming along a flat plate has an eddy viscosity proportional to u^ x h (Clauser, 1954), 
where u^ is the velocity outside the boundary layer. The difficulty in specifying an 
eddy viscosity lies in the fact that the eddy viscosity depends on the development 
history of the turbulence structure. Only if the local turbulence structure develops in 
the same manner as the mean flow can a valid eddy viscosity be formulated which 
depends on local parameters only. This fact wih become clearer when we consider the 
structure of turbulence in disturbed boundary layers. 

In the derivation of velocity-distribution laws for the whole of the planetary 
boundary layer, it has been customary to define a suitable reference length / which has 
the asymptotic behavior / ~ z for z -> 0 and / a: G/f (or u*/f) at the edge of the outer 
layer because only in this manner can the dimensional form be correct. A formula that 
has this behavior has been given by Blackadar (1962) to 

1=—^ (1.89) 
1 + (kz/X) 

where X is the mixing length at the outer edge: 

X = 0.00027-J (1.90) 

The value of X is determined from a single profile and could be equally well recast into 
the form X ~ u*/f required by the similarity theory. A close solution of Eqs. 1.36 and 
1.37 with Eq. 1.89 is not available, and numerical techniques are required to predict 
velocity profiles. Closed solutions can be found, however, if in generalization of the 
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eddy-diffusivity concept the angle between T and A is specified as a function of z 
Lettau (1970) has shown that, if this angle is constant, then the angle ao determines 
the distribution law for eddy viscosity, ao =45° yielding the laminar constant-eddy-
viscosity solution In the same article, Lettau explored the possibility of empirically 
treating the tangent of the angle between T and A as a linear function of height He 
claims that this dependency yields results m better agreement with observation than 
any of the constant-angle assumptions 

MODELING THE PLANETARY 

BOUNDARY LAYER 

One of two methods has customarily been fohowed in modeling the planetary 
boundary layer The first method relies on obtaining, in a strictly trial-and-error 
manner, a velocity profile that is similar in the laboratory and in the field over a 
significant fraction of the boundary-layer height The second method depends on using 
only that portion of a thick, naturally developed boundary layer in a wind tunnel that 
corresponds to the atmospheric logarithmic layer Whereas the first method has the 
advantage of giving thick boundary layers at short fetches and thus requires 
comparatively short wind-tunnel test sections, the latter is theoretically more sound in 
that it enables the establishment of exact similarity not only of the mean velocities but 
also of the turbulence structure Its disadvantage is, however, that a large test section is 
required for obtaining only smah useful boundary-layer thicknesses Only the inner 
15% of the boundary layer along a flat plate is logarithmic and thus represents the 
matched layer of the modeled atmospheric boundary layer 

The Power Law 

Of particular advantage in modeling by the first method is the use of the power 
law Already in the earliest studies of turbulent boundary layers, it was found by 
Blasius (see Schhchting, 1968) and others that the mean velocity distribution in the 
whole turbulent boundary layer could well be described by the empirical law 

where u^ is the velocity above the thickness h of the boundary layer and n is an 
exponent that depends, for aerodynamically smooth surfaces, on the Reynolds 
number and, for rough surfaces, on the type of roughness 

The empirical power law, Eq 191, has two significant characteristics that make it 
very useful for work involving the whole of the layer h The law is a good average 
representation of the velocity profile over the whole boundary layer, and integral 
relations based on this easily integrated law are not far from correct For those reasons 
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the law has found wide acceptance also in meteorological work In particular, this law 
has often been applied to practical problems, such as predicting diffusion charac-
teristics (Calder, 1949) or wind-tunnel modeling of wind forces (Davenport, 1965) It 
IS a simple matter to plot experimental data on double logarithmic paper, and a purely 
empirical analysis of such plots for different types of terrain reveals the situation that 
IS shown in Fig 112 (from Davenport, 1965) The rougher the terrain (i e , the larger 
the obstructions on the surface which oppose the flow of the wind), the thicker will be 
the affected layer of air, and the more gradual will be the increase of velocity with 
height, as is reflected m the increase of the exponent n with decreasing roughness 
Quantitatively, Davenport (1960) found the results shown in Fig 1 13, where the 
thickness h and the exponent 1/n are given as functions of the roughness of the 
ground The roughness is described by the roughness length ZQ , obtained by fitting the 
logarithmic law to the velocity distribution near the ground Figure 1 13 makes it 
possible to estimate wind profiles by selecting a suitable roughness height and 
determining the coefficients of the profile from the graph The technique works quite 
well at high geostrophic winds, which are of particular interest for deterrmmng 
extreme wind loads on buildings, and the simphcity of the method makes it often well 
worthwhile to use it instead of the more elaborate procedure of Ekman layer 
determination outlined in the section titled Velocity Distribution near the Ground 

The power law is also useful in guiding efforts to artificially create thick-boundary-
layer velocity profiles in the laboratory which would allow the study of wind effects 
on relatively large-size models in wind tunnels with short test sections This 
can be done by introducing grids and other disturbances into the flow near the 
test-section entrance Typical attempts along this line have been reported by Lloyd 
(1967) and Coumhan (1969) among many others These methods do not necessarily 
increase the thickness of the constant-stress layer Apparently an increase in 
free-stream turbulence level might be more beneficial for this purpose, but the 
experimental evidence is at present not conclusive 

The power law may be used to determine which conditions must exist m the 
laboratory to satisfy the shear-stress distribution of the planetary boundary layer and, 
at the same time, to illustrate the effect of external boundary conditions on the eddy 
diffusivity In the laboratory the boundary-layer equations must be used without the 
Conohs forces 

_ an _ 9 u 1 dp , 1 9TX 9 U , 9 W _ „ /-I O ^ 
u r - + w ^ - = - - 7 ^ ^ + - ^ ' -5—+ 5 0 (192) 

9x 9z p dx p 9z ox oz 

from which we wih infer the shear-stress distribution for two different simple cases a 
constant-thickness layer and a constant-pressure layer 

When the layer, in the absence of Conohs or other body forces, is of constant 
thickness, then a pressure gradient must exist which just compensates the flux of 
momentum to the ground This pressure gradient is impressed by conditions outside 
the boundary layer, where the shear stress is assumed to be zero, so that the pressure 
gradient and the reference velocity are related by Bernoulli's equation 
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dp 
^ = —p U 
dx '̂  ° 

du_ 
' d}f 

(193) 

The pressure gradient is related to the ground shearing stress T^ through Karman's 
integral equation 

" * = ^ = ;^(" 'S2) + 5 . u „ ^ 
dx' dx 

(194) 

which IS obtained by integrating Eq. 1.92 over the thickness h of the boundary layer. 
In this equation, 62 and 5i are the momentum and displacement thicknesses, 
respectively, which, for a power-law velocity profile, become 
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82= ( —(l-—)dz = Y—^T^—.h (1.95) 
J Q "•» V "°°/ ( l + n ) ( 2 - ^ n ) 

and 

5i= r f l - - ) d z = - ^ h (1.96) 

•̂ 0 \ ^J 1 + n 

For a constant-thickness layer, we find that the momentum equation becomes 

/ 1 \ du^ 2 + 3n , dp 

^"=H^-^2^-)ir^"(l^n)(2.n)^d^ O-̂ )̂ 
where TQ is the shear stress at the ground. Typically, n = 7, so that 

- ^ = 3 . 1 4 ^ (1.98) 
dx h 

The shear-stress distribution is obtained from Eqs. 1.92 and 1.91: 

(1 + n) (2 + n) z 7- = r o ^ l 
2 + 3n h •- (Kn^ld 0") 

The shear-stress distribution is shown for n = 7 in Fig. 1.14. The distribution was 
nondimensionalized by TQ and by the height h. 

If the pressure is constant, Eq. 1.94 becomes for a power law 

2 2 d6 2 n 2 dh ,, , _ _. 
u*=u^-7-i=7 7V7 :^u^-r- (1.100) 

•" dx (n+ l ) ( n + 2) °°dx ^ ^ 

corresponding, for n = 7, to an increase in boundary-layer thickness of 

^ = 1 0 . 3 ^ (1.101) 
dx uf 

The shear-stress distribution obtained from Eq. 1.99 for the zero-pressure-gradient 
layer is given by 

•ar°1 
which has also been shown in Fig. 1.14 for n = 7. 
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Fig. 1.14 Calculated shear-stress distributions and exchange coefficients in two different types of 
boundary layers which are descnbed by the one-seventh power law, and companson with data of 
Klebanoff (1955). 

Note that the velocity distributions are identical in both cases of Fig 1 14, and yet 
there is a very large difference in shear-stress distribution Consequently the 
distribution of eddy diffusivity Kj^ is quite different for both cases Nondimensional 
eddy-diffusivity profiles are shown in Fig 1 14 as dashed curves We conclude that 
there cannot be a one to-one correspondence between velocity distribution and shear 
stress, a fact that must be taken into account m all sound models for a shear-stress 
distribution 

An assumption in the data of Fig 1 14 is that, as observations indicate, the 
exponent of the power law does not depend on x An indirect confirmation of the 
validity of this assumption is obtained by comparing the calculated profiles with 
shear-stress distributions that were measured m a wind tunnel under constant-pressure 
conditions by Klebanoff (1955) Klebanoff s data have been plotted in Fig 1 14 and 
are seen to agree very well with the calculations except at the outer edge of the layer 

An interesting observation is that, for a zero-pressure-gradient case, the shear-stress 
distribution shows a very small change of shear stress with distance from the wall In 
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the lowest 15% of the boundary layer, the shear stress varies by less than 10%. In 
contrast, the constant-thickness layer shows a shear-stress decrease of about 30% in the 
same region. The strong shear-stress gradients in the case of a constant-thickness layer 
have led Lettau (1959) to suggest that the atmospheric surface layer, because it is a 
constant-thickness layer and has a linear shear-stress distribution, be modeled in the 
laboratory by pipe or channel flow where the shear stress is also linearly distributed, 
with its maximum at the wall and a value of zero in the center of the pipe or conduit. 
The disadvantages of modeling the atmospheric surface layer in a conduit are 
associated with the effect of the walls on pressure distributions around models, or, in 
th& case of studies of exchange processes, the different boundary conditions at the 
edge of the boundary layer which affect diffusion characteristics in all but the layers 
nearest the waU. Nevertheless, the analogy is a valid one, and its limitations need to be 
explored. Generally it is felt that the assumption of a constant layer is not critical in 
view of the small change in thickness required to maintain a typical wall shear stress. 
For example, a shear stress with a friction coefficient of u*/u^ of about 0.0025 is 
typical, and under these conditions the growth rate dh/dx of the boundary layer is 
about 2.5%. 

The Logarithmic Law 

Although valid only over the lower 15% of the boundary layer along a flat plate, 
the logarithmic layer in which the velocity distribution is expressed by 

u 1 z 
— =Un^ (1.103) 
u* k ZQ 

is the only portion of the laboratory boundary layer which is the exact counterpart to 
the corresponding sublayer of the planetary boundary layer. In fact, the simplest way 
of deriving the logarithmic law with the fewest assumptions is by using arguments 
identical to the one used in the subsection Dimensional Considerations and the Inner 
Law of the Planetary Boundary Layer, except that the boundary-layer thickness h and 
the Reynolds number replace the layer thickness h and the Rossby number. Originally 
the logarithmic law had been derived by von Karman on the basis of arguments on 
local similarity of the profiles and shortly thereafter by Prandtl, who used the concept 
of the mixing length (Schlichting, 1968). 

Within the logarithmic sublayer, modeling of the atmosphere then means exact 
scaling of the logarithmic law, and the effect of Coriolis forces can be neglected. 
Scaling requires that u« be the same in field and laboratory and that ZC/ZQ be constant 
in model and prototype, where ZQ is the roughness height and z^ is a scaling length, 
such as the dimension of a building or of a terrain feature. An additional requirement 
is that 

^ ^ ^ > 7 0 (1.104) 
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to ensure independence of the flow from the Reynolds number. However, since 
changes of u«, for example, with Reynolds number, are small, this requirement can be 
relaxed if mean velocity profiles only are to be considered. 

Strictly speaking, the model and prototype cases will differ in the distribution of 
shear stress, which varies slightly with height, and at a different rate in a 
zero-pressure-gradient boundary layer as compared with the planetary boundary layer. 
A more refined technique is theoretically possible, by delicately adjusting the 
wind-tunnel pressure gradient until the laboratory shear stress has exactly the same 
scaled distribution as the atmospheric boundary layer. Usually, however, such 
refinements are not justified either by the accuracy of field observations or by the gain 
in agreement between model and prototype results, particularly since the logarithmic 
law is valid only in the lower 15% of the boundary layer in which the shear stress 
deviates not much more than 10% from its value at the ground. 

The atmospheric modeling does not exhaust the possibilities of wind-tunnel 
applications to the study of the atmospheric surface layer. A number of basic studies 
are needed to fill the gaps in our knowledge of the neutrally stratified boundary layer. 
Important contributions could be made by fundamental investigations of the nature of 
aerodynamic roughness, although this problem has defied previous attempts. Ideally, it 
should be possible to infer the aerodynamical behavior of a surface from the geometry 
and perhaps the elasticity of the roughness elements of the surface, but it is not easy 
to construct a model of the roughness effect on that basis alone. More fruitful are 
experiments on typical configurations of the roughness elements for atmospheric 
boundary layers, such as the ones made by Chamberlain (1966), Hsi and Nath (1968), 
and Plate and Quraishi (1965). 
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THE STRATIFIED ATMOSPHERIC 

BOUNDARY LAYER 

NEAR THE GROUND 

INTRODUCTION 

The diurnal changes in solar radiation set up a cycle of cooling and heating of the 
planetary boundary layer which is strongly reflected in the wind field. Early in the 
morning, before sunrise, the stratification of the air layer is stable because the ground 
is cooler than the air masses above. With the rising of the sun, on a clear day, solar 
radiation makes the ground heat up much faster than the overlying air. When the 
ground is warmer than the air, heat moves from it to the air in contact with the 
ground. The warm air expands and becomes lighter than the air above it. Parcels of 
heated air tend to move up into the cooler air above while cooler air moves down, i.e., 
the air layer is unstable. If the air could adjust instantaneously to the buoyancy that is 
generated by the heating, a layer of constant (potential) temperature equal to that at 
the ground would be maintained at all times. Actually, however, the heating of the air 
lags behind the heating of the ground. Clear and dry air over dry ground obtains 
almost all its heat from the ground. Since directly at the ground no air velocities can 
exist, the transfer of heat from the ground takes place by molecular conduction, down 
a very strong temperature gradient. The molecular-conduction layer is very thin and 
changes into the forced-convection layer in which heat is transported by a turbulence 
that is almost entirely caused by mechanical, i.e., shear-stress, action. At larger 
distances from the ground, turbulent shear stresses become progressively weaker and 
gradients in both temperature and velocity decrease. The temperature distribution 
remains superadiabatic; but with increasing heights less turbulence is maintained by 
shear stresses, and an increasing amount of turbulence is buoyancy induced. The 
forced-convection layer gradually changes into a free-convection layer. Out of the 
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superadiabatic layer, turbulent parcels of warmer air rise into colder regions aloft and 
mix with the surroundings in the free-convection layer, which is vigorously agitated 
because the warm thermal plumes or thermals have significant vertical uplift velocities, 
and the mass transport associated with them creates a downward motion of colder, but 
also turbulent, air. The result is a mixing of the air which is so strong that in the 
free-convection layer the (potential) temperature is almost constant (Webb, 1958). 

The layer in which the temperature field is influenced by the heat flux from the 
ground is the convective layer. It is capped by an inversion, i e., by the stably stratified 
air aloft, which begins near the elevation where the undisturbed stable potential 
temperature is equal to the mean potential temperature of the convective layer. In the 
course of the day, when the ground gets warmer and the air above it heats up, the 
convective layer increases in thickness, at a rate that is determined by the heat flux 
from the ground, which in turn depends on the temperature gradient across the 
superadiabatic layer. 

Late in the afternoon an instant of quasi-equilibrium is reached, and the ground is 
at nearly the same temperature as the layer above it Since there are then almost no 
gradients in temperature at the ground, the conductive heat flow from the ground 
ceases to exist, and in the absence of fluxes all temperature fluctuations must die out, 
so that the neutral stratified planetary boundary layer is asymptotically free of 
fluctuating temperature everywhere. It is this condition to which the considerations of 
the previous chapter apply, and it is readily apparent that it is a rather exceptional 
state of the atmosphere. 

Later in the day the temperature of the air exceeds that of the ground, and the 
ensumg heat flux down to the ground results in a stably stratified temperature-gradient 
layer near the ground and causes a gradual cooling of the convective layer. The height 
at which the upper inversion occurs is lowered, while a ground-based inversion builds 
up, particularly after the sun sets. If the conditions for cooling of the surface persist 
long enough, then eventually the upper and lower inversions destroy the constant-
temperature layer between them and join, and further cooling steepens the stable 
temperature gradient until the next morning when the cycle starts again. 

The stable boundary layer at the ground builds up in time in the same manner as 
the unstable superadiabatic layer. But the thicker the stable layer gets the more the 
turbulent energy balance in its upper part is dominated by the heat flux toward the 
ground, and there exists a critical condition, corresponding to a critical flux 
Richardson number of the local flow at which turbulence suddenly becomes almost 
completely damped out by the buoyancy effect, so that the stable surface layer and 
the remnants of the convective layer aloft become uncoupled because the eddy 
viscosity drops to near the value of the molecular viscosity. The stable surface layer is 
very quickly retarded in a matter of minutes (Townsend, 1967) by the action of the 
friction on the ground which is transmitted to the decoupled lower layer by the 
turbulent shear stresses that exist m it, while for the same reason the upper layer 
accelerates. After a very short time, the velocity gradient everywhere in the lower layer 
IS reduced so much that the flux Richardson number increases above its critical value 
and turbulence is suppressed everywhere the flow approaches laminar flow in the 
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lower layer except near the interface above. Since across the interface between the two 
layers the shear stress must be continuous, it follows that 

9u 9-u| 
" 9z u 9z|/ 

where the subscripts u and / refer to conditions below and above the interface, 
respectively, and u is the mean velocity The eddy viscosity ey is near the molecular 
value, 6; IS therefore much larger, and a strong gradient develops near the interface m 
the lower fluid which lowers the Richardson number and thus permits turbulence to 
exist at the interface. Too much turbulence would reduce the gradient again, therefore 
the turbulence is likely to be weak It is sufficiently strong, however, to mix the stable 
layer below the interface with the convection layer above, thus providing a mechanism 
by which the stable layer can thicken in time 

With relammarization of the lower layer, its coupling to the ground is greatly 
reduced, and the effect of the shear stress on top of the lower layer together with the 
Coriolis force leads to an acceleration of the flow m the lower layer But, since only 
molecular viscosity is acting near the top of the lower layer, the acceleration leads to a 
very slow increase of the velocity which reaches geostrophic magnitudes only after 
hours When in the course of this development the gradient Richardson number falls 
below a critical value either because of changes in heat flux or because of the increase 
in velocity gradient, then the lower layer becomes turbulent again and is quickly 
retarded in the same manner as before, until the heat flux reverses due to changes in 
surface temperature after sunrise. 

The very complex mechanism outlined m the previous paragraphs provides the 
reason why planetary-boundary-layer models of the kind considered m the first 
chapter are not likely to be apphcable to the stratified atmosphere unless in unstable 
conditions the convection layer is so thick that the whole of the Ekman spiral is 
contained m it When the convection layer is thinner than the Ekman layer, it is 
necessary that analytical models describing the boundary layer take account of the 
change in turbulence characteristics across the interface between convection layer and 
outer, stable region. As will become more evident in Chap. 3, the structure of 
turbulence near the mterface is far from well known, but it is almost certainly not 
possible to neglect the temporal development of the convection layer. Steady-state 
models fail to adequately predict the experimental parameters of Ekman spirals 
observed in the lower atmosphere (as is evident, for example, in the collection of data 
reported by Zihtinkevich et al , 1967), and no reasonable models exist at this time to 
quantitatively describe the stratified planetary boundary layer There exists, however, 
in stratified planetary boundary layers also an inner layer, corresponding to that 
observed under neutral conditions in which Coriolis forces have neghgible effects This 
IS the layer in which ground shear stress dominates in determining the flow conditions 
The dynamic conditions in this stably or unstably stratified layer near the ground will 
be discussed in this chapter, and all Coriolis effects will be neglected. 
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BASIC EQUATIONS 

FOR SLIGHTLY STRATIFIED FLUIDS 

The Conservation Equations 

The analytical treatment of the thermally stratified planetary boundary layer is 
severely limited by the complexities of the basic field equations. To the Navier—Stokes 
equations for turbulent fluids, which were discussed in Chap. 1, one must add the 
conservation equation for the energy as well as an equation of state and a set of 
constituent equations for the dependency of the fluid properties on temperature and 
pressure. The most important effect of an addition of heat to the fluid is, however, the 
buoyancy effect induced by the density stratification of a fluid with temperature 
gradients. Generally the density changes are small compared with the mean density, 
and they become effective in disturbing the fluid only when coupled with the 
acceleration of gravity, i.e., by inducing buoyancy forces. 

In considering the basic equations of the diabatic planetary boundary layer, we 
shall first derive the general equations subject only to the restrictions of small density 
fluctuations. Ultimately we shall be interested here in only a fully developed layer of 
constant thickness which is heated or cooled uniformly from below, without 
considering a feedback between the ground temperature and the temperature of the 
fluid, i.e., the temperature of the ground is a constant independent of the downwind 
distance x that is given as part of the boundary conditions. We shall also restrict the 
discussion to a two-dimensional mean flow field for which Coriolis effects can be 
neglected. The z-axis is directed vertically upward from the ground, and the ground is 
assumed to be horizontal. For this situation the flow field is governed by the following 
set of equations: 

The equation of continuity: 

( l + v v ) p + p V - v = 0 (2.1) 

The momentum equation: 

( ^ + vVJv=--ivp-gk + y 

The energy equation: 

PCv ( 9̂  + V • V jT + pV • V = kV^T + p0 + pcp (R (2.3) 

The equation of state: 

p = pRT (2.4) 

V^v + -V(V A (2.2) 
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In these equations v is the instantaneous velocity vector, T the instantaneous 
temperature, and p and p the instantaneous density and pressure, respectively The 
quantity p0 in Eq 2.3 is the instantaneous dissipation of kinetic energy into heat, and 
pCpiR represents the heat added instantaneously by radiation. The thermal conduc-
tivity k, the specific heat at constant volume Cy, and the kinematic viscosity u are all 
assumed to be independent of the temperature or density fluctuations and determined 
by some mean value. 

The energy equation and the equation of state reflect the assumption that the air is 
an ideal gas in which the internal energy is equal to CyT, where T is the local 
temperature. These conditions are well satisfied in the atmosphere The basic 
equations can also be derived for more general types of fluids, m the same manner as 
shown here, and the results, under the same restrictions as used here, are found to be 
identical (Dutton and Fichd, 1969) 

Dry and clean air is transparent to thermal radiation, and the radiation term in the 
energy equation is important only when water vapor or pollutants, like CO2 or 
particulate matter, exist in the air. Unless stated otherwise, we shall be concerned only 
with dry and pollutant-free air 

Hydrostatic Equations 

The simplest state of the atmosphere is its state of rest. When all velocity 
components are zero, Eq. 2.2 reduces to a balance between gravity and vertical 
pressure gradient 

1 e., the pressure decreases with height from its surface value. A pressure value in the 
atmosphere at rest [expressed in millibars (mb)] is therefore a measure of the altitude, 
and in meteorology the two are occasionally used interchangeably. 

It IS useful at this stage to also introduce the potential temperature 6 for the 
atmosphere in hydrostatic equilibrium, which is defined as the temperature that a 
parcel of air, of temperature T and pressure p at its present level, would have if 
brought adiabatically to the 1000-mb pressure level in the atmosphere at rest. Since, 
for an adiabatic process, 

T p"" = constant (2.6) 

where K = R/cp (see Fleagle and Businger, 1963), it follows that the potential 
temperature is defined to 

T-p"''=6l(1000mb)"'' (2 7) 
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The vertical gradient of potential temperature is found, by differentiating the 
logarithm of Eq 2.7, to 

1 30 _ 1 9T R 1 9p . , „. 
d dz T 9z Cp p dz 

Replacing 9p/9z by Eq. 2.5 and p by Eq. 2.4 yields, for the gradient of potential 
temperature, 

9 i = i f 9 I + J . \ ^ a i + i . (2.9) 
9z T \ 9z Cp/ 9z Cp 

because the potential temperature is not much different from the actual temperature 
in total magnitude. The ratio g/Cp is the adiabatic lapse rate equal to about 0.01 °C/m, 
which IS the temperature gradient that would be found in an atmosphere at rest 
without heat input from the boundaries In an atmosphere where the temperature 
gradient balances the adiabatic lapse rate (i.e., where the potential temperature 
gradient is zero), an air particle that is moved (very slowly) around adiabatically 
always has the temperature of the surroundings and is thus in neutral equilibrium. In 
an atmosphere with a positive potential gradient, an air particle that is moved from a 
lower level adiabatically to a higher level would have a temperature below that of its 
surroundings, it would therefore be heavier and fall back to a lower level. If the same 
particle was displaced adiabatically downward, it would be lighter than its surround-
ings. Consequently the particle in its original position is in stable equilibrium. 
Conversely, in a negative potential temperature gradient, the particle displaced from its 
equilibrium level would tend to move further away from its original position, at its 
original position it therefore is in unstable equilibrium. An atmosphere is called 
unstable if it has a negative potential temperature gradient, neutral if it has a zero 
potential temperature, and stable if it has a positive potential temperature gradient. 

The Conservation Equations to the Boussinesq Approximation 

We shall now derive the equations of motion for deviations from a steady reference 
state. If the reference state changes only very httle with height, it will be possible to 
greatly simplify Eqs. 2.1 to 2.3. This has first been shown by Boussinesq (1903) for an 
incompressible medium, such as water, in which density fluctuations arise from 
admixtures of fluids of different specific weights. Recently, however, it has been 
shown by Spiegel and Veronis (1960) that, for a shallow layer of fluid whose lateral 
scale IS much larger than its vertical scale, the Boussinesq approximations can be 
derived without the restriction of mcompressibility. This derivation was restated and 
somewhat elucidated by Calder (1968). Ogura and Phillips (1962) have shown that the 
assumptions of Spiegel and Veronis (1960) are compatible with all likely states of the 
atmosphere caused by small perturbations of the rest state except for those 
perturbations which are propagated by pressure fluctuations, i.e., acoustic waves. 
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These must propagate with infinite velocity, i.e., they cannot exist. Finally, Dutton 
and Fichtl (1969) have shown that the Boussinesq approximation is not necessarily 
restricted to shallow layers. 

In deriving the equations of motion to the Boussinesq approximations, we consider 
the set of Eqs. 2.1 to 2 4 for the motions induced by small perturbations of a 
reference state for a fluid at rest, i.e., defined by 

V R = 0 (2 10) 

We also define the reference temperature condition as that of constant potential 
temperature, so that 

^-^=-^ (211) 
9z Cp ^ ' 

or 

''i'-^) (2 12) 

where TQ is the ground temperature. Note that the assumption of a steady reference 
state was made, all time variations of the reference situation must be accounted for in 
the equations for the deviations from the reference state A consequence is that the 
time average of the deviation from the mean is not zero It would, of course, be 
possible to consider, instead of the steady reference state, a time-dependent state, in 
which case the temperature profile would no longer be hnear 

The equations for the perturbations are obtained if the equations of the reference 
state are subtracted from Eqs 2.1 to 2 3. To facihtate this operation, we find it useful 
to split the variables 

Let the deviation of the density from the reference state locally be denoted by p' 
and the deviations of pressure and temperatures by p' and T', respectively, so that 

P = P R +p' = Pm + AP+P' 

P - P R + p ' = Pm+Ap + p' (2 13) 

T = TR + T' = Tm + AT + T' 

where the subscript m denotes mean values for the whole layer Now subtract the 
reference state from the equations of motion and energy 

( ^ + v v ) v = - l v p ' - g ^ k + Jv 'v+jV(V-v) l (2.14) 

and 
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pcv ( l ^ + v- VJT = - p V - v + kV^T'+p0 + pCp (R (2 15) 

The quantities 4> and (R m Eq. 2.15 remain unchanged because there is neither 
dissipation nor radiation in the reference state. Now assume that the fluctuations in 
density as well as the deviation of the reference density from some constant mean 
value, Pn,, are small. Then the density can be expanded about the mean value in a 
Taylor series, and from the equation of state, Eq 2.4, one obtains 

/ Ap A T \ / p ' T ' \ 
p = p^ (^U j+,_^ (-- — ) (216) 

^ I'm i m ' \ Pm i m ' 

where the first term on the right is the reference density PR With this expression the 
vertical component of the first two terms on the right side of Eq. 2 14 becomes 

- p 9 z - S 7 ^ P 9 Z P " T ; 7 9 P ' I ^ T T . ^̂ - -* 

Spiegel and Veronis (1960) have argued that the length Pm/gPm = h is very large, so 
that the ratio p'/h is much smaller than 9p'/9z But since p' is caused by the 
fluctuating velocities, it does not appear possible to make assumptions on p or 9p /9z 
without considering the velocity field. Actually it can readily be shown that dropping 
the p' term implies an assumption on the ratio of p /T'. For if both the last term of 
Eq 2.17 and (l/p)(9p'/9z) are to be retained, then they must be terms of the same 
order, i.e.. 

Consequently 

9z 

and, if we consider this term small compared with 1, then we are in effect assuming 
that, with Eqs. 2.13 and 2 16, 

^ (2.20) 

which we shall use henceforth 
Consider now the continuity equation, Eq 2 1, which can be written 
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pV-v = - f | p + v VJP (2.21) 

In view of Eq. 2.13, it is readily apparent that the right side of Eq. 2.21 is a quantity 
of order p', which is smaD. One therefore usually uses the approximation 

V-v = 0 (2.22) 

in problems of thermal convection. At this time, however, it is not necessary to make 
this assumption. Instead we write, with Eq. 2.15, 

Notice that Ap/p^ depends on z only. We therefore find 

(i^^-^)f=f^-|̂ ^n^ (2.24) 
\0l / Pm Pm 9z Pm 

where use has been made of Eq. 2.5, and a term multiplied with PR — p ^ has been 
neglected. Consequently the continuity equation becomes, with the equation of state, 

V-v = ̂ ^ f | - + v - v ) T + : ^ w g (2.25) 
Pm \9t / Pn, 

Elimination of the term p V- v ~ p^, V- v in the energy equation, Eq. 2.15, by means 
of Eq. 2.25 yields to the same approximation: 

PmCp ^ ^ + v v ) T = k V ^ T ' - w g p „ + p ^ 0 + p^Cp(R (2.26) 

where the relation 

Cp = Cv + R (2.27) 

has been used. 
An alternative form of the energy equation is found by splitting T into T ' + TR , 

and, since the latter is a function of z only, we obtain, after division by PmCp and use 
of Eq. 2.11, 

( | : + v v ) T ' = - ^ V ^ T ' + -^+(R (2.28) 
\ 9 t / PmCp Cp 
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Finally, the equation of motion is given to 

( l ^ ^ - ^ j ^ - i ^ P - ^ g ^ " ^ ^ ^ ^ ' ^ (2.29) 

where it has been assumed that V^v> V( V' v), which can be inferred either from the 
same order-of-magnitude arguments for V • v as led to Eq. 2.25 or from Eq. 2.22. 

Equations 2.22 or 2.25, 2.26 or 2.28, and 2.29 form the basic set of equations for 
calculating the thermally stratified planetary boundary layer to the Boussinesq 
approximation. It should be noted that they are essentially identical to the set of 
equations obtained by assuming the atmosphere to be incompressible, except that the 
mean temperature must be replaced by the mean potential temperature. Such 
simplifications, however, cannot be obtained for a moist atmosphere where in addition 
a conservation equation for water vapor appears which is coupled to the other 
equations through the equation of state. 

Even for dry air it is readily apparent that the Boussinesq equations are not 
solvable in their general form because of their highly nonlinear character. Further 
simplifications arise in the important special case of free convection, for which the 
pertinent equations are given in Chap. 3. 

TURBULENT MOTIONS IN STRATIFIED SHEAR FLOWS 

TO THE BOUSSINESQ APPROXIMATION 

The Time-Averaged Equations for Turbulent Motions 

in a Thin Fluid Layer 

We shall now give the equations equivalent to Eqs. 2.22, 2.28, and 2.29 for a 
turbulent flow field whose velocity and temperature fields are described by 

v = v + v' (2.30) 

where 

v • i = u = u(z) + u'(x,y,z,t) 

v j = v = v'(x,y,z,t) (2.31) 

V • k = w = w'(x,y,z,t) 

and 

6 = e(z) + 0'(x,y,z,t) (2.32) 
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where the overbar denotes time averages, and u', v', and w' are the fluctuating 

velocities of the flow field, which, to the approximation of Eq 2 22, are related by the 

continuity equation, 

V v' = 0 (2 33) 

The change from T to 6 reflects that deviations from the potential temperature are to 

be used 

We shall now restate the equations of motion in terms of these quantities First, 

Eq 2 29 IS readily seen to become the set of equations 

9(u + u ' ) ^ , - ^ '% 9u' , 9u' ,9(u + u') 1 9 ( p ' + p ) „2r > ^-\ /-, •5/.̂  
-'^— ^+(U + U)^— + V ^— + W -^^r ' = ^^ ;̂;—i-̂  + j^v (u +u) (2 34) 

9t 9x 9y 9z p 9x 

^ - + ( u + u ) — + v ^ - + w - r - = - - ^ + yV V (2 35) 
9t 9x 9y 9z p 9y ^ ' 

9w' , - K 9w' ; 9w' ; 9w' 1 9p' , , p ' 
— - + (u + u ) - r - + V ^ - + W ^ - = ^ - H j ; V ' w - g ^ (2 36) 
9t 9x 9z 9z p 9z p 

where the subscript m has been dropped We note that these equations are identical to 

those in Chap 1, except for the last term in Eq 2 36, which is the only term due to 

thermal stratification In addition, however, we have to consider the energy equation, 

which becomes, from Eq 2 28, 

-^^-r ^ + (U + U ) T — + V ^—+ w -^^^ ^ = kV (0 + 0 ) + 7^+fK (2 37) 
9t 9x 9y 9z Cp 

where k = k/p^Cp has been used It is advantageous to express the dissipation <j) also 

by its mean and fluctuation parts Thereby, one must realize that in turbulent motion 

the dissipation consists of three parts ( l ) t h a t due to the mean motion which is 

denoted by e^,, (2) the mean value e of the dissipation of the turbulent motion, and 

(3) the deviation e' of the instantaneous value from the mean, so that 

0 = £„, + e + e' (2 38) 

From these sets we first obtain the time averages 

9U 1 9p 9 / 9U ~ n \ r^ ,„^ 

^ - = - - ^ + r - l i ^ - 5 - - u w ) (2 39) 
9t p 9x 9z \ 9z / 

and 

? ? . | „ , . . E , . r . ! ^ (240) 
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where use has been made of plane homogeneity and of the continuity equation, 
Eq 2.33. 

If we multiply Eq. 2.34 by u and average over time, we obtain the change of 
kinetic energy of the mean motion 

2 dt 
1 - 9p , - 9 / 9u ~r~r\ ^̂  .,x 

— u ^ + u — U — - u w I (2 41) 
p 9x 9z \ 9z / ^ ^ 

where the operator (d/dt) = (9/9t) + v • V • Multiplying Eqs. 2.34 to 2.36 with u', v', 
and w', respectively, time averaging, and adding yield the energy equation of turbulent 
motion, as in Chap 1 

in which only the term (g/T) vj'd' reflects the effect of buoyancy, it is the 
buoyancy-production term of turbulence. 

If Eq. 2.37 IS multiplied by 9' and the time average is taken, a similar equation is 
obtained for the conservation of turbulent temperature fluctuations 

i ^ = - i u; ^ - w'e'-l^ + Wv'e' + 6i'e' (2.43) 
2 dt 2 9xi 9z 

I II III IV V 

in which the fluctuating part of the dissipation is neglected.* In Eq. 2.43, term I is the 
change in temperature fluctuations. With the help of the continuity equation, the 
advection term, term II, can be expressed as 

' 90 9 ; . ,2 _ 9 I„I2 /T . ,^ 

Ui -— = ^— Ui0 •' = —w 6 (2 44) 
9x, 9x, 9z 

as is usual. Term III denotes the production of fluctuating temperatures through the 
mteraction of the turbulent heat flux with the temperature gradient Term IV 
combines the loss of energy from the fluctuating temperatures into mean temperatures 
(a loss that is usually denoted by —et) with the molecular-heat-diffusion term (a term 
that IS small compared to term II and therefore negligible). Term V is the radiative 

*In neglectmg e'e', we are aware that the fluctuating dissipation is mostly associated with the 
high-frequency end of the velocity spectrum. Therefore, even if the dissipation were correlated 
strongly with the temperature, the covariances would be very small because e' is small m the 
frequencies where e' has significant magnitudes 
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change of turbulent temperature fluctuations which will be discussed below. Then the 
energy equation becomes 

^ ' = _ | _ ^ 7 ^ 2 _ 2 ^ ^ - 2 e t + 2 « ¥ (2.45) 
dt 9z 9z 

Equations 2.42 and 2.45 together form the most useful set of conservation equations 
for stratified turbulent flow. Other conservation equations, for example for w'0', can 
be obtained from the set of Eqs. 2.34 to 2.37 by multiphcation with a fluctuating 
component and averaging in a straightforward manner. For example, to the same 
approximation as Eq. 2.45, we find for dv/'O'/dt [but with the term (0'/p)(9p'/9z) 
neglected]: 

dw 61 dw'd -fT 9T 
dt 9z 9z T 

+ w ^ + ̂ g = ewe+w'(R' (2.46) 

where 

ewfl=kw'v^0 +Ĵ 0 V'w' (2.47) 

is a dissipation term. 

The Effect of Humidity on the Conservation Equations 

The presence of water vapor in the air changes the conservation equations due to 
two important physical effects. First, since the specific weight of water vapor is larger 
than that of air, the density of moist air differs from that of dry air, thus changing the 
hydrostatic equilibrium. Humidity fluctuations contribute to density fluctuations, and 
the density effect of water vapor is therefore found both in the mean (reference) state 
and in the energy balance of the turbulent motion. The former can be accounted for 
by defining a virtual potential temperature as that equivalent dry-air potential 
temperature which would produce a mean reference state of stratification that equals 
the observed state of the moist air. The latter gives rise to a buoyancy flux because the 
fluctuations in the water-vapor concentration affect the buoyancy term in the energy 
equations of the turbulent motion. 

The other physical process that is affected by the presence of water vapor is 
radiation. Dry air is transparent to radiation, but in moist air the long-wave radiation 
from the ground is partially absorbed by the vapor and is thus changed into sensible 
heat that will, of course, influence the temperature structure. The problem of 
radiation absorption by vapor is much more difficult to treat because of the highly 
nonlinear radiation equation. That problem will be outlined in the next subsection. 
Here, we shall consider the effect of water vapor on the density structure of the 
atmospheric boundary layer. 
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The equation of state applies to any ideal gas, and for moist air it is as valid as for 
dry air. It is, however, convenient m atmospheric calculations to operate with the 
properties of dry air and, when the air contams water vapor, to express its effect in a 
virtual temperature Ty, which is derived as follows. Let the subscript A denote dry-air 
conditions and let the subscript W pertain to water vapor. Then the total density of a 
unit volume of moist air is 

P = PA + Pw (2.48) 

where each of the constituents corresponds to its own partial pressure. Since both 
vapor and air are approximately ideal gases, it follows that 

where pw is the partial pressure of water vapor By introducing a= RA/RW ~ 0.622, 
we can write Eq 2.49 as 

P = ^ 
RAT 

l + ^ ( a - l ) | (2.50) 

Now Pw/p IS proportional to the absolute humidity ^, i.e , the weight of vapor per unit 
weight of moist air, as is seen from the relation 

^ ^ P w ^ P w _ R _ ^ ^ P w (2.51) 

P P Rw P 

where it has been assumed that the amount of vapor is very small, so that R «= R^. It 
follows that 

^ = l r ( ^ - Q ^ ^ ) - R T ( i ' o 6 g ) - M v ^^-''^ 

where Ty is the virtual temperature 

Tv = T(l + 0 6 ?) (2 53) 

The use of the virtual temperature in lieu of the actual temperature makes it possible 
to use the equation of state for moist air just like that for dry air However, it must be 
noted that the virtual temperature is not duectly related to the heat content of a 
volume of air, and thus the conservation equations for heat do not apply directly. For 
this reason, only the case of dry air will be considered in the sections on "Mean 
Velocity Distribution in Stratified-Boundary-Layer Flows" and "Temperature Profiles 
and Heat Flux in Stratified Air" 
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Further comphcations arise when the humidity content becomes large enough for 
condensation to take place or when liquid water is present which can evaporate We 
shall not discuss such cases here 

Next we consider the contribution of humidity fluctuations to the balance of 
turbulent energy They will affect only the buoyancy term of the turbulent-energy 
Eq. 2 42. The total density fluctuations are expressed by means of Eqs 2 16 and 2.52 
to 

^ = - ( ^ + 0 . 6 1 ' ) (2.54) 

Introducing this expression into buoyancy term and averaging give Eq. 2.42 in the 
following form 

d^ + 9 ^ ' /P , A =_uV|H + | ( ^ + 0 . 6 w r T ) - e (2.55) 
dt 9z \ p ^ / 9z T 

We may define the fluxes (per unit area) as 

H = p c p ^ (2 56) 

where H is the flux of sensible heat and 

E = p ^ ' (2 57) 

which IS the flux of water vapor. The latter is related to the quantity 

Q=pLw' | ' = LE (2.58) 

where Q is the latent heat flux. The coefficient L is the latent heat of condensation. 
I.e., that amount of heat which would be released if the water vapor present in a unit 
volume were condensated to water. With these expressions the buoyancy term 
becomes 

_ i ^ = _ i _ ( H + 0 . 6 ^ Q ) (2.59) 
p pTcp \ L / 

When T is about 20°C, then 

0 . 6 ^ ^ 0 . 0 7 (2.60) 

so that Q must be about 15 times larger than H to be of equal importance (Ball, 1960). 
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A measure of the effect of water vapor on the turbulent flux is the Bowen ratio 
defined to 

B = ^ (2 61) 
Wo 

where the subscript zero pertains to conditions at ground level The Bowen ratio 
evidently depends on the amount of moisture that is available at the ground surface, 
ranging from infinity in the desert to values of about 0 1 over the open ocean. In the 
latter case the contribution of the latent heat to the buoyancy term cannot be 
neglected, and one must infer that for progressively moister surface conditions the 
latent heat increases m importance On the other hand, it is clear that for a surface in 
equilibrium with the incoming radiation the buoyancy term is, under otherwise 
identical conditions, substantially reduced by the process of evaporation This follows 
because in that case the heat AH available for heating the air at the surface, i e , the 
difference between net radiation and heat conduction mto the ground, is balanced by 
the sensible heat flux H and the latent heat of evaporation LE, i e , 

"(•4j AH = H+LE = H l l + - j (2 62) 

Over a dry surface LE is zero, and it follows from Eq 2 55 that the buoyancy term 
near the ground (but above the thin conduction layer directly at the ground) is equal 
to 

_ A l ^ . _ ^ (2 63) 
P pTcp 

On the other hand, for a Bowen ratio of 0 1, the flux of sensible heat H is only Vn 
AH, the rest of the heat is used to convert liquid water into vapor Therefore the 
buoyancy term has increased only to 

g ^ - r _ gH / _ 0 0 7 \ _ g AH17 
- - p w = — ^ ( 1 + - — I = — — —- (264) 

p pTcp \ B / pT Cp 11 

1 e , over a saturated surface the buoyancy is only about 15% of what it would be over 
the desert, at the same amount of AH 

It IS obvious that the result of Eq 2 64 cannot be applied directly to any particular 
surface at any particular time because too many factors have been disregarded which 
govern the energy-balance Eq 2 62 To compare the relative effectiveness of buoyancy 
over different surfaces requires that the local and temporal terms of the energy budget 
be considered Also, in a moist air the long-wave radiation of the ground is "trapped" 
by the water vapor in the air, whereas dry air is transparent to it Therefore in a moist 
atmosphere it is necessary to assess the heat flux due to radiation 
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The Energy Equation with Radiation Heat Transfer 

Since the sun's short-wave radiation reaches the earth's surface with very little 
attenuation by the air in the atmospheric boundary layer and since the long-wave 
radiation from the ground can be trapped by the lower atmosphere because of the 
absorption characteristics of moist atmospheric air, it follows that some of the changes 
of the heat content of the atmosphere must be associated with radiation from the 
ground Here we shall not give the derivation of the radiation equation for mean 
radiation effects on the temperature distribution, for which reference may be made to 
Fleagle and Businger (1963) or the more fundamental and elaborate treatment by 
Goody (1964). It is usually assumed that the direct effect of radiation on the mean 
temperature distribution is small, at least in air with low humidity, although, in a 
paper by Gayevskaya (1962) m which extensive reference is made to the meteorologi-
cal literature on the subject, the conclusion was reached that at least in stable 
nighttime conditions radiation may be a significant factor m determining the mean 
temperature distribution near the ground (Elhott, 1964). Coantic and Sequin (1970) 
have calculated that over water at moderate winds radiation may account for as much 
as 40% of the total heat flux and for a highly nonlinear distribution of the heat flux 
with height. The absolute value of the heat flux is always increased by radiation, and it 
is, strictly speaking, not permissible to neglect radiation over water Over land, 
radiative heat fluxes are smaller, and in our discussions we chose to ignore the effect of 
radiation on mean temperatures, not so much because it is negligible but because its 
effect adds further complications to the already difficult discussion of thermally 
stratified boundary layers. We must, however, keep m mind that, at least very near the 
ground, radiation can be an important factor which at least rules out the possibility of 
determining experimentally the heat flux at the ground by assuming a state of pure 
conduction and measuring the temperature gradient very near the ground. 

Radiation also affects the stabihty of the atmosphere in the layer close to the 
ground, as was shown by Townsend (1958b). A fluid particle whose instantaneous 
temperature deviates from the local mean temperature by an amount d' radiates to its 
surroundings or receives radiation from its surroundings, and, since the largest effect of 
radiation is felt at the shortest distance from the particle, the radiation has the 
tendency to strongly smooth out the fluctuations over short distances, i.e., the effect 
of radiation is felt more strongly in the high-frequency end of the temperature-fluctu-
ation spectrum. The overall effect of radiation is a reduction in the mean square value 
of the turbulent temperature fluctuation. Formally the balance equation for turbulent 
temperature fluctuations (Eq. 2.45) becomes 

^ = _ ^Ve^ + 2 ^ $ - ~ 2et - 2(30^ (2.65) 
dt 9z 9z ' 

where the coefficient ^ is defined m terms of the fluctuating radiative heat flux R' by 

|3 = - = (2.66) 
fl'2 
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The negative sign in Eq. 2.66 reflects the fact that turbulent temperature fluctuations 
are always destroyed by radiation. 

Note that the radiation flux does not appear directly m the energy-balance 
Eq 2.42, its only effect there is indirect in that it reduces the d' in the heat flux term 
a' ' 6 w . 

It IS evident that Eq 2 66 is not of much use unless some relation can be found 
between R' and d' which defines j3 Such a relation has been developed by Townsend 
(1958b), to whose paper reference is made for details It is found that, when the 
temperature fluctuation is small compared to the mean temperature T, the radiation 
equation can be hnearized (see also Spiegel, 1957) and the coefficient (3(k) associated 
with the disturbance wave number k becomes (as given by Goody, 1964) 

/ 3 ( k ) = - ^ ^ k ( k ) (2.67) 

where B is the Planck function and dB/dT is the integral of the derivative of the Planck 
function over all wavelengths of the radiation, equal to 5 6 x 10^ ergs/(cm^)(sec) 
(deg). The quantity k is the effective absorption coefficient For high wave numbers 
(k -^ °°), the absorption coefficient is independent of wave numbers and given to 

k = 203pw+96pc +136po(cm"') (2 68) 

where the subscripts on the density p stand for water, carbon dioxide, and ozone, 
respectively The numerical constants pertain to a temperature of 290°K For other 
temperatures the corresponding /3 at high wave numbers can be found by supposing 
j3(k) to vary as the cube of the absolute temperature 

At medium frequencies the absorption coefficient becomes a function of 
frequency. Since by far the largest contribution to the absorption coefficient comes 
from water vapor, it is sufficient to approximate it by that of water vapor. Results 
given by Goody (1964) are shown in Fig 2.1, where both the absorption coefficient 
and the wave number have been divided by the vapor density p^. With this curve the 
total radiation loss can be found by integration over the spectrum of j3(k)S8(k), where 
Sg IS the wave-number spectrum of the temperature-fluctuation variance Unless exact 
results are required, it is usually sufficient to estimate radiation losses by multiplymg 
0'^ by a suitable average value of/3 found with the help of Fig 2.1 

The Effect of Buoyancy on Turbulence and the Richardson Number 

The presence of a heat flux significantly changes the energy balance, but not in 
such a way that the overall turbulence is reduced uniformly. Instead, buoyancy acts 
selectively and directly only on the vertical component of turbulence, whereas 
production by shear stresses mainly adds to the longitudinal, or u', component of the 
turbulence. This is readily seen from the conservation equations for turbulent energy. 
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Fig. 2.1 Effective absorption coefficient for water vapor in au, at different atmosphenc pressures. 
(From Goody, 1964.) 

which for each of the three components separately reduces, for the case of a uniform 
layer of fluid, to 

1 9u'^ 9 \^-rr-, 1 9u'^l 1 ,9u' -r-r9u 

1 9 V ^ ^ 9 [1-72—? 1 9v^l 1 '9v' 
2 ^ ^ 9 7 [ 2 ^ ^ - 2 ' ^ ^ J = p P ^ - ^ v 

1 9 ^ ^ 9 Fl—^ 1 9 ^ 1 1 ,9w' g-?r7 
2 at 9z L2 2 9z J p 9z T 

(2.69) 

(2.70) 

(2.71) 

These equations are obtained in the same manner as Eq. 2 42 When there is no shear, 
any anisotropy in the turbulence enters into the vertical component from the 
buoyancy term, and the other two components obtain energy only indirectly through 
the redistributing action of the diffusion terms (in the square brackets) and the 
pressure term. These terms have the tendency to homogenize the turbulence and to 
make the turbulence field lose connection with its generation history. 
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In the case of shear flows considered here, the longitudinal component acts as a 
source term of energy for the lateral and vertical turbulence which locally raises the 
turbulence level of that particular component until the energy flux into it is balanced 
by the dissipation term. In the absence of buoyancy, there is not much preference 
between the v' and w' components; they tend to be very similar in magnitude and 
distribution. In the absence of shear, the energy goes from the buoyancy term into the 
vertical turbulence component, which becomes the source of energy for the other two 
components. Finally, when both buoyancy and shear are acting, the turbulence 
becomes even less homogeneous. In particular, when the flow is stable (downward heat 
flux), energy is fed into the u' component by the shear work, is redistributed over all 
components by the diffusion and pressure terms, and is dissipated by the combined 
actions of dissipation and buoyancy with the result that the vertical component 
contains the least energy of all three components. A local measure of the anisotropy is 
the ratio of the two production terms 

Rf = IT (2.72) 
,~r~tdu 
+u w 

az 

which is the flux Richardson number (Rf). Its dynamical significance hes in the fact 
that it gives a measure of the relative importance of the buoyancy term as compared to 
the shear-production term. Large flux Richardson numbers signify that buoyancy 
dominates the turbulence structure, whereas at Richardson numbers near zero, 
buoyancy is of little effect on the flow. 

The flux Richardson number is a function of the distance from the ground and 
thus a local quantity. To see this, consider the (near-neutral) case where the velocity 
distribution is logarithmic, and heat flux and shear stress are independent of height 
and equal to HQ and pu%, respectively. Then 

| ^ = H t (2.73) 
9z KZ 

where K is von Karman's constant, and the flux Richardson number becomes 

R f = — 3 = 7 (2.74) 
_ U* L 

KZ 

where the important quantity L is a length incorporating the effect of buoyancy: 

L = - - ^ (2.75) 
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It is readily seen that L is equal to the distance from the ground at which the two 
production terms are equal. 

Note that the equality of z/L and Rf holds only when the velocity profile is 
logarithmic, i.e., when the velocity profile is not affected by buoyancy, except perhaps 
for a possible influence on the roughness height ZQ . For different profile shapes or 
when heat flux and/or shear are functions of distance, the flux Richardson number is 
of more compHcated functional form, but it is reasonable that this function should 
depend on z/L only as in the near-neutral case. This is in fact so. The relation between 
flux Richardson number and z/L for stable flows is well documented for wind-tunnel 
boundary layers along a smooth surface by data of Arya and Plate (1969), at least for 
small z/L, and for unstable conditions by field data such as the ones obtained at the 
Kansas Field Station of the Air Force Cambridge Research Laboratories and reported 
by Busingeretal. (1970). 

Measurements of flux Richardson numbers are not easily made because they 
require parallel measurements of both heat and momentum flux. More readily 
obtained is a related quantity called the gradient Richardson number (Ri), defined to: 

Tdz 

(f) 
T dz 

Ri = 7—T-2 (2-76) 

When the fluxes and gradients are connected by means of the eddy-diffusivity 

assumptions 

- ^ ' = Ku^ (2.77) 

^ ' = - K H ~ (2.78) 
dz 

where K^ and KH are the exchange coefficients (or eddy diffusivities) for momentum 
and heat, respectively, then the flux Richardson number is related to Ri by 

Rf = | ^ R i (2.79) 

Both Richardson numbers have different dynamical significance. The flux Richardson 
number is a quantity describing the effect of local stability on the turbulence field. A 
very small value of Rf indicates that the flow is near neutral, and its velocity 
distribution is described by the logarithmic profile. This condition can arise either 
because L is a large quantity, which implies that HQ is small or u# large, or because z is 
small. Thus, even in a strongly stratified flow, there always exists in a shear flow a 
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layer near the ground in which the flow is characteristic of neutrally stratified flow, 
i.e., it can be described above any viscous sublayer that may exist by the logarithmic 
law. Consequently, for small values of z/L, Eq. 2.74 must hold and is thus seen to be 
the asymptotic form for the flux Richardson number for small values of z/L. 

When the flow is unstable, the flux Richardson number is negative. With increasing 
instability (or at larger distances from the ground), the shear effect on the flow 
becomes less and less important until at some flux Richardson number the presence of 
shear no longer affects the dynamics of the flow field significantly: the flow has 
become driven entirely by buoyancy and is called free-convection flow. Some 
controversy has resulted about whether there exists an abrupt transition, at some critical 
value of Rf or z/L, from forced- to free-convection regimes. Priestley (1955) in a 
pioneering study of this matter has inferred, from a change in the mean-temperature 
profiles, that at —z/L > 0.03 or thereabouts free convection sets in (see also the 
discussion in Priestley, 1959), but it is currently no longer held that the transition 
from forced to free convection in the atmosphere is abrupt. We shall defer a discussion 
of the flow during free convection to the next chapter. 

For stable flows, corresponding to positive Richardson numbers, buoyancy tends 
to reduce the turbulence level. Again, for small positive values of z/L, the flow remains 
near neutral, but with increase in z/L the turbulent intensities become smaller, and it is 
likely that there exists a critical value of Rf beyond which turbulence can no longer 
exist. This problem has been attacked theoretically from the direction of instability of 
stably stratified flow with a velocity gradient, the simplest case being one in which the 
density distribution is described by 

- ^ = - b (2.80) 
p dz 

and the velocity is linear and equal to 

I - (2.S1) 

Taylor (1931) found for this case that, if the fluid is bounded from below by a 
horizontal plane and extends to infinity above, it is stable at all disturbances of small 
amphtude so long as â  < 4gb, or so long as 

R i = 7 ^ 2 > ^ (2.82) 

(f)' 
a result that was found valid by many other investigators (see Thorpe, 1969) also for 
more general profiles. 

The gradient Richardson number is thus seen to determine the stability of a 
stratified fluid without turbulence to small perturbations, i.e., it is a measure of the 
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onset of turbulence In Taylor's model the effect of viscosity on the stability was 
neglected, as well as the effect of velocity-profile curvature An investigation of the 
stabihty of a laminar boundary layer against small disturbances was made by 
Schhchting (1935) who described the velocity distribution in terms of the Blasius 
laminar-boundary-layer profile with a constant density gradient He found that all 
small perturbations were damped for 

Riw> 0 0417 (2 83) 

where Ri^ is the gradient Richardson number based on the velocity gradient near the 
wall 

The instability problem of a stably stratified fluid is not necessarily related to the 
problem of suppression of existing turbulence, turbulence has been observed to exist 
at practically all gradient Richardson numbers (but see the discussion below) The 
parameter determining the persistence of existing turbulence appears to be the flux 
Richardson number Attempts have been made by Townsend (1958) and Ellison 
(1957) to obtain a numerical value for the critical flux Richardson number from the 
conservation equations for turbulent motion, Eqs 2 42, 2 45, and 2 46 When the 
motion is steady and uniform, when the air is dry, and when gradients of triple 
correlations can be neglected, these equations reduce to 

(2 84) 

(2 85) 

and 

ewe=^f + f ^ (2 86) 

A series of assumptions is needed to close the set of equations, both to relate fluxes to 
gradients and to relate the dissipation terms to other turbulent quantities A simple 
assumption is to relate dissipations to the conserved quantities of the form 

e=3- (2 87) 

et = 

U W 

-w'e 

du^ 
dz 

>dT 
dz 

fw'0' 

and 

(2 88) 
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Cwfl 

'a' W 6 

T3 

(2.89) 

where TI , T2, and 73 are characteristic times of the motion, which in general are 
functions of space and of the structure of turbulence. 

Further results require assumptions relating the fluxes to the parameters of the 
mean velocity and temperature field. For a constant stress layer, 

' ' 2 -u w = u* (2.90) 

and 

-w'e' = Ho (2 91) 

are approximately valid. With Eqs. 2 77 and 2 78 relating fluxes to gradients, Ellison 
(1957) found for this situation that the ratio K H / K ^ IS expressed m terms of the flux 
Richardson number Rf 

KH 

KM 

2 '2 

q w 

u l ^ ( l - R f ) ^ 

1 -Rf 1 + I ? j i (2.92) 

Ts 

Flux Richardson number and gradient Richardson numbers are related by Eq 2.79, 
consequently, if Rf approaches a critical value and Ri can be any value, it has been 
argued by Ellison (1957) that KH/KM must approach zero as Rf approaches Rf 
critical If this is so, then one possibility in obtaining a critical flux Richardson number 
IS to set the square bracket of Eq 2 92 equal to zero. Suitable assumptions on the 
ratio (r2/ri)(q^/w'^) permit a critical Rf value to be found Note that at Rf = 0, 
KH/KM has the value 

b = ^ 
KM 

2 ' q w 

u* 
(2 93) 

and, if this ratio is independent of stability, we may write Eq. 2.87 in the form 

Rf 

KH 

KM 

R •f c r i t 

(1 - Rf)' 
(2.94) 

which, if plotted as a family of curves of K^/KM VS Ri with Rf cnt as third 
parameters, yields curves as shown in Fig. 2 2 Ellison and Turner (1960) made some 
experiments on stratified pipe flow, and their results together with those of Proudman 
(1953) are indicated in Fig. 2.2. The stratification was obtained by means of salt in the 
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001 010 1 10 
RI 

Fig. 2.2 Comparison of experimental results of ElUson and Turner (1960) with the theory of 
Elhson (1957). The values of Rf <.f,t_ are marked on the theoretical curves. The experiments of 
Ellison and Turner (1960) pertain to salt solutions m the laboratory. The data reported by 
Proudman (1953) were taken m the Kattegat. 

water, so that the exchange coefficient is that for salt diffusion denoted by Kg instead 
of the heat diffusivity KH . The accuracy of the results is fairly low Ellison and Turner 
(1960) point out that the error due to inaccurate determinations of the velocity 
gradient for their data can amount to as much as 20%, thus leading to possible errors 
of 40% in the gradient Richardson number. However, the data seem to indicate that 
the critical flux Richardson number is likely to be smaller than 0 2 and not much 
different from the value of 0.17 inferred by Elhson (1957) in his earher paper 

An interesting conclusion from the experiments of Ellison and Turner is that b has 
a constant numerical value of about 1.4, very similar to the value found m fully forced 
convection near the center hne of a pipe, or to the atmospheric value of 1 2 reported 
by Record and Cramer (1966). Recently Businger et al. (1970) have reported a value 
of 1.35. 

If both b and Rf cnt are constants, then KH/KM as well as Ri should be functions 
of flux Richardson number only, as follows from Eq. 2.94, or because Rf is a function 
of z/L they should depend on z/L only. Empirical results of this dependency have 
been collected from many sources and are reproduced in Figs. 2.3 and 2 4. For Ri 
the z/L dependency is well confirmed, and excellent agreement is obtained between 
field and laboratory. For KH/KM the scatter of the data is very large, and a 
closer inspection of results such as those of Arya and Plate (1969) indicates that the 
ratio does not only depend on z/L but also decreases slightly directly with height This 
IS really no surprise since KH/KM relates dynamically quite different quantities Slight 
variations of b with distance from the solid boundary are known to exist in pipe flow 
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Fig. 2.3 The relation between z/L and Ri for the whole range of stability Field data from 

Businger et al. (1970), laboratory data in stable region from Arya and Plate (1969). 

(Schlichting, 1968) where b decreases from a value of about 1 4 near the center to 1 at 
the wall For turbulent boundary layers the dependency of b on z is not yet 
estabhshed, and the pubhshed results appear to be conflicting (Kestin and Richardson, 
1963) For near-neutral unstably stratified boundary layers, Johnson (1959) reports a 
value which is about 1 at the wall and which mcreases to about 2 at the edge of the 
boundary layer, whereas the results of Arya and Plate (1969) for a stably stratified 
boundary layer appear to indicate a value of b that decreases with z Apart from the 
possible variation of b with distance from the ground, it is also found that the value of 
Rf cnt. which is obtained from Ellison's model is n ^ constant. To obtain a value of 
Rf cnt. = 0.17, Ellison assumed TJ/TI = 1 and q'/w'^ =5.5 . The latter number 
corresponds approximately to conditions near neutral, but it is in general not constant 
in boundary layers except perhaps at some distance from the ground Recent 
experimental data of Arya (1968) in the constant-stress layer along a smooth 
boundary have failed to confirm Elhsoii^ assumptions. Some results from Arya's study 
are reproduced in Table 2.1. The ratio q^/w'^ is not far from being constant, although 
it varies slightly both with z and L, but the ratio of the time scales depends strongly on 
both height and stabihty The reason for this difference is at present unexplained 
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Fig. 2.4 The relation between K H / K ^ I and z/L. Field data from Bussinger et al. (1970) and 
Record and Cramer (1966); laboratory data in stable region from Arya and Plate (1969). The 
dashed curve corresponds to Eq. 2.115 and the solid curve to Eq. 2.113. 

Table 2.1 

PARAMETERS OF ELLISON'S THEORY DETERMINED 
FROM LABORATORY DATA OF ARYA (1968) 

z/L 

0.0035 

0.0087 
0.043 

0.0063 

0.0155 

0.079 
0.0084 

0.0212 

0.105 

Rf 

0.0033 
0.0075 

0.021 

0.006 

0.011 

0.033 

0.0078 
0.013 

0.039 

Tihi 

0.34 

0.43 

0.77 
0.28 

0.38 

0.67 
0.25 
0.38 
0.68 

q2/2w'2 

5.72 

6.01 

6.47 
5.16 
5.14 

5.93 

4.86 
4.88 

5.77 

q^2/2w'2Ti 

1.96 

2.57 

4.97 
1.43 

1.95 

3.99 
1.23 
1.86 
3.94 
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Recently, in his studies of the stability of thin turbulent layers in the 
Mediterranean, Wood (1969) found that there seems to be a critical gradient 
Richardson number equal to 1 at which turbulence breaks down. His survey of the 
experimental evidence indicated that there was no case at which a gradient Richardson 
number of 1 was exceeded by turbulent flow. His conclusion was that the argument 
reproduced above is not vaUd and that instead of a flux Richardson number of 0.17 a 
better criterion for the breakdown of turbulence is a gradient Richardson number of 1. 
Consequently, if the gradient Richardson number lies between 0.25 and 1.0, the state 
of the fluid depends on its past history: laminar flow remaining laminar until Ri 
drops below 0.25, and turbulent flow remaining turbulent until Ri increases above 1. 
It should be noted that only the Kattegat data in Fig. 2.3 have Ri numbers larger than 
1 whereas all other data are not inconsistent with Wood's view. Wood appears to have 
found that the method of obtaining the Ri number from the Kattegat data used by 
Ellison and Turner (1960) is not correct; revised values of Ri fall below 1. 

At present, the experimental evidence of turbulence breakdown is not sufficient to 
decide in favor of either ElMson's or Wood's view, but there is no doubt that a 
Richardson-number hysteresis exists. It is the mechanism through which turbulent 
interfaces in stratified flow are kept well defined. If the interface is turbulent, its 
thickness increases and the gradients decrease leading to increases in Ri and Rf. Once 
the critical condition for turbulence breakdown is exceeded, the flow becomes laminar 
with accordingly much larger gradients that reduce Ri. If the reduction is strong 
enough to lead to Ri<0.25, then turbulence starts again and the cycle is repeated. 
This is the mechanism by which the stable layers above (and in evening and nighttime 
conditions below) the convection layer are separated from the turbulence field in the 
convection layer. 

Ellison's model applies only to the region of constant stress and heat flux. Far 
away from the ground, it is no longer possible to assume these quantities as constant. 
Townsend (1958a) has made an analysis similar to that of Ellison for such layers. He 
obtained an expression for the flux Richardson number from Eqs. 2.87 and 2.88 by 
assuming that the shear stress and heat flux could be expressed in terms of the 
intensities \ ^ ^ and v P ^ through the coefficients k^ and kg: 

^ = k e V ^ V w ^ (2.95) 

and 

" ^ = kww^ (2.96) 

With the additional assumption of isotropy, 

q ' = | ^ (2.97) 
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Townsend obtained for the flux Richardson number the expression 

1 
Rf = -

* 2 h^i^ (2 98) 

from which he concluded that the maximum possible value of Rf is /'j, corresponding 
to a critical gradient Richardson number of 

Ri = i ^ g ' - (299) 
4 T2 k | 

Even if the ratios TI/TJ and k^/kg are independent of stability, they can depend on 
the space coordinates and thus a critical value of Ri is not likely to be uniquely 
defined The matter must be resolved by recourse to experiment The only existing 
data have been obtained m an experimental study of Webster (1964) in which 
turbulence was measured in a wind tunnel in a flow field that had both linear 
temperature and velocity profiles Owing to considerable difficulties in measurements 
of turbulence with a hot-wire anemometer in the presence of temperature fluctuations, 
the accuracy of Webster's data is not very high, leading, for example, to a neutral 
KH/KM value of 2 2, almost twice as high as observed by other techniques The data 
do seem to indicate, however, that the ratio ri/T2 m this flow is roughly constant and 
that there appears to be a well-defined critical flux Richardson number (which he 
found to be 0 35, but again it is beheved that this value might not be accurate) 

It IS of interest to consider the effect of humidity and radiation on the critical flux 
Richardson number Since water vapor in the air affects only the heat flux, the 
magnitude of a critical Richardson number defined in terms of mass flux is likely to 
remain unchanged, whereas a flux Richardson number based on heat flux has a smaller 
critical value when the moisture flux is upward and a larger critical value when the 
moisture flux is downward Radiation, on the other hand, reduces temperature 
fluctuations in both stable and unstable flow The result is that, instead of the ratio 
Ti /T2 in Eqs 2 92 and 2 98, there appears the quantity TI /r2 + 2I3TI , where j3 has the 
meaning assigned to it in Eq 2 66 Consequently the critical flux Richardson number 
is always increased by radiation (Townsend, 1958b, Goody, 1964) Note that the 
quantity J3TI denotes the ratio of the decay time of the velocity fluctuation due to 
dissipation divided by the decay time of the temperature fluctuations due to radiation 
The effect of radiation on the flux Richardson number is therefore largest in a layer in 
which the turbulence is slowly decaying, i e , it is associated mostly with low 
frequencies, while the temperature fluctuations are rapidly decaying, i e , they are 
associated with high frequencies 

The discussion above shows that the process described in the mtroduction for the 
breakdown of the stable velocity profile near the ground proceeds as follows When 
the local flux Richardson number reaches a value near 0 2 at a particular critical height 
near the top of the inversion, turbulence locally starts to disappear, uncoupling the 
layers aloft and below the critical height The flow below the critical height is once 
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more capable of becoming turbulent when the flow in the lower layer has accelerated 
so much that the gradient Richardson decreases below the value of about 0 25 Such a 
drop is usually caused by a reversal of the directions of the heat flux, but m some cases 
it might also occur even under inversion conditions as a result of acceleration through 
the geostrophic pressure field 

MEAN VELOCITY DISTRIBUTIONS 
IN STRATIFIED-BOUNDARY-LAYER FLOWS 

The set of Eqs 2 84 to 2 86 for the turbulent flow in a stratified boundary layer is 
not complete unless mean turbulent quantities can be expressed as functions of mean 
velocity and temperature distributions Such relations cannot be obtained from first 
principles, and the set of equations must be closed by empirically established, 
physically plausible relations Intuition breaks down very rapidly, however, with the 
complexity of the set of equations, and it is therefore customary to treat only the very 
simplest case of an atmospheric boundary layer which still retains sufficient features of 
the real situation This is the case of uniform flow in a constant-thickness layer parallel 
to a uniformly heated, uniformly rough ground at zero pressure gradient In that case 
Eq 2 44 becomes 

d_ 
dz 

/ du -H\ 

l'̂ d?-""j 
(2 100) 

2 - du 
u | = i ; ^ - U W (2 101) 

dz 

where u* is the shear velocity The thermodynamic-energy Eq 2 40 becomes 

^(^'.l^)=± (2 102) 
dz \ dz / Cp 

where the dissipation of energy by the mean motion is neglected The term in 
parentheses is the heat flux H In turbulent flows the second term m parentheses is 
small and can be neglected, and in that case we obtain for the conservation of the 
kinetic and potential energy of the fluid the relation from Eq 2 45 

u i ^ + | H = e (2 103) 
dz 1 
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If, because of the large value of Cp, the dissipation in Eq. 2.102 can be neglected, 
then it follows that the heat flux 

H = w ^ ' - k ^ (2.104) 

is independent of height. As was pointed out in Chap. 1, the shear stress is not exactly 
constant with height, and the same is true for the heat flux. To show this we assume 
that the velocity distribution is logarithmic in the fully turbulent region, i.e., (du/dz) = 
(U*/KZ). With this profile a first-order ordinary differential equation for the heat flux 
is obtained by eUminating e between Eqs. 2.103 and 2.102, and the solution is 

3 

H = H o + — I n — (2.105) 
KCp ZQ 

where the terms at the right are the leading terms in a series expansion about H = HQ . 
The logarithmic term is usually small, typically, if HQ = 20 mW/cm^, ZQ = 1 cm, and 
Cp = 10^ m^/(sec^)(°K); then, for a strong wind with u* = 1 m/sec, one finds that at 
alsout z = 10 m the added term is 1.8 mW/cm^ or about 10% of HQ . Consequently an 
error resulting from neglecting the nonconstant term of the heat flux is, at most, of 
the same percentage as the error made in neglecting the effect of the Coriolis force and 
geostrophic pressure gradient on the shear stress. Usually it will be smaller because of 
smaller u* values and because it is compensated by radiation (Elliott, 1964). 

With constant and presumably given values of u* and HQ, profiles of mean 
temperature and velocity can be calculated from Eqs. 2.84 and 2.86 provided that the 
relation between fluxes and gradients is known. Formally the relations can be 
expressed by Eqs. 2.77 and 2.78 through KH and K^, i.e., the diffusivities of heat and 
momentum, respectively. These relations become meaningful only if it is possible to 
assign functional forms to KH and K^ which make it possible to solve the defining 
equations. The purpose of this section is to present relations, based on empirical 
observations, which yield equations for velocity distributions in a thermally stratified 
flow. 

Velocity Distributions in the Stratified Layer Near the Ground 

In the heat-transfer literature, velocity profiles near a boundary are usually 
thought to be independent of the heat transfer from the boundary, i.e., it is assumed 
that the heat flux from the boundary does not affect the structure of the turbulence 
nearby. Most velocity-distribution laws used by heat-transfer engineers are identical to 
those discussed in Chap. 1, and calculations based on such profiles agree well with 
observations under widely varying conditions encountered in engineering apphcations. 

For large heat flux and small velocity gradients, the velocity profiles of the 
stratified-boundary-layer flows begin to deviate from the logarithmic law near the 
boundary, and the change in profiles usually cannot be neglected in meteorology. 
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Inasmuch as the Richardson number is the only new variable that enters the energy 
balance, it is logical to assume that it, or the quantity z/L, embodies the effect of 
stratification This concept is at the base of the similarity theory of Monm and 
Obukhov (1954) [see also Calder (1966)] who argued that gradients of velocity (and 
temperature) should be given by the nondimensional form 

Sf-*»• (!) (^ "'^» 
For small values of z/L, it is possible to use the fact that the profile parameter 0^ 
must become 1 as L ^ °°, and to develop the function 0^ in a Taylor series about the 
value 1 If the series is truncated after the first term, the function becomes 

0M = l + a | ; (2 107) 

where a is an empirical constant This equation has been derived by many different 
authors in many different ways, for example, on the basis of mixing-length arguments 
by Kao (1959) and Businger (1955) 

The formulation Eq 2 107 has been found appealing because the gradient, in 
contrast to the velocity distribution, is independent of the characteristic length of the 
surface, which is the roughness height ZQ This should, however, not be construed as 
implying that the profile is independent of the ground roughness The roughness effect 
enters indirectly through u*, which is a function of geostrophic conditions and of the 
stability of the flow The ground shear stress depends on the ground Rossby number, 
as discussed in Chap 1, and to this there must come an additional parameter or 
parameters depending on stability According to Batchelor (1953) the stability effect 
should be represented by a single parameter In a wind tunnel this stability parameter 
can be defined in terms of the characteristics of the layer by forming a characteristic 
Froude number of the friction layer (Batchelor, 1953) For the lower layer of the 
atmosphere, a characteristic length dimension is the roughness length ZQ One 
therefore would expect that for uniform terrain the geostrophic drag coefficient 
depends not only on the Rossby number but also on Businger's (1955) stability index 
Zo/L, which reflects the stability of the constant-stress layer, or 

^ = f ( R o , | ^ ) (2 108) 

Plots for this functional dependency are difficult to obtain, mainly because of the 
complicated structure of the stratified boundary layer and its time-dependent nature, 
and at present u* is usually assumed to be a given quantity 
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Velocity Distributions in Unstable Stratification 

Integration of Eq 2 107 leads to a velocity profile which is logarithmic as m 
neutrally stratified flow but which has a correction term depending linearly on z/L 
This so-called logarithmic hnear law has been introduced by many different workers 
(Ogura, 1952, Monm and Obukhov, 1954, Busmger, 1955) with as many different 
coefficients a It is very likely that the best fitting value of a depends on the range of 
z/L values considered For unstable boundary layers, values ranging from 0 6 (Monm 
and Obukhov, 1954) to 6 (Taylor, 1960) have been reported (see also Zilitmkevich 
and Chalikov, 1968) As Taylor (1960) has pointed out, the small value of Monin and 
Obukhov IS probably not correct because it was obtained for a range of z/L values 
going much below that of —0 3, at which approximately the Priestley free-convection 
regime begins The value a = 6 given by Taylor corresponds to z/L between zero and 
—0 03 and is based on data of Swinbank (1955) and Rider (1954) In a later paper, 
Swmbank (1964) concluded on the basis of new experiments done over more-uniform 
terrain and from a new theoretical model for the wind profile that a should be less 
than 1 However, his theoretical model is based on a coordinate-stretching procedure 
of questionable validity, and the exponential wind profile which he derived is at most 
vahd for unstable profiles (Barad, 1963, Plate and Lin, 1965) and is not widely 
accepted 

The data of Swinbank (1964) are widely used by other authors, although there 
have been some questions on the accuracy of the shear-velocity values reported by 
Swinbank because they were calculated with a drag coefficient (based on the velocity 
at z = 1 m) that was assumed constant independent of stabihty Pandolfo (1966) 
reanalyzed Swinbank's data and concluded that they correspond to a logarithmic 
linear law with a value of a of about 3 over the range 0 > z/L > —0 03, whereas Webb 
(1970) obtained a value of about 4 

When the logarithmic hnear law is inserted into Eq 2 72, it follows for a 
constant-flux layer that the flux Richardson number is equal to 

Rf = - ^ (2 109) 
1 + a ^ 

which can be used to infer the coefficient of a directly from measurements of fluxes 
But it IS found, as in the case of profiles, that although the log linear relation can be 
made to fit the observations well over selected ranges, it is not in very satisfactory 
agreement with the general trend of the data This is evident m field data of 0M such 
as shown in Fig 2 5 which were obtained by Businger et al (1970) By a suitable 
choice of the empirical constant a, Eq 2 107 can be made to fit the data at any 
desired point, but the trend of the curve is not in the direction of supporting a 
constant value of a Empirical improvements of the logarithmic linear law can be 
obtained in a number of ways, for example, by retaining higher order terms of the 
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Fig. 2.5 Nondimensional wind shear as a function of z/L Field data from Businger et al (1970), 

calculated with K = 0 35 

Taylor series or by an empirical curve showing a vs. z/L. Most successful is probably 
the representation of the velocity profile in the form 

0M = (1 - ai Ri)" (2.110) 

which was first suggested by Holzman (1943) with n= —0.5. Later authors have 
modified Holzman's equation and have concluded that it or a similarly constructed 
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relation is applicable at least for unstable stratification. Typical is the formulation of 
Businger (1969) who found that 

0 M = ( ^ 1 - / 3 L J (2 111) 

where (3 is about 15 
With 0M given by an equation of the form Eq 2 110 or 2.111 and with the 

assumption K H / K ^ = constant, it is possible to obtain the energy equation m the form 

0 M - 7 ^ 0 M = 1 (2 112) 

where 7 is a constant that has to be found from experimental data This equation is 
called the "KEYPS" equation, which can be derived in a number of different ways. 
For large values of z/—L and with a constant ratio K H / K ^ , it satisfies the —4/3 power 
law of Priestley (to be described in the section on "Temperature Profiles in Unstable 
Shear Flow") for the temperature distribution in the lower part of the free-convection 
layer. The equation (which is named after the initials of the writers who independently 
proposed it, among them Elhson, 1957, Yamamoto, 1959, and Panofsky, 1961) was 
initially only intended (Ellison, 1957) to be an interpolation formula between the 
profile near the critical Richardson number at stable conditions and the free-convec-
tion regime of Priestley (1955) The equation has, however, become well established as 
an empirical formula describing the unstable regime (Lumley and Panofsky, 1964), for 
which the equation agrees about as well with experimental data as any other proposed 
formula, as shown by Klug (1967) or by Panofsky in his discussion of the paper 
by Swinbank (1964), provided that 7 is chosen appropriately. Pandolfo (1966) 
uses a value of 7 = 7, whereas a value of 14 is quoted by Lumley and Panofsky (1964) 
Businger et al (1970) find 7 = 9 to yield good agreement of their data and Eq 2 112, 
as indicated in Fig 2 5 

One of the shortcomings of the KEYPS equation is that it implies a constant ratio 
of KH/KM in the free-convection range. Experimental evidence, in particular from 
Australian measurements of Swinbank (1964), does not support this assumption. 
Instead, Swinbank (1968) has shown that the data are well represented, above 
z/—L = 0 03, by a power relation 

K H / 7 X " ^5 7 
^ = 2 . 7 H r ) f o r 0 . 0 3 < ^ < 5 (2.113) 
''-M \ - L / - L 

This equation was obtained directly from mean-profile data with the additional 
assumption of constant fluxes. In a parallel study of the same data, Pandolfo (1966) 
found that 

T^ / 7 \ 0.1 67 7 

^ = 2 ( 4 - ) for ^ > 0.04 (2.114) 
KM \ ^ ^ / ~^ 
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Power-law equations do not, however, lead to a finite value of K ^ / K M at z/—L = 0, as 
they should They can, therefore, be vahd only over certain ranges of z/L values 

Notice that Eq 2 113 is the asymptotic form, for large z/—L, of an interpolation 
equation 

which for z/L = 0 reduces to the ratio KH/KM at neutral stabihty b If we use the 
value of 1 35 for b, it follows from Eq 2 113 that the coefficient |3 must be equal to 
about 16 Equation 2 115 is in essential agreement with a formula proposed by 
Businger (1969) In the notation used here, (3 appears in both Eqs 2 111 and 2 115, by 
which the empirical observation is expressed that the two coefficients are about equal 
A comparison of the curves (Eqs 2 113 and 2 115) with the data of Businger et al 
(1970) yields unsatisfactory agreement between Swinbank's and Businger's data in the 
unstable region as is seen in Fig 2 4 Also, there is some discrepancy between the data 
of Arya and Plate (1969) and Record and Cramer (1966) on the one hand in the stable 
region, and those of Businger et al (1970) Further experiments must show where the 
error lies 

Velocity Distribution in Stable Stratifications 

For stable stratified-boundary-layer flow, the value of a in the logarithmic 
linear-law Eq 2 107 that is most frequently quoted is 7 (McVehil, 1964), whereas 
Webb (1970), on the basis of Australian data and Businger et al (1970) as seen in 
Fig 2 4, obtained a value of about 5 valid up to z/L = 1 Velocity profiles are not very 
sensitive to the value of a, and a more reliable test of the validity of the log linear law 
is obtained by plotting 0M ^S Z/L, according to Eq 2 106 Such a plot of the 
wind-tunnel data reported by Arya and Plate (1969) is shown in Fig 2 6, which is in 
substantial agreement with other laboratory data, such as those reported by Chuang 
and Cermak (1967) and Plate and Lm (1966) There seems to be reason to believe that 
the velocity distribution is logarithmic, i e , essentially like in neutral stratification up 
to z/L = 0 01 For larger values of z/L, velocity distributions in stable flow are more 
suitably described by a power law of the form 

^ M = 4 2 ( ^ ) ' (2 116) 

vahd for 0 01 < z/L < 0 2 This is a result similar to the earlier suggestion of Deacon 
(1949) who expressed the velocity profile by a power law with an exponent that 
depended on the stability Note that Arya and Plate's power law isjust another way of 
expressing 0M as a function of z/L over some range of z/L and thus reconciles 
Deacon's power-law approach with the similarity theory of Monin and Obukhov 
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Fig. 2.6 Dimensionless wind shear as a function of z/L m stably stratified flow Laboratory data 
from Arya and Plate (1969) 

In stable stratifications, K H / K M IS also not constant, but it depends less strongly 

on z/L as in the unstable case Arya and Plate found an exponent in the power-law 

relation between K H / K M and z/L more nearly equal to 0 1 than 0 25, but, since the 

range of z/L values covered by their experiments were small, this result is not 

conclusive For this reason they did not attempt to express Eq 2 116 in a form similar 

to Eq 2 111, which would extrapolate to one at z/L -^ 0 

TEMPERATURE PROFILES 

AND HEAT FLUX STRATIFIED AIR 

In fully forced convection, temperature profiles are found to also obey the 

logarithmic law This has been established mainly from laboratory experiments A 

most complete set of temperature profiles (for flow m smooth and rough pipes) has 

been reported by Gowen and Smith (1968) from which it follows that the temperature 

profile has an equation 

I'- 1 7 (2 117) 

where T* is called the shear temperature and Ky^ is the Karman constant for 

temperature The latter depends in general on the Prandtl number, but at the Prandtl 

number of air (0 7) it is equal to the value 0 4 found for velocity distributions in 

neutral stratification The length ZQI, corresponds to the roughness length of the 
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velocity distributions but is not equal to it Since ZQ represents the dynamic action of 
the surface configuration on the velocity distribution and thus reflects separation and 
skin friction, the zoh value should indicate the heat-transfer characteristics of the 
surface On smooth surfaces skin friction is the only type of friction that occurs, and 
for laminar flow Reynolds analogy holds according to which velocity and temperature 
distributions are identical in nondimensional form Although in turbulent flow it has 
not been established from first principles that Reynolds analogy is valid, it is usually 
assumed to hold for smooth surfaces (see Hinze, 1959, for a discussion of the validity 
of this assumption) Along rough surfaces the analogy almost certainly breaks down 
because, unlike momentum, heat transfer is not affected by pressures, and thus the 
heat transfer from the roughness elements takes place by conduction through the thin 
layer of fluid directly at the surfaces of contact between fluid and wall and depends 
very much on the heat conduction from the ground to the roughness elements, or on 
the duect heat that is radiated to the roughness element The matter is even more 
involved if the roughness consists of a vegetative cover where heat content and heat 
release are largely affected by evapotranspiration Near rough surfaces it is therefore 
necessary to exclude a thin layer in which no useful correlations between temperature 
and velocity can be found and to consider only the region which starts above the 
roughness and in which Reynolds analogy can be assumed A consequence of this is 
that the heat flux from the wall cannot be related to the aerodynamic properties in the 
simple manner obtained from Reynolds analogy, and separate investigations must be 
made for each roughness type because each of them will show a different relation 
between heat flux and roughness geometry 

Above a thin layer near the roughness elements, Reynolds analogy is valid if the 
stabihty is near neutral, and it follows that Monin—Obukhov's similarity theory applies 
to the temperature profile as well if the shear temperature T* of Eq 2 117 is given to 

T*=—^ (2 118) 
KU* 

A nondimensional temperature gradient 0H IS then obtained 

/ Z \ _ 90 ZKU» /-T 1 1 Q\ 

Because different conditions exist at large values of z/lLl, we shall consider separately 
the temperature distributions in unstable and stable air 

Temperature Profiles in Unstable Shear Flow 

The temperature profile in the unstably stratified boundary layer has recently been 
well established through the careful measurements reported by Dyer (1965, 1967) 
which are shown in Fig 2 7 The plot shows a nondimensional temperature gradient 
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Fig. 2.7 Dimensionless temperature gradients m unstable flows. Field data from Dyer (1965), 

theoretical curve from Elliott (1966). 

0H(Z/L) as a function of z/L. 0H must be a constant equal to 1/b in the region where 
the temperature distribution is logarithmic, i.e., when z/L->0. For larger values of 
—z/L, a universal function relation is seen to exist between 0H and —z/L in agreement 
with the similarity hypothesis of Monm and Obukhov 

Dyer (1967) gave the following empirical equation obtained from this data 

4>H (-^T) 
0 55 

(2.120) 

which indicates a slope of about —0.5 for large values of —z/L near 1. Note that, if we 
combine the definitions of 0M and KH/KM given in Eqs. 2 111 and 2 115, the result is 

, _ KM 
0H - ^ 0M -H'O' (2.121) 

When |3 = 16, Eqs 2.120 and 2 121 are m agreement at z/L = - 1 with b = 1.15, thus it 
appears well justified to use Eqs 2.111, 2 115, and 2 121 for describing the unstably 
stratified surface layer so long as —1 < z/L < 0. 

It has been argued by Priestley (1955, 1959) that at large values of z/L the 
temperature profile should be independent of the shear stress. If this is so, then 
Eq. 2.119 requires that 0 H ( Z / L ) ~ (Z/L)"^ , and the profile has a z"^ dependency on 
the height. A constant nondimensional heat flux H* can then be defined through the 
relation 

"•="«(f)'g)"^-«'ar*"« p.-) 
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The experimental results of Crawford (1965), Dyer (1967), and Swinbank and Dyer 
(1967) indicate that, in the region where the temperature distribution can be 
represented by Eq. 2 122, H* has a value of about 1 15 to 1.3. 

If the analysis of Priestley actually applies to free convection, then Eq. 2.122 
should be the asymptotic form of the temperature profile at free convection. It 
therefore comes as a surprise that the range at which 0H IS proportional to z ^ is not 
the asymptotic range but the midrange, with 0^ changing to a steeper drop-off with 
z/-L at larger values of z/-L, as follows from Eqs. 2.120 or 2.121 The reason for this 
discrepancy might stem from the fact that near the edge of the superadiabatic layer 
free convection takes place m organized motions of plumes or thermals, so that the 
Priestley assumption of a homogeneous turbulence structure is not valid The plumes 
that just start developing in the superadiabatic layer do not yet have the characteristics 
of fully developed plumes (to be described in Chap 3) because they first must be 
accelerated from essentially horizontal motion in the superadiabatic layer to an 
essentially vertical motion. A simple model of this flow has been proposed by Bryson 
(1955) and Elliott (1966), who considered a constant-temperature plume rising in a 
constant but lower temperature environment under the effect of buoyancy In the 
absence of friction, the constant buoyancy force per unit volume acting on the fluid 
particles in the plume gives rise to a constant acceleration and thus to a velocity that 
increases with height like zf^ Mass continuity of the plume then requires, m the 
absence of entrainment, that the area A of the plume decrease as z , consequently 
the temperature change with height is dA/dz = d6/dz ~ z~^, which should be valid 
near the transition zone between the superadiabatic and free-convection layers 

With this asymptotic behavior of the temperature distribution valid at the edge of 
the superadiabatic layer, Elliott (1966) was able to construct a temperature profile for 
all of the superadiabatic layer by simply defining a nondimensional temperature 
profile equivalent to 0H of Eq 2.120 for a temperature profile proportional to z ^ 

(-"?)' 
T - ~ ( u * H — j z (2 123) 

by assuming that the nondimensional heat flux H* in Eq 2 122 is not constant but 
consists of two parts a part H^i corresponding to fully forced convection (0H = 1/b) 
and a part H*2 corresponding to the temperature profile Eq 2.123 For b = l , 
Eq 2.122 yields H*i = /<^(z/^L)'^, and Eq 2 123 yields H*2 = ao(z/-L), where cto 
is an empirical constant Consequently the nondimensional heat flux H* to be used in 
Eq. 2 122 becomes, with b = 1 

H...'(i)""[l.„(-i-)'' (2 124) 

The coefficients tto and ai are found by equating H:c to the constant H* = 1 3 m the 
center of the Priestley regime. In this manner a value ao = 1 43 was determined by 
Elhott, leading to a nondimensional temperature profile 
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*"(E)-[-«'(i)l' «•'"> 
This equation is in good agreement with the results of Dyer (or with Eq. 2.121) and 
thus lends support to the simple and appealing proposition of Elliott. It should, 
however, be slightly modified to allow for b not equal to 1. 

Note that there exists a conceptual difficulty in accepting both Priestley's and 
Elhott's models It is hard to see why there should be a (Priestley) range in which the 
temperature distribution is independent of u#, which is embedded between two layers 
in which u* influences the motion. One would rather expect that the motion, once it 
has become independent of u*, will not become dependent again at higher elevations 
Consequently it is possible that a regime of the kind envisioned by Priestley does not 
exist 

The limit of vahdity of Eq. 2 125 is difficuh to determine. Beyond z/L = - 1 the 
scatter of the data becomes excessive, no doubt because of the small gradients in 
temperatures. In fact, it will be shown in the next chapter that outside of the 
superadiabatic layer the temperature gradient actually may change sign, so that the 
analysis as presented here ceases to be vahd outside of the superadiabatic layer, and it 
IS not unreasonable to assume that the edge of the layer is located at about z/L = - 1 . 

Temperature Profiles in Stable Shear Flow 

Temperature profiles in stably stratified boundary layers have not often been 
reported, and the laboratory results of Arya and Plate (1969) reproduced in Fig 2 8 

0 4 1 I I I 1 I I I I I I L 

0 001 0 004 0 01 0 04 0 1 

Fig. 2.8 Dimensionless heat-flux coefficient as a function of stability m stable flows. Laboratory 
data of Arya and Plate (1969). 
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may serve as a basis of discussion. The profiles are less accurate than the correspondmg 
velocity data because of secondary currents observed in the laboratory at large z/L 
values But there is little evidence to indicate that 0H IS not a universal function of 
z/L, at least in the laboratory, and so long as the flow remains turbulent The 
laboratory data were taken at z/L values too small for turbulence to be noticeably 
damped by buoyancy 

The data show that a power law fits the 0H VS Z/L curve better over most of the 
range of z/L values than the simple log linear law of Monin and Obukhov. A law of the 
form 

0H = 1 + 1 7 ^ (2.126) 

which in a plot of 6 vs z/L appeared to give good fit to the temperature profiles is 
seen to show a different trend than the data, thus here again the conclusion must be 
reached that the log linear law is not a good enough approximation to actual profiles 
to be of much use 

The Heat Flux in Stratified Shear Flow 

As Owen and Thomson (1963) have shown, the heat flux is related to the 
temperature gradient across the roughness elements and the shear velocity u* by 

Ho=ChU*(Tw-Th) (2 127) 

where T^ and Th are the temperatures of the ground and at the level h, respectively, h 
is the thickness of the fluid layer which is directly distorted by the separation pattern 
of the roughness elements, and Ch is a Stanton number, which can be expressed as a 
function of Reynolds and Prandtl numbers 

C h = ^ ( ^ ) " ' " P r - (2 128) 

Note that neither h nor Tj, is known, so Eqs 2 127 and 2 128 are not useful unless 
these quantities can be determined. The length h is a characteristic length of the 
roughness of the surface and is probably proportional to ZQ . The exponents m and n as 
well as the coefficient ai appear to be constant for a given roughness, in fact, there is 
some evidence that m ~ 0.5 and n ~ 0.8, independent of roughness, but ai definitely 
depends on the roughness type The Stanton number therefore becomes 

C h = j ^ ( ^ ) ' ' ' P r - » « (2.129) 
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where (3i is a constant depending on the roughness. This relation is fairly simple to 
test, and the constant j3i can be determined from experimental data, provided that Tj, 
and Ho are known as well as the surface characteristics. 

The value of Th is found from conditions m the flow above z = h. For z > h 
Reynolds analogy is valid, and velocity and temperature profiles are of the forms 
discussed earlier. With KH/KM = 1.0, it follows from Reynolds analogy that 0M = 0H , 
or 

~ ^ T 7 ~ ~ ' ' ' ^ ^ (2 130) 

which permits us to express the temperature profile in terms of the velocity profile. 
Elimination of Th from Eq 2 130 by means of Eq 2 119 (which imphes a friction 
temperature T* = HQ/KU*) leads to 

^ R _ J [ w _ ^ = ,HRZlGh (2131) 
T* Lh u* 

where the subscript R denotes a reference case, say the conditions at 2 m above the 
ground. It is then possible to express a Stanton number Cs based on reference 
conditions 

H = C 3 U * ( 9 R - T W ) (2 132) 

simply by replacing the temperature gradient with the velocity difference, or, since uj, 

r = ? ^ 5 ^ (2 133) 
Cs U* Ch 

which IS essentially the result given by Owen and Thomson (1963). Note that, to a 
good approximation, UR/U* IS given from the log law to (1/K) In (200/zo), where ZQ is 
the roughness length in centimeters, and u^h/t" can be written ~u*Zo/y. It therefore 
should be possible to express the Stanton number Cj in the form 

J_ 1 
C 

= il„200 /u^zoy 
K Zo ' \ v J 

where the Prandtl-number dependency has been neglected because only air is 
considered, so that Pr = constant = 0.71 

This result has not yet been tested against atmospheric-field data, and presently 
available data do not contain enough information to calculate all parameters appearing 
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in Eq 2 134 In general, it can be expected that 7 and perhaps also p depend on the 
roughness type 

A formulation for Cj that does not depend on Reynolds analogy has been derived 
for unstable conditions by Leovy (1969) He specified a temperature profile which at 
some distance from the wall is given by Dyer's equation, Eq 2 120, and which very 
near the wall is hnear and determined by molecular conditions only With the full 
specification of the temperature gradient, it is then possible to eliminate the heat flux 
from Eq 2 131 by Eq 2 119 and to obtain an expression for the Stanton number of 
the form 

Q = f(B) (2 135) 

where B is defined to 

B=-!-yKg(TR 
u* 

T w ) . (2 136) 

and TA IS the average temperature across the superadiabatic layer Note that B can be 
calculated from bulk parameters of the flow and temperature field and that it is 
independent of the roughness characteristics of the surface The result obtained by 
Leovy (1969) from data obtained during the Prairie Grass experiments (Lettau and 
Davidson, 1957) and by Vehrenkamp (1953) is shown in Fig 2 9, which generally 
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Fig. 2.9 Stanton number Cj as a function of the index B Field data from Vehrenkamp (1953) 
and from the Great Plams Study [Lettau and Davidson (1957)] From Leovy (1969) 
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shows the functional dependency rather well confirmed. Vehrenkamp's data that cover 
the widest range of B values correspond essentially to smooth surfaces for which the 
linear temperature profile at the ground assumed by Leovy is most likely to be valid. 
For rough surfaces, such as the Prairie Grass data, the functional dependency is not 
nearly as well confirmed. Further data are needed to illustrate whether Leovy's 
formulation is in fact sufficient; it does appear likely that the formulation of Owen 
and Thomson (1963) expressed by Eq. 2.134 is more appropriate, although at present 
less useful. 

CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE RESEARCH 

In the discussions of this chapter (as well as in the free-convection chapter to 
follow), the complex structure of the stratified boundary layer has been brought out 
in a series of steady-state models each pertaining to a particular combination of given 
boundary conditions. As was pointed out in the introduction, none of the states that 
are observed is independent of what had happened before; and for quantitative results 
one should look at the whole moving picture of the dynamical development of the 
atmospheric boundary layer during the day instead of looking at a series of stiE 
pictures. Models in which the daily variation of temperature is considered (see the 
discussions in Chap. 8 of the book by Priestley, 1959 or in Chap. 4 of the book by 
Laikhtman, 1961) are at present highly formal and based not only on somewhat 
arbitrary assumptions about the structure of eddy diffusivities as a function of 
space and time but also on periodic inputs of heat by the solar radiation as driving 
force for the model. One possibility of useful research is therefore to put the detailed 
information on the planetary boundary layer that is currently available into a 
computer model for the development of the atmospheric boundary layer under the 
influence of large-scale circulation effects at given boundary conditions. If such a 
model is designed sufficiently flexible, it can be improved successively as more reliable 
information on the numerical parameters becomes available from field and laboratory 
studies. The most important theoretical purpose of the model would be to guide in the 
selection of experiments that need to be performed; its practical value lies in its ability 
to produce model environments and to aid in forecasting local conditions from 
large-scale forecasts. 

The unsteady model is the ultimate goal, and one might well have to settle for 
intermediate steps for some time. Such an intermediate model would be that of an 
Ekman layer in stratified flows in which the nature of the flow field as described in 
this chapter and in Chap. 3 is taken into consideration. It is fairly evident that the 
eddy viscosity in a free-convection layer must have a different structure than in an 
inversion, and, for realistic models of Ekman layers, cognizance of this difference must 
be taken. In fact, the key problem of the stratified boundary layer in forced as well as 
free convection is the interrelation between buoyancy and momentum flux, and it is 
urgently required that this problem be investigated experimentally and analytically. 
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Experimentally it appears that most important are measurements of the individual 
terms in the turbulent-energy equation, to establish energy balances both for the mean 
and for different frequency bands. Reliable measurements of turbulence in thermally 
stratified flows have become feasible only recently with the advent of on-line 
analog-to-digital converters, and most of the presently available experimental 
laboratory data are not reliable enough to evaluate such terms as gradients of triple 
correlation coefficients with some confidence. From such measurements it should be 
possible to evaluate the relative importance of the individual terms in energy balances, 
and, if experiments over wide enough ranges of variables can be made, such vital 
quantities as the cntical Reynolds number at breakdown of turbulence and the 
dynamics of this process can be determined. 

Of equal importance is a better understanding of the heat transfer from a rough 
surface by turbulent wind, at small values of iLl, which in models of thermally 
stratified boundary layers yield one of the boundary conditions. The available 
equations like Eqs. 2.134 and 2.135 are at best tentative, and much work needs to be 
done before we understand the processes that cause heat to be transferred from the 
surface across roughness elements (which are possibly of different temperature than 
the ground) to the air flow. 

Finally one may list as challenging problems the determination of the structure of 
buoyancy-induced turbulence at interfaces between adjacent layers of different 
stratification, for example, in an environment where a superadiabatic layer is 
developing below an inversion or where a ground inversion builds up below a 
free-convection layer. Such problems are hkely to be more profitably studied in 
density-stratified hquids, and the unsteadiness of the stratifications envisioned may 
present some difficult experimental problems. Nevertheless, these experiments are 
required if the mechanisms of turbulent transports in stratified planetary boundary 
layers are to be understood and if the empirical formulations of this chapter are to be 
put on a foundation of physical insight rather than on empirical-curve fittings. 
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FREE-CONVECTION LAYER 

INTRODUCTION 

In Chap. 2 the basic equations of motion and energy were derived for a thermally 
stratified boundary layer and were applied where the influence of the density 
stratification on the fluid motion is minor compared to that of the friction at the wall 
There exists a second asymptotic condition, that of free convection, in which fluid 
motions are dominantly driven by buoyancy The motions are initiated at the ground, 
which is at a higher temperature than the air above it In this chapter a discussion of 
this extreme case will be given. Fluid motions and heat transfer in free convection are 
described for dry air masses If the moisture content of the air is small and no changes 
m state are taking place, the conditions considered here can be applied directly to 
moist convection by replacing the sensible heat flux with the sum of sensible and 
latent heat fluxes and by assuming that the mean potential temperature profile 
remains unchanged. 

Free convection occurs in the atmospheric boundary layer in two distinctly 
different situations. The first arises when there is no wind and the fluid is at rest The 
heat flux from the wall is by conduction if the viscous forces suffice to stabilize the 
fluid When the fluid becomes unstable, convection sets in and heat transfer is by 
mixing of moving hot fluid with the surroundings, first in a regular motion and then 
with higher heat fluxes, by a turbulent exchange process Following Priestley (1959), 
let us call this the case of "windless convection " A second type of free-convection 
layer can be found above a shear layer when the mean velocity gradients have been 
reduced to very small values. The heat flux superimposes a motion over this mean 
velocity field which essentially does not interact with the mean motion. The difference 
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between this and windless convection is found mostly in the structure and nature of 
the turbulence; in addition to the buoyancy-induced turbulence, there may exist 
shear-generated turbulence which results from the shear flow near the ground and 
which penetrates the layers above. 

For free convection the basic equations of motion and energy are much simpler 
than the equations of Chap. 2 It becomes possible to calculate heat transfer and 
velocity distributions. The first approximation to this problem, applicable to the 
determination of critical conditions for free convective motions, is obtained by a 
linearization of the equations. The velocity and temperature fields are superimposed 
over a state of pure conduction. However, if the flow and temperature field after the 
onset of convection are considered, closed-form solutions can no longer be obtained, 
analytical solutions are meaningless unless some of the nonlineanties are retained, and 
a set of approximations must be designed to make the problem tractable. We shall 
outline how this can be done. The purpose of this chapter, however, is to discuss what 
IS known about the physical processes of free convection, and not to give details of 
mathematical solutions. This purpose is best served when the free-convection problems 
are first stated in mathematical terms, after which the solutions and their physical 
significance are given. Steady convection, i.e., the stationary convection state arrived 
at a long time after heat has been applied to the horizontal lower boundary, and 
unsteady (transient) convection, i.e., the transient state developing during gradual 
application of heat, are treated separately and applied to laboratory and atmospheric 
conditions. A basic understanding of the fields induced by free convection is obtained 
from a discussion of laboratory experiments. Although laboratory experiments are not 
quantitatively useful for atmospheric applications, many of the quahtative features 
observed in the laboratory are also found in the atmosphere. 

BOUSSINESQ EQUATIONS 

FOR FREE CONVECTION 

In free convective motion the mean velocity gradients are zero at all times. All 
motions that exist are induced by buoyancy effects arising from conductive heating or 
cooling of the fluid. Considered here will be only the equations that result for a fluid 
bounded by planes perpendicular to the direction of gravity where heat is applied 
uniformly along each boundary plane. Then all mean derivatives with respect to x are 
zero, and substantial simplifications of the governing equations result. Assume that the 
reference potential temperature is constant and that energy dissipation can be 
neglected. The equations of continuity and of conservation of energy (Eqs. 2.23 and 
2.28 in Chap. 2) then become 

and 
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where k = (k/p^Cp) For convenience the temperature is defined by 

T'=T(z,t) + e(x,y,z,t) (3 3) 

where T is a mean (potential) temperature formed by averaging temperatures over a 
plane that is parallel to the ground With this expression, one obtains 

v • VT' = W T + v • V0 (3 4) 

The second of the two terms on the right can be written 

V V0 = V- 0V-0 V V (3 5) 

by using a well-known vector identity Furthermore, equating the left sides of Eqs 3 1 
and 3 2 yields 

- T' 
V Ve = V • 0v -ek V^ =r- (3 6) 

lm 

The first term in Eq 3 4 is simply 

v V T = w | t (3 7) 
9z 

so that the energy equation becomes 

1 
T. (f-S--)--(v'a-Ti) < 3 . 

The assumption 9jT^ < 1 suggests that the second term on the right in Eq 3 5 can be 

neglected in Eq 3 8 This implies that either V • 9\ can also be neglected in Eq 3 8 or 

else, if V • 0v IS of the same magnitude as the other terms, that 

vVe^ V-e\ (3 9) 

If we retain the term V • 6\ and take the average over the horizontal plane 
z = constant, the averaged energy equation becomes 

(f--S^r)-V-T (3,0, 

and, when this is subtracted from Eq 3 8, we also obtain, with Eq 3 9, 

T - - H ( w - w ) r - + v V9 = r— + kV^e (3 11) 

3t 3z oz 
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The mean value, w, of w can arise only from the expansion of the air and is 
therefore very small and can be neglected Locally w can be of substantial magnitude, 
as IS particularly evident in situations with thermal elements 

In Eg 3 11 the last two terms on the left-hand side—called the self-interaction 
terms—combine to form nonlinear terms representing the interaction of the 
fluctuations of temperature and velocity induced by the buoyant motion When the 
fluctuations are small, they are small to second order and can be neglected (Herring, 
1963) To complete the set of equations, we must obtain an additional expression 
relating the temperature and velocities This is given by the momentum equation, 
which can be written 

(^-i^vA V^v + R = ^ V ' T ' k - ^ g r a d ^ (3 12) 
\ d t / l m l m OZ 

Equation 3 12 has been obtained by taking the double curl of Eq 2 29 in Chap 2 and 
by using the vector identities 

curl curl a = — V^a -I- grad (div a) 

curlgrada = 0 (3 13) 

where a is a vector field and a is a scalar function Pressure is thus eliminated, and the 
nonlinear self-interaction terms of the velocity field are combined into the vector, R, 
defined by 

R = + curl [curl (v • V)v] (3 14) 

For small velocity components, terms quadratic in the velocity can be neglected if a 
small perturbation analysis is used in Eq 3 12 The resulting vertical component of 
Eq 3 12 is given by 

which, with Eq 3 3, reduces to 

U-̂ V̂ ^^=T;; [-^'W) - t ^ ^'''^ 

To the same approximation, l e , with self interaction terms neglected, Eq 3 11 
becomes 

il-r-"') -wf (3 17) 
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where the mean temperature gradient follows from Eq. 3.10 to-

In Eq. 3 18 the average of the fluctuation term has been retained to allow for a 
modification of the temperature distribution by the buoyancy-induced fluctuation 
field. Thus nonlinearity can be accounted for to some extent. Equations 3 16 to 3.18 
have been used extensively in work on free convection 

When a characteristic length (h), a time scale (t* = h'^/k), and a characteristic 
temperature (AT) are introduced, the nondimensional equations of motion and energy 
(Eqs. 3 16 and 3 17) become 

where the subscript 1 denotes nondimensional quantities and the nondimensional 
numbers, Pr and Ra, are the Prandtl number 

Pr=ii 
k (3 22) 

and the Rayleigh number 

^_g_AT 

Tm vk 

respectively, which are the only parameters governing conditions of free convection 

^̂  = t̂ '' ^'''^ 

STEADY CONVECTION IN A LAYER 

BETWEEN TWO PARALLEL AND HORIZONTAL PLATES 

When the temperature difference across a layer of fluid between two parallel and 
horizontal plates is increased in very small steps, heat transfer is by conduction only. 

*In engineenng hterature the Rayleigh number is usually replaced by the Grashoff number, Gr, 
defined by Gr = Ra • Pr. 
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after a certain threshold value is exceeded, however, the fluid becomes unstable and 
motion ensues. The instability is triggered by small perturbations superimposed over 
the reference conductive state. There then exists a steady state at which the fluid is at 
incipient motion somewhere within the fluid. Conceptually this steady state is found 
by using very small step changes in temperature difference between the top and 
bottom plates and then waiting until the asymptotic state for t -̂  °° is attained. 
Analytically the steady state is discussed by assuming a steady state of conduction 
which at critical condition is not changed Pertinent equations for this condition are 
Eqs. 3 19 to 3.21 (with subscripts dropped) 

- j2y 

^ = 0 (3.24) 

( ^ - V . ) « = - w f (3 25) 

/ I 9 r,2\ „2 D /9^6i a 'e a ' T \ , - , , , 
( P r a l - ^ j V ^ w = R a ( g p - g ^ - g ^ j (3.26) 

In these equations, only the vertical velocity, w, is given, other velocity components 
are found by using the continuity equation and the equation of motion. Equa-
tions 3.24 to 3 26 form, however, a closed set, and the stability problem depends on w 
and 6 only Therefore only these quantities will be discussed. 

Equations 3.24 to 3 26 are nondimensional, and suitable reference scales must be 
chosen. For the problem of convection between parallel plates, the reference distance 
IS the spacing, h, of the plates, and the temperature scale is the difference in 
temperature, AT, between the top and bottom plates. 

Heat Transfer by Conduction 

If the fluid IS stable, heat transfer is by conduction only, even at critical conditions 
for the onset of convection. The mean temperature, T, is then uncoupled from the 
fluctuating temperature field and is obtained by solving Eq. 3 24. Integrating once 
yields the heat flux, Nu 

-7-= constant =—1 =—Nu (3.27) 

where the constant is found from the boundary conditions for the coordinate system 
shown in Fig. 3.1. The nondunensional heat flux is called the Nusselt number 

pCoHnh Hoh 
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where HQ is the dimensional heat flux at the ground The temperature distribution is 
linear and in dimensional form is given by 

T(z) = To - ^ z (3 29) 

and the dimensional heat flux, H, is given by 

az h (3 30) 

where TQ is the temperature of the lower plate The linearity of the reference 
temperature profile substantially simplifies the stability problem, which arises when 

w w v w w w w \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 

Fig. 3.1 Definitions tor free convection between parallel plates 

the conduction profile is disturbed by small perturbations Such perturbations are 
mostly caused by local nonuniformities in the wall temperature 

Instability of the Conduction State 

Instability in a layer of fluid that is heated from below was first studied 
theoretically by Rayleigh (1916) The restoring force counteracting the buoyancy is 
viscosity of the fluid, and instability occurs when the work done by buoyancy on the 
VISCOUS layer is no longer balanced by viscous dissipation (Chandrasekhar, 1961) If the 
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buoyancy work is smaller than the dissipation, the fluid is stable, if it exceeds 
dissipation, the fluid is unstable to infinitesimal perturbations of temperature or 
velocity. The conditions at which the two terms are in exact balance correspond to 
one particular value of the Rayleigh number, which is the critical value Ra^. Since 
VISCOUS dissipation depends on the velocity gradients, which in turn are strongly 
affected by conditions at the boundaries, whereas the heat flux is dependent only on 
the heat added from below independent of the type of the boundary, the critical Ra 
number clearly depends on the boundary conditions. Two types of boundary 
conditions are of particular importance. The first is the condition for a rigid wall, 
where the no-slip requirement of a real fluid yields the boundary condition v = 0. This 
condition is apphcable to the atmosphere for windless convection near a smooth 
ground. The second condition is that of no stress acting on the fluid at the boundary 
This condition, which is introduced mainly for mathematical convenience, is obtained 
for a layer of fluid contained between two adjacent layers of other fluids, when all 
three layers move with the same mean velocity but are constrained so that the 
interface between the layers does not deform. Thus no shear stresses are transmitted. 
I.e., (au/az) = (av/az) = O and w = 0 at the interface, and those conditions, together 
with the equation of continuity in the approximate solenoidal form (Eq 2 22, 
Chap. 2) yield the boundary condition 

w = 0 

az 

• z = 0,h (3 31) 

which IS called the free-boundary condition 
The stability problem for the free-boundary conditions is briefly outlined here, for 

the mathematical details, reference is made to Chandrasekhar (1961) or to the basic 
paper by Pellew and Southwell (1940). With the linear conductive temperature profde, 
whose nondimensional slope is equal to —1, Eqs. 3 25 and 3.26 become 

(^v')» = w (3 32) 

and 

The stability analysis proceeds by assummg a Fourier-series solution for w and 6 and 
finding that value of Ra at which any of the amplitudes of the Fourier components are 
increasing in time. All real perturbations are found to grow exponentially with time 
for all Rayleigh numbers corresponding to unstable gradients as a consequence of the 
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linearity of the initial temperature profile The stability analysis is therefore reduced 
to finding the lowest Rayleigh number for which real amplitudes of spatial Fourier 
components are possible Needed is a solution of the nondimensional form (with 

w = w(z) exp i(kxX -I- kyy) (3 34) 

9 = 9{z) exp i(axX + ayy) (3 35) 

For convenience a horizontal wave number, a, is introduced and defined by 

â  = (a^ + a^) (3 36) 

whose dimensional form is kh = a Then the steady version of Eqs 3 32 and 3 33 
reduces to 

(D^-a^)^w = Raa^ 9 (3 37) 

( D 2 - a ^ ) 0 = - w (3 38) 

where D is the operator, d/dz Elimination of 9 from these equations yields 

(D^ -a2)3w = -Raa^ w (3 39) 

subject to the free-boundary conditions This is a sixth-order differential equation to 
be satisfied by three boundary conditions, each at z = 0 and at z = 1 This is possible 
only for particular combinations of Ra and a For the free-boundary condition, the 
combinations of a and Ra which will satisfy Eq 3 39 are simple to find because the 
solution satisfying the boundary conditions must be of the form 

w = A sm Ttnz n = 1,2, (3 40) 

which has its lowest value for Ra for a given a at the smallest value of n, i e , at n = 1 
The absolute minimum of Ra occurs at a particular wave number found from 

f - O (3 41) 

to 

a = ^ (342) 
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corresponding to a wavelength 

X = —h = 2.82h 
a 

(3.43) 

The minimum value of Ra = Rac is 657.5. For Ra < Rac the fluid is therefore free of 
motion, whereas for Ra > Rac motion occurs 

For rigid boundaries the solution can no longer be found m terms of sine-Fourier 
series, but the solution in principle is obtained in the same manner. The characteristic 
equation yields a critical Rayleigh number of 1708 Both critical Rayleigh numbers are 
in good agreement with experiments. Only recently has an experiment been 
conducted, by Goldstein and Graham (1969), which was set up to meet the 
free-boundary conditions, and agreement within 10% with the theoretical critical 
Rayleigh number was found Rigid boundaries have been studied by many authors, for 
example, the series of experiments by Silveston (1958) gives excellent agreement 
with the theoretical value, as shown in Fig 3 2 After critical conditions are exceeded, 
the heat transfer is no longer by conduction, consequently the critical Rayleigh 
number can be inferred as that value of Ra at which Nu starts deviating from 1. There 
IS a sharp break observed in the curve Nu vs. Ra ~ 1700 in Fig. 3.2. 

Although Rayleigh numbers of the small magnitudes near critical are very unlikely 
to be encountered in the atmosphere, it is nevertheless worthwhile to remember the 
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Fig. 3.2 A comparison of Silveston's experimental measurements with theoretical predictions of 
heat transfer between infinite parallel plates (o, water, +, heptane, -j-, ethylene glycol, •, silicone oil 
AK3,A, silicone oil AK350, A, au data of Mull and Reiher). [From I. Catton,/'/ĵ 'sics o/F/mds, 9: 
2521-2522 (1966) ] The family of curves below the data points represents the contributions of the 
mdividual modes to the total heat transfer. 
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important conclusions obtained from the stabihty analysis and the pertinent 
experimental results (1) The wavelength of the critical disturbance is of the same 
order as the length scale of the geometry of the field, i.e., near the maximum-length 
scale of the situation. (2) Buoyancy is thus seen to affect the large-scale motions more 
strongly than smaller scales (3) Steady convection is determined by a single 
nondimensional number, the Rayleigh number, however, if finite amphtude 
disturbances or unsteady convections are present, a second parameter entering the 
processes is the Prandtl number. (4) The experiments of Silveston indicate that the 
change from conduction to convection is rather abrupt, the consequence of this 
observation, as exploited by Malkus (1954a,b), is discussed in the next section 

Heat Transfer in Steady Free Convection 

When the critical Rayleigh number is exceeded, the convective currents set up in 
the fluid layer increase the rate of heat transfer. The stronger the heat input, the larger 
the convective currents, and on dimensional grounds one expects to find 

Nu = f(Ra, Pr) (3 44) 

where the Prandtl number has been added because it indicates the amount of heat 
released from the convective elements to the surroundings by conduction. An 
important experimental result found was that, for high Rayleigh and Prandtl numbers, 

Nu ~ Ra^ (3 45) 

I.e., the heat transport is independent of the thickness, h, of the layer. This result 
cannot, of course be predicted from the linear model of Rayleigh, which ceases to be 
valid after convection has started. Solutions going beyond the critical Rayleigh number 
for onset of convection must incorporate some of the nonlineanties of the basic 
equations. Theories in which the equations of motion, Eqs. 3.10 to 3.12, have been 
partially linearized by neglecting quadratic terms in velocities, i.e., the self-interaction 
terms, have been proposed by Malkus (1954b) and Herring (1963,1964,1967). With 
these simplifications the governing equations are Eqs 3.16 to 3.18 for the temperature 
field and the vertical component of the velocity. 

As was shown by Herring (1963), Eqs. 3.16 to 3.18 retain important features not 
only of the fluctuations arising just after the flow has become unstable but also remain 
valid to a first approximation for fully developed turbulent convection. The terms 
omitted correspond, for the turbulent convection problem, to the interactions of the 
turbulent motion with itself. Discarding them implies cutting off the hierarchy of 
turbulent moment equations, obtained by multiplying the dynamic equations by v" or 
01, where n is some positive integer, after the second cumulant 

Note that the only difference in Eqs 3.11 to 3.18 compared with Eqs. 3.24 to 
3.26 lies in the term (a<0w>/az) in Eq. 3.18 through which the mean temperature 
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distribution is coupled to the fluctuations in temperature and velocity. This term is of 
fundamental importance. The mean temperature profile can no longer be considered as 
given, and a complete solution requires simultaneous solution of three instead of two 
equations. Furthermore, it has been pointed out that the growth of disturbances is 
exponential at all unstable Rayleigh numbers in a fluid with a linear mean temperature 
profile. Since the profiles are nonlinear, this is no longer true, and considerable 
complications arise. In fact, Eqs. 3.16 to 3.18 cannot be solved in closed form, and 
further approximations are required if solutions are desired. A great deal of effort has 
been made in recent years to obtain solutions from assumptions which simplify the 
basic equations and yet lead to predictions that agree satisfactorily with experiments. 

The earliest, and one of the most successful attempts toward a solution of 
Eqs. 3.16 to 3.18 was made by Malkus (1954b). To calculate the heat flux and the 
convective motions, he started from his experimental observations (1954a) that the 
rate of change of heat flux with Rayleigh number appeared to show discontinuities. He 
reasoned that if these discontinuities were associated with the instabilities of 
subsequent eigenmodes of the convection problem, then for a particular Rayleigh 
number the nearest unstable eigenmode might set an upper bound on the harmonics of 
the disturbance motion, while the heat flux is in some manner related to the 
disturbance motion present. To put this concept on a quantitative basis, he postulated 
that at each Rayleigh number the heat flux (1) can only be down the gradient and (2), 
if averaged over the volume of fluid between the two plates, the heat flux must be a 
maximum compatible with the constraints of the problem. Thus, if the Rayleigh 
number permits instability of n# eigenmodes of the disturbance temperature, then the 
maximum heat flux is caused by all the modes in n<n,|;. This model restricts the 
number of wave numbers contributing to the heat transfer,* but not unreasonably, 
because disturbances with n > n,̂  can appear only through nonlinear interactions and 
therefore are likely to make only small contributions to the heat flux. Malkus 
truncated the heat-flux spectrum at the harmonic HQ = n,̂  — 1. 

With these assumptions Malkus was able to obtain a solution with a number of 
results which are verifiable by experiments. In particular, he found that (1) the spectra 
of velocity and temperature fluctuations decrease with wave number as n'^ and n'°'^, 
respectively, (2) the kinetic energy of the fluctuating velocity is given in dimensional 
form by 

< v ' - v ' ) ~ ^ R a (3.46) 

independent of the distance z from the bottom plate, and (3) the mean temperature 
distribution is inversely proportional to z; at some distance from the plates and for 
( z / h ) « l . 

*ln the actual calculations, the n of the heat-flux modes did not correspond to the components 
of the stability problem. This inconsistency has been removed, to some extent, by Spiegel (1962). 
The reformulation of Spiegel did not lead to changes in the results. 
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where Re is a constant equal to about 2533 The predictions of Malkus' theory have 
been verified to some extent by experiments Thomas and Townsend (1957) have 
shown that Eq 3 47 is in good agreement with experiments except for yielding a 
flatter slope by a factor of about 1 5 The resulting equation (Eq 3 46) has been 
verified by experimental results of Malkus (1954b) and Deardorff and Wilhs (1967a) 
Figure 3 3 has been reproduced from the paper by Deardorff and Willis (1967a) to 
show the surprising agreement of theory and experiment Their data were for a highly 
turbulent flow and do not confirm Eq 3 47, and the possibility that the agreement of 
experiments and Eq 3 46 is no more than a consequence of the dunensions of the 
problem cannot be ruled out 

The heat transfer, expressed by Nusselt number (Nu), obtained from the Malkus 
theory is (Malkus and Veronis, 1958) 

N U = 1 + £ N I ( l - ^ ) 5 ( R a - R a c , ) (3 48) 

1=1 

where S( ) is the Dirac delta function, Raci is the critical Rayleigh number for 
instabdity of the zth mode, and 

^^^Jpel)^ (349) 

where the subscript AV denotes averaging over the depth of the layer The calculations 
of Malkus (1954a) of Ra^ and of Malkus and Veronis of (Wifl,) have been repeated by 
Catton (1966), and in the corrected form they yield excellent agreement with the 
experimental results of Silveston (1958) This agreement is seen in Fig 3 2, into which 
the theoretical curve based on the calculations of Catton (1966) has been drawn 
There seems thus to be little doubt that in as far as the heat flux is concerned, Malkus' 
model IS quite realistic, although some recent experiments by Willis and Deardorff 
(1967a) indicate that the critical Rayleigh numbers calculated by linear stability 
analysis are perhaps not really associated with the observed experimental breaks in the 
measured heat-transfer vs Ra number relation 

Malkus' theory is noteworthy because it represents one of the few successful 
attempts to predict the structure of any type of nonhomogeneous turbulence It 
appears to work satisfactorily in convective motions because the turbulence induced 
by buoyancy is ordered and nomnteracting at wave numbers associated with n < UQ , at 
which most of the interaction between heat flux and turbulence takes place 
Presumably the higher wave-number velocity fluctuations only smear out local 
discontinuities in the temperature but do not contribute to the heat flux The theory 
IS therefore restricted to the large eddies of the turbulent motion, but most of the 
energy is associated with these, and for higher wave numbers it is usually not too 
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Fig. 3.3 Root-mean-square value of horizontally averaged vertical velocity fluctuations as a 
function of Rayleigh number. O, water [Malkus (1964b], Pr = 7.0, A, acetone [Malkus (1954b)], 
Pr = 3.7, • , au: [Deardorff and Willis (1967a)], Pr = 0.71. [From J. W. Deardorff and G. E. Willis, 
Journal of Fluid Mechanics, 28: 675-704 (1967a).] 

difficult to make reasonable predictions on the turbulence structure by invoking the 
concept of local isotropy. Thus, as long as the energy-containing eddies are 
nomnteracting with each other and are separated from the energy-dissipating eddies of 
the turbulent motion, a model of the type envisioned by Malkus can be successful. 
But, when the eddies associated with the generation of turbulence interact strongly, 
the nonlinear velocity terms even in convection can no longer be neglected. 

A theory simdar to that of Malkus (1954b) has been advanced by Herring (1963, 
1964,1967). His and Malkus' models have been compared in detail by Howard (1967). 
Herring also started with Eqs. 3.16 to 3.18, but, in contrast to Malkus, he assumed 
that a single disturbance wave number, a, is responsible for all the motion. This wave 
number, a, then is an additional parameter of the problem which has to be chosen 
arbitrarily, as long as the Rayleigh number is higher than the corresponding critical 
Rayleigh number, which is calculated from Eq. 3.37. On the other hand, Herring's 
model does not involve any other arbitrary assumptions. He shows that, if the 
combination of a (or for Ra < 10*, two values of a) and Ra is chosen which yields 
marginal stability, then a reasonable value for the heat flux is obtained. In contrast to 
Malkus' assumption, this condition does not correspond exactly to maximum heat 
flux. The solution was obtained numerically by letting a small perturbation of 
nondimensional wave number a evolve in time until an asymptotic state is reached. 
Herring (1963) considers free boundaries, and Herring (1964), rigid boundaries and 
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Prandtl number, Pr ->• °° The free-boundary case was again treated for large Ra and Pr 
(Herring, 1966) as a steady-state problem, with the result again that for Ra > 10* the 
Nusselt number is proportional to Ra^, with a factor of proportionality which is 
somewhat higher than the experimentally observed value of Silveston. For large Pr, 
Herring (1966) gives 

Nu = 0.115Ra^ (3.50) 

and reports the experimental results of 

Nu = (0.09 V 0.134)Ra^ (3.51) 

where the low value corresponds to the data of Silveston (1958) and the high value to 
data of Globe and Dropkin (1959). 

Herring's results for the temperature profile for the most important rigid-boundary 
case show the interesting result that the flow essentially is separated into two very 
distinct regions, as shown in Fig. 3.4a (Herring, 1964). Near the walls the temperature 
gradient changes rapidly from its value for conductive heat flux to zero. The thickness 
of the layer in which this change takes place decreases with increasing Rayleigh 
numbers. In the center portion the temperature is almost constant and equal to the 
average temperature of the two walls As shown in Fig. 3.4b, both these features have 
also been observed by Deardorff and Willis (1967a) in laboratory experiments. The 
convection process is thus seen to be of boundary-layer character. This result is in 
contrast to Malkus' profile, Eq. 3.46. However, because of the assumptions made in 
deriving it, the latter should be valid only in the transition region between the constant 
temperature and the gradient layers, and a direct comparison with Herring's results in 
regions where both profiles are valid has not been attempted. 

Other methods of predicting the heat transfer of the free-convection problem are 
due to Howard (1963) and Kraichnan (1962). Howard applied the maximum heat-flux 
assumption of Malkus (1954b) to find upper bounds on the heat transfer subject to 
constraints imposed by integrals obtained from Eqs. 3.25 and 3.26 and the boundary 
conditions (see also Busse, 1969) In Kraichnan's paper the effect of the Prandtl 
number is considered, and heat-flux predictions based on a mixing-length-type 
argument are made. Herring (1969) has applied yet another method to the solution of 
this problem, the direct interaction hypothesis of Kraichnan. 

Further models based on the structure of the thermal elements which produce the 
convective motion will be considered later Since regular motions pertaining to 
convection at low Rayleigh numbers are no longer found in highly turbulent 
convection, separate considerations must first be given to the structure of these 
elements. Models based on the assumption that the space between the plates is filled 
by convective cells of known characteristics have also led to heat-transfer predictions 
in reasonable agreement with experiments, as, for example, in the paper by Wesseling 
(1969). However, in highly turbulent flow that is unbounded from above, the thermal 
elements do not completely fill the convective layer. 
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It IS perhaps surprising that the problem of the convection process between two 
plates has been treated by so many different techniques. The reason for this lies in the 
fundamental nature of this flow The flow is simple because no mean velocity field 
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Fig. 3.4 (a) Vertical profiles of horizontally averaged temperatures at three Rayleigh numbers, 
calculations by Herring (1964) {b) Vertical profiles of horizontally averaged temperatures at three 
Rayleigh numbers, laboratory results of Deardorff and Wilhs (1967a). 

exists which might add to the production of turbulence, and all motions are induced 
by the directed force of buoyancy Yet, the flow exhibits many characteristics of 
turbulence and is therefore an ideal testing ground for models of turbulence Any 
model that fails the test of predicting the free-convection model is unlikely to yield 
reasonable predictions in more complicated nonhomogeneous turbulent flows 
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STEADY CONVECTION IN AN 
INFINITE-THICKNESS LAYER 

In the convection models considered in the previous section, the length scale of the 
motion was set by the distance between the two plates, or the thickness of the layer 
The convective elements that made up the motion were found to have dimensions of 
the order of the characteristic length. But, when the layer is very thick, it is possible 
that the thickness of the layer no longer scales the size of the thermal elements. 
Instead, the buoyant motion sets its own scale, which can be found from dimensional 
analysis. We may assume that the heat flux must depend on the properties that drive 
the turbulent motion, but not on the molecular transfer coefficients k and /x Thus the 
only length scale that is descriptive of the geometry of the problem must be the 
distance, z, whereas the other characteristics are the effective gravity (g/T) [gravity 
multiplied by the coefficient of thermal expansion, which for an ideal gas is (1/T)], 
the density, the specific heat, and the temperature gradient. It follows readily that 

H = pcp(f)'' aT 
az 

(3 52) 

where the exponents a, ji, and 7 must be chosen so that the three terms together have 
the dimension length times temperature over time. The only combination that gives 
these dimensions results in 

For a steady convective situation in thermodynamic equilibrium, neglecting the heat 
gained by dissipation, the heat flux must be constant, then Eq. 3.53 can be inverted to 
yield the temperature distribution, 

where r is a factor of proportionality. This equation has first been derived on the basis 
of mixing-length arguments by Prandtl (1932) The dimensional-analysis derivation 
was given by Priestley (see Priestley, 1959). 

Equation 3.54 can be interpreted as a simdarity profile for the temperature 
distribution of the form 

L a T _ / z V ^ , , „ , 

where L is a reference length = (l/g)(H/pCpTa)^ and Ta is a reference temperature. The 
length, L, has no dynamic significance unless r is independent of (z/L), in which case it 
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derives its physical content from Eq. 3.53. Townsend (1962) has argued that this form 
of the free-convection profile requires for its existence that some mean horizontal 
shear exists which might have the effect of homogenizing the local turbulence 
structure that otherwise would be in nonordered form. Deardorff and Willis (1967b) 
have examined laboratory data of their own and the data of Thomas and Townsend 
(1957) and arrived at the conclusion that the z"^ law of Priestley as well as the z'' law 
of Malkus for the temperature distribution is likely to be confined to a thin layer only. 
They argued that the absence of a z"^ range for the temperature distribution in the 
laboratory data might be a scale effect, set by the size of the experimental equipment, 
and suggested a critical experiment at an appreciably larger scale than previous 
laboratory experiments to settle this point. This experiment has, however, not been 
performed, and therefore the relevancy of the laboratory experiments to the 
atmospheric-surface layer under conditions of windless free convections has not been 
established. This point will be discussed again later. 

UNSTEADY 

FREE CONVECTION 

The stability problem of Rayleigh outlined earlier reduced to one of steady 
conditions because the temperature gradient of the basic Rayleigh problem was 
constant. The situation changes quite drastically when the requirement of an initially 
linear temperature profile is dropped. A nonlinear temperature profile arises when the 
temperature of one of the walls is changed. The resulting local change in heat flux 
progresses into the interior of the fluid and thereby heats (or cools) the fluid. Locally 
there might exist a Rayleigh number that exceeds a critical value for the onset of 
instability. Directly at the wall, instabilities are prevented by the wall. However, once 
the heat flux has penetrated the conductive region at the wall, it can produce local 
instabilities in spite of the fact that the Rayleigh number associated with average 
conditions might be lower than that required for instability. This behavior is quite 
evident in the following rather common situation. Consider a stably stratified fluid of 
air between two plates, where the stability is maintained by keeping the lower plates at 
a lower temperature than the upper plate. At some time to, the lower plate is brought 
to the same temperature as the upper plate. The Rayleigh number has then changed 
from a negative value to zero. Locally, however, near the bottom plate the 
temperature gradient can be very steep due to the finite time required for heating of 
the layer. Obviously, whether instability sets in or not depends on the speed of 
applying the temperature change as compared to the adjustment time constant of the 
fluid. Evidently, if the temperature change is gradual enough, the fluid never is set in 
motion, and the adjustment is by conduction only. 

The initial-value problem of the development of a convective layer with time has 
been discussed for the linearized (Rayleigh) problem by Foster (1965), who studied 
both a linear increase (case B) of the temperature and the abrupt change (case A) in 
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temperature of the bottom plate He studied the system of Eqs 3 19 to 3 21 by a 
Fourier analysis of the velocity and temperature field after removing the nonlinear 
term in Eq 3 20 by the small-perturbation procedure 

The relevant Rayleigh number for case B is 

Ra= %^ 

where 

Bĥ  

Tk î̂  (3 56) 

: AT (3 57) 

IS the temperature scale factor, i e , Tg = TQ + Bt, where Tg is the bottom temperature 
and To is the temperature of the bottom plate at time t = 0 For case A the Rayleigh 
number is formed in the usual manner with AT equal to the step change in 
temperature Foster restricted his investigation to the free-boundary case, and an 
initial input of a white noise distribution of finite-amplitude w disturbance modes The 
computer results of Foster showed the expected decay of disturbances at very short 
tunes But soon the disturbances started to grow superexponentially Critical times for 
the onset of instability were calculated using the criteria that the root-mean-square 
(rms) value, w, of w had reached a multiple of its initial values The solution depends 
on the Prandtl numbers of the fluid, becoming independent of Pr only for very large Pr 
values Results of Foster (1965b) are shown in Fig 3 5 For water, Foster (1965a) 
compared the theory with experimental data of Spangenberg and Rowland (1961), 
who determined the time that elapsed before a layer of water which was made 
unstable by cooling from above by evaporation started to turn over Additional 
experiments, also indicated in Fig 3 5, with a similar apparatus covering a wider range 
of Rayleigh numbers were performed by Foster (1965b) These experiments 
correspond approximately to the fixed-boundary case with linear change in tempera-
ture at the surface 

Interestingly Foster found in both cases A and B that the critical time for 
instability to occur after the beginning of the experiment was independent of the 
height, h, and so was the wavelength, X, of the instability, i e , (kt/h^) ~ Ra and 
(X/h) ~ Ra'^ for the step change in temperature and (kt/h^)~Ra"' and 
(X/h) ~ Ra for the linear temperature change It follows that the thickness of the 
layer which is affected by temperature changes is proportional to the square root of 
time 

The latter result can be inferred directly by inspecting the conservation-of-energy 
equation for infinitesimal disturbances of temperature As long as the region between 
the plates is effective in damping infinitesimal disturbances, Eq 3 20 becomes the 
heat-conduction equation 

9T ^ ^ ' T , . _ , 
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Fig. 3.5 (a) Experimental values of Rayleigh number vs. dimensionless nominal critical time. 
Theoretical curves for a linear decrease in surface temperature; Pr = 5.8. (6) Experimental values of 
Rayleigh number vs. dimensionless critical wave number. Theoretical curve for a linear decrease in 
surface temperature; Pr = 5.8. [Adapted from Foster (1964a).] 
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which for a step temperature change by AT at time t = 0 has the well-known solution 

^ T /"̂  2 

T - T w a l l = - ^ Jj e-« '*« (3.59) 

where | is the dimensionless distance coordinate: 

(3.60) 
2Vft 

The characteristic length scale of the temperature profile is 2vkt, in qualitative 
agreement with Foster's results. A further consequence of the heat-conduction 
equation is that disturbances that generate at the wall decrease in amplitude 
proportional to e'" ^^, where n is the (dimensional) wave number of the disturbance. 
As Elder (1968) pointed out, this implies that the conductive layer acts as a low-pass 
filter toward disturbances originating at the wall. The convective layer is thus 
subjected only to relatively low disturbance wave numbers, which indicates a reason 
for the existence of comparatively large convective elements. 

The stability problem of Foster has also been considered as a problem of steady 
conduction with a nonlinear temperature profile by assuming the time change of the 
mean temperature distribution to be so slow that it had no effect on the stabOity 
problem (Lick, 1965; and Currie, 1967). The limitations of this assumption were 
discussed by Robinson (1967). 

The development of the structure of the temperature and flow field during 
unsteady free convection has been investigated by Elder (1968) both in a laboratory 
and numerically by using the linearized equations on which Foster's studies were 
based. In contrast to the study of Foster, Elder (1968) did not consider Fourier modes 
of the disturbance velocities but instead traced the development of the flow field as a 
whole by solving the equations of the problem by means of finite-difference 
techniques on a computer. His numerical experiments were paralleled by laboratory 
experiments with flow visualization of the thermal elements. Both studies confirmed 
that the critical time for a disturbance to occur varied with Ra and was independent 
of the layer thickness. The process of convective transport was found to take place in 
well-defined stages. Directly at the wall the no-slip condition constrains the motion, 
setting up local velocity gradients and shear stresses; at short times, only conduction 
takes place within a thin layer, which is the conductive sublayer (called protosublayer 
by Elder). With progress in time, local accumulations of heat occur in the conductive 
sublayer which give rise to the formation of a local updraft area. The spacing between 
the updraft areas is essentially determined by the thickness of the sublayer. The local 
updraft area develops into a plume or bubblelike structure that draws into it hot fluid 
from the conductive sublayer. Elsewhere the warm portion of the conductive sublayer 
becomes thinner, and the removed mass is replenished by cooler fluid from above. 
Eventually the accumulations of hot air separate from the conductive sublayer and 
become thermals that gradually rise through the cooler fluid, until they reach the top 
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of the layer—which presumably is some sort of solid barrier—where they 
accumulate. Since on the average the system can lose heat only by conduction through 
the walls, the accumulation of thermals leads to another conductive layer at the upper 
surface. 

The results of Elder show that the thermal elements eventually become larger 
until, in equilibrium, they are of the size of the space between the two plates and form 
a continuous convection region between them. This general picture of convection is 
essentially independent of the Rayleigh number. At high Rayleigh numbers the fluid 
between the plates is highly agitated and turbulent, but the convection is nevertheless 
mainly by thermal plumes of a scale comparable to that of the apparatus. Nonlinear 
effects do not change much on the horizontal wave numbers associated with the 
structure of convection, as calculations by Elder (1969) on the basis of Eqs. 3.25 to 
3.27 by the method of Herring (1963) have shown. It can consequently be expected 
that similar behavior might also be found in the free-convection layer of the 
atmosphere. 

FREE CONVECTION 

CAPPED BY A STABLE LAYER 

There is one essential difference between the convection problem between parallel 
plates considered up to now and the atmospheric situation. As pointed out in the 
Introduction, the atmospheric free-convection layer is usually capped by an inversion 
with a stable temperature gradient. The free-convection layer is highly turbulent, and 
the stable layer above is quiescent with little turbulence. The development of the 
convection layer takes place by two processes, the heating of the convection layer and 
the penetration of the convection layer into the stable region above. This development 
is particularly well illustrated by Telford and Warner's (1967) airplane measurements 
of temperature in the atmosphere above uniform terrain in Australia. One of their 
figures is reproduced as Fig. 3.6. The heat flux from the ground gives rise to a gradual 
heating of the free-convection layer, whose temperature changes rapidly enough to be 
essentially uniform (or slightly stable) throughout the free-convection region, above 
which the stable gradient does not change much. The heat flux is, of course, 
determined by the gradient across the superadiabatic ground layer, which is not shown 
in the figure. The convection layer gradually erodes the nonturbulent and stable region 
above, a process which strongly depends on the mixing processes taking place at the 
interface. 

Growth of the Convection Layer 

A model for predicting the growth of the convection layer must take into account 
both the processes of heating up of the convection layer and of mixing of the top of 
the convection layer with the stable flow above. This was clearly recognized by Ball 
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Fig. 3.6 Changes with time of potential temperature. Cloud base was observed during each 
sounding and in each case can be seen to lie slightly above the height at which there is an abrupt 
change in potential temperature. [From Warner and Telford (1967).] 

(1960), who developed an analytical model for describing these processes quantita-
tively. The model has been modified by Lilly (1968), who also considered the effect of 
radiation from the (cloud-topped) interface between the convection layer and the 
stable region. 

The analysis is greatly simplified if it is assumed that the temperature gradient of 
the mean temperature field in the convection region is constant and independent of 
time, so that 

T(t,z) = To(t) + e(z) (3.61) 

The conservation-of-heat equation (Eq. 3.20) then becomes 
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" = —IK —_(WT>I = -

where 

-i?-m---y-±'i 

H = pCp(wT>-k|^ (3.63) 

is the average heat flux at height z. In highly turbulent flow the contribution k(30/9z) 
is negligible. The average over wT is performed in space over a horizontal plane 
z = constant. Integration of Eq. 3.62 yields 

H - H o = ( H h - H o ) ^ (3.64) 

where the coordinate z has been measured from the bottom of the convection layer 
and 

dTo _ Hh - H Q 

Note that all the terms in Eq. 3.65 and also H are time dependent in general, and 
additional equations are required to obtain quantitative results. 

A simple additional equation can be obtained by making an assumption about the 
joining of the temperature profile at the interface between the stable region and the 
convection layer. For example, the evidence of Fig. 3.6 suggests an assumption that 
the temperature in the convection layer is constant, or has a constant slope, 
throughout the layer while the gradient of the temperature profile in the stable layer 
also remains unchanged until it intersects the interface. Physically a temperature 
change of this kind implies that there is no mixing across the interface. Then the 
difference in the heat flux through the convection layer Hh — HQ arises from two 
sources, the heating of the convection layer and the cooling of the entrained portion 
of the stable region into the convection layer, as indicated in Fig. 3.7. If the 
temperature gradient in the stable-flow region is denoted by j5o, it follows from the 
geometry of Fig. 3.7 that 

f-fcf (3.66) 

so that, with Eq. 3.65, 

~pCp^oh|^ = H h - H o (3.67) 



124 FREE-CONVECTION LAYER 

Fig. 3.7 Definitions for the inversion-capped convection layer with sharp interface. Linear 

decrease in heat flux with zero flux at z = h. 

For a constant heat-flux difference Hh —Ho,over a time from t = 0 to t, the 

convection-layer grows in thickness from 0 to h, where h is given by 

h^=2 5 ^ H h . 

|3oPCp 
(3 68) 

This result was given by Deardorff, Willis, and Lilly (1969). They also considered 
constant wall temperature and heat transfer across the conduction layer, as expressed 
by Eq 3.45, where Nusselt number and Rayleigh number are based on the thickness of 
the conduction layer below the convection layer. An explicit solution is no longer 
possible, but quantitative results are readily obtained. 

An interface as envisioned in the derivation of Eq. 3.68 is somewhat of an 
idealization, even though it seems to be not too far from the real situation during 
strong inversions, as indicated by such experimental results as those in Fig. 3.6. 
Equation 3.68 can therefore serve to describe the progression of the interface to a first 
approximation. However, for a more thorough understanding of the growth of the 
convection layer, one must consider the details of the mixing process at the interface. 

The interface is usuaUy a highly convoluted surface, deformed by thermals or 
plumes, which carry air from the superadiabatic layer through the convective region. 
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These convective elements accelerate as they rise, and, when they arrive at the average 
interface (z = h) of the convective layer, they have a velocity that exceeds that of the 
interface and a mean temperature that exceeds that of the surroundings. Therefore 
they penetrate into the stable region, perhaps even overshooting the level at which 
their mean temperatures equal that of the surroundings. Some of the kinetic energy of 
the elements is converted to potential energy of the displaced warmer fluid, but a 
substantial part becomes turbulent kinetic energy generated as the plume spreads 
laterally and the now cooler fluid from the plume falls through the warmer fluid to 
lower zones of equal density. The result of this is that the interface is in constant 
agitation and strong mixing takes place across it. In fact, the entrainment of air by 
turbulent mixing from the stable region into the convection layer is the principal mode 
by which the interface moves upward, and it must be suspected that a layer of 
substantial thickness exists in which the temperature varies greatly in any horizontal 
plane from the approximately constant temperature region of the convection layer to 
the fully developed inversion above. 

Ball (1960) and Lilly (1968) have attempted to find a solution to Eq. 3.65 by 
obtaining a second equation relating Hh and HQ from the turbulent-energy equation 
(Eq. 2.42 in Chap. 2), which upon integration over the thickness h is: 

i^=--»'(f4-i^i-^ 
X ' ' g /-h 

w'0 'dz - Jo edz (3.69) 

Both Lilly and Ball neglect the first term on the left. Also, turbulent production is 
not likely to be strong in the convection region, where shear stresses are low and the 
velocity distribution varies very little with height. Thus the balance is, with the 
pressure-fluctuation term also neglected (usually because one does not know what to 
do with it; measurements of pressure fluctuations are practically nonexistent):* 

- w V l , ^ - | / o w'0 'dz+/o edz (3.70) 
I h 1 

Ball neglected the transport term and conjectured that dissipation would be very small, 
so that 

eh 
Jo w'0'dz = O (3.71) 

*There is no good reason why the pressure fluctuations are not measured simultaneously with 
velocity fluctuations in the atmosphere. In the laboratory it is almost impossible to measure the 
fluctuation term inside the boundary layer because of the large size required for pressure 
transducers of sufficient sensitivity. 
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SUPERADIABATIC 
LAYER 

Fig, 3.8 Definitions for the inversion-capped convection layer with overshoot. Heat flux into layer 
from above equals heat flux from below, according to model of Ball (1960). 

or since the flux (assumed to be positive if entering into the volume from below), 
according to Eq. 3.64 is linear 

Vf 6h= —W 00 (3.72) 

i.e., the heat flux into the convection layer from below is exactly equal to the heat 
flux into the top of the convection layer. This means that warm air from above the 
inversion must be transported downward to heat the convection layer, the top part of 
the convection layer then cannot be at the temperature of the inversion at height h. 
The temperature in the convection layer must be lower than in the previous case, and a 
situation such as that shown in Fig. 3.8 results. Again, we can write a simple 
heat-balance equation for the situation shown, if we assume that the heat flux at the 
bottom is constant and if we neglect the adjustment in the mean-temperature profile 
outside the convection layer by postulating a sharp discontinuity in temperatures at 
the top of the convection layer. The heat flux into the top of the convection layer is 
equal to the heat flux from below, and the total heat input must be used to heat the 
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layer. However, in addition, heat becomes available for heating the layer from the strip 
of thickness, dh, which is eroded from the stable layer during time dt, and thus the 
heat-balance equation becomes, with the geometry of Fig. 3.8: 

h f M T , * < J . h - I ) f . ^ (3.73) 

A second equation relating h and T cannot be found as simply as in the previous case. 
However, it is reasonable to assume that temperature change and layer thickness are 
proportional, in analogy to Eq. 3.66: 

where a is an arbitrary constant. With this assumption Eq. 3.73 yields 

h ^ = 4 - i ^ t (3.75) 
/JoPCp 

which is identical to Eq. 3.68, if Hh is set equal to —HQ , as required by the model. The 
model of Ball leads to precisely the same growth rates as the simple model of Eq. 3.68, 
and so will any model in which a linear heat-flux distribution is assumed and in which 
the heat flux at the top lies between zero and —HQ . Different assumptions about the 
dissipation integral in Eq. 3.70 which yield fluxes between 0 and +Ho at the top do 
not change this result as long as the dissipation is assumed to be constant with height. 
The growth rate of the layer is thus seen to be independent of the turbulence model. 

The assumption of a constant heat flux (HQ) is, of course, not justified. More 
elaborate models in which other contributions, such as radiation effects at the top of 
the layer and a time dependency of the heat flux are considered, have been proposed 
by Lilly (1968) and Deardorff et al. (1969). The models have to be solved, however, 
by numerical techniques. 

Convection Plumes in the 

Free-Convection Layer 

A different approach to an understanding of free convection is obtained if the 
individual elements of the convection-flow process are considered separately. As 
pointed out earlier, in free convection at small Rayleigh numbers, the convection 
elements are structures of fairly regular geometry. The flow in the convection layer 
consists of a vertical region in which heat is moved upward in rather concentrated 
updraft zones and of other regions in which a downward flow of colder fluid from 
above takes place at somewhat lower velocities and therefore over a wider area 
between the updraft regions. The cited laboratory experiments of Elder (1969) 
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furthermore have shown that the updraft elements develop from the superadiabatic 
layer and form concentrated buoyancy elements that determine the structure of the 
flow and temperature field in the convection layer. 

A very similar structure of convective motion has been inferred for the atmosphere 
also. Bunker (1959) has concluded that thermals, i.e., bubbles of warm air, or hot 
plumes, rise from the superadiabatic layer into the convection layer where their 
presence produce upwind regions in which glider planes or birds can soar (Scorer, 
1954; Ludlam and Scorer, 1953). The experimental evidence of measurements of 
fluctuating temperature and velocity with low-flying airplanes suggests that the 
thermal elements rise with httle change in diameter and temperature (for recent 
evidence, see Warner and Telford, 1967), rather than like a thermal cloud thatmbtes 
freely with the surrounding. Scorer and Ludlam (1953) have formulated on this basis a 
theory of motion of convective thermals, whose behavior is like that of a buoyant 
bubble traveling at a constant speed equal to the asymptotic rise velocity and whose 
outer shell is eroded in the process of migration. This erosion takes place partly by 
convective instabilities and separation of local convective elements from the main 
cloud and partly by the development of instabilities of the interface between the 
thermal and its surroundings; these instabilities are induced by the difference in 
density and velocity (Kelvin Helmholtz instabilities). The bubble model has been 
developed further by Malkus and Scorer (1955) [see also Roll (1965)]. 

A different treatment, which is theoretically more appealing and better confirmed 
by laboratory experiments, considers that the thermal element grows by entrainment 
of cooler air from the surroundings, a process which reduces effective buoyancy and 
thus the rate at which the elements rise. The tops of the elements have a spherical 
appearance, not because of the bubble nature of a blob of hot air rising but because 
they are circular vortices. This concept has been explored by Turner (1957, 1960), 
who considered the thermal as a buoyant vortex moving in neutral air (Turner, 1957) 
and stably stratified air (Turner, 1960). On the basis of Turner's work, we briefly 
outline below the theory of the rise of a convective vortex. 

Let the vortex have an initial circulation K, induced by the release of hot air from 
the superadiabatic layer, and let R be the radius of the vortex. Then its momentum M 
is, to a first approximation, given by: 

M = TTp KR^ (3.76) 

where p is the mean density of the fluid. The change of momentum is caused by the 
buoyance force, pF = gV(p — p'), 

- ^ = p F (3.77) 

where V is the volume of the fluid and p' is the fluid density in the vortex. In a 
surrounding with constant density p, the growth of the initial volume takes place by 
entrainment of air from the surroundings; consequently the buoyancy of the vortex 
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remains constant. A solution of Eqs. 3.76 and 3.77, with the assumption that the 
uplift velocity (w) follows a similarity law so that w ~ K/R, yields a rise time t 
between stages where R = RQ and R, given by: 

h^ ^ . hR, 
F + ̂  (3.78) 47TC2K3 cK 

where h is the distance traveled during time t and c is a constant defined by the spread 
rate 

Equations 3.60 and 3.61 require an estimate of K and F as well as of the constant c, 
which cannot be obtained unless something is known about the initial conditions. 
Nevertheless, it shows that increased buoyancy has the tendency to increase time t and 
thus to lower the velocity of ascent. A more detailed investigation, by numerical 
techniques, of the vortex problem has been made by Lilly (1964). 

It is often observed that the thermal elements of the convection layer are 
stationary plumes, of some finite duration, rather than thermals of the kind 
investigated by Scorer and associates, or Turner. The model of Scorer and Ludlam 
gives little information on the behavior of thermal plumes, i.e., thermal elements 
which are steady and which extend throughout the height of the convection layer. 
Scorer and Ludlam, however, express the notion that the "wake" behind the bubble 
will be an updraft region into which smaller bubbles, which together form a sort of 
thermal plume, might be drawn. 

An alternate way to treat the thermal elements is by considering them as entities 
which arise from a local source of buoyancy near the ground and which develop 
somewhat like jets in free turbulent shear flow. This suggests the use of similarity 
assumptions for all profiles and suitable models for the shearing stress distribution in 
the plume on the basis of the methods employed in the treatment of free turbulent 
shear flow (Schliching, 1968). The earliest treatment along these lines of the thermal 
plume in a neutral atmosphere was given by Schmidt (1941), who used a mixing-length 
assumption to close the set of governing equations. 

A more extensive treatment, including thermals and thermal plumes rising in a 
stably stratified layer, has been given by Morton et al. (1956). Later developments of 
the theory and pertinent experimental results have been summarized in a recent survey 
paper by Turner (1969) which includes an extensive bibliography. 

Briefly, the ideas underlying the aerodynamic model of Morton et al. (1956) for 
the motion of buoyant elements in a stable surrounding are as follows: They 
considered the element to be a distinct entity generated by a local source of buoyancy 
in which both the density defect and the velocity obey similarity distributions. For 
this plume, they derived a set of conservation equations. To close this set, they did not 
use the mixing-length model of Schmidt (1941)—which is an assumption on the shear 
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stress and heat-flux distribution inside the thermal element—but instead stipulated 
that the thermal element entrains fluid from the surrounding at a rate proportional to 
a characteristic velocity of the plume, for which they chose the local velocity averaged 
across the plume. Finally, they approximated the similarity profiles either by constant 
values of plume density (p') and velocity (w) over the width (b), which change 
abruptly for 1x1, lyl '^\ b to p and 0, respectively ("top-hat" distribution), or by the 
Gaussian-error function, with variance b^. Then conservation equations for a steady 
thermal plume are obtained by integration over the plume at distance z from the 
virtual heat source, in the form given below. 

Change of volume: 

dz 

Conservation of momentum: 

-^ (7rb^w) = 277baw (3.80) 

- ^ ( 7 r b V ) = m7rcb'^—^ (3.81) 
dz^ ^ PR 

Change in density: 

Af^b^ P z V ) = ^ b ^ ^ - i - ^ (3.82) 
dz \ ^ PR / PR dz 

where the Boussinesq approximations have been used. In these equations, PR is a 
reference density and a is the factor of proportionality between w and the 
entrainment rate per unit circumference of the plume. The coefficient m is a profile 
constant, equal to 1 for the top-hat distributions. For a neutrally stratified external 
flow, Eqs. 3.80 to 3.82 can be integrated readily, leading to a linear spreading of the 
plume and a temperature (or density) that varies with height as i . These results are 
formally equivalent to those obtained from the mixing-length theory. Equations 3.80 
to 3.83 have the advantage over the mixing-length theory in that no new formulation 
(for the mixing length) is required in applying them to a stratified atmosphere. 

The entrainment coefficient (a) must be determined from experiments to solve the 
equation, Morton et al. obtained this value by making the assumption that the 
similarity distributions of density and velocity obeyed a Gaussian or normal 
distribution, which corresponds to m = 2, and by fitting the solution obtained from 
Eqs. 3.80 to 3.82 for spread rates to experimental data of laboratory studies of plume 
spread. Data of Rouse et al. (1952) yielded a value of a *« 0.08. 

Although the above value of a applies only to plumes rising in neutrally stratified 
fluids, Morton et al. (1956) applied it also to stable stratification. In that case the 
plume does not extend from the ground to infinity but it comes to rest when the 
internal temperature is equal to that in the stable surroundings. The inertia of the 
plume makes it overshoot this level, and the highest point of the plume is reached 
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when the downward buoyancy has reduced the plume velocity to zero The maximum 
height, Zfnax! ^t which this occurs has been given by Morton et al as 

Zmax«4Fo^ N-"* (3 83) 

where FQ IS the total buoyancy flux (m m^'/sec^) that enters the plume at ground level 
and N is the Brunt—Vaisala frequency, defined by 

N^=| |3o (3 84) 

and |3o is, as before, the temperature gradient of the stable layer 
The linear spread rate is a result of the entrainment assumption, and, since a Imear 

growth of the plume is not observed in the atmosphere, many writers feel that this 
assumption is not reahstic Different assumptions have been proposed, for example, 
Priestley and Ball (1955) suggested to assume that a shear stress exists in the plume 
whose similarity distribution is scaled by the velocity w squared For a discussion of 
this model and its comparison with that of Morton et al (1956), reference is made to 
Priestley (1959) Their model also results in a linear spread rate, and therefore it does 
not offer much improvement In a recent paper, Telford (1966) attempted to obtain a 
more realistic model by postulating an entrainment model based on turbulence both in 
and outside the plume The plumes obtained with this assumption are more nearly of 
constant cross section with height, but the mathematics is involved, and results can be 
obtained only by numerical methods 

Structure of the Convection Layer 

In all the plume models, it is assumed that the heat is convected upward by plumes 
or thermals that are either isothermal bubbles or elements cooled by entrainment of 
colder air from the surroundings This entrained air also increases the volume of air in 
the plume The models, however, do not allow for a mechanism by which the air is 
heated between the plumes The approximately average temperature in the convection 
layer indicates that such heating should take place, and qualitatively it is easy to see 
how this occurs It is evident that a thermal plume not only moves heat but also mass 
to higher regions This movement must be balanced by a downdraft m other parts of 
the convection layer In a steady or quasi-steady plume, the mass carried upward is 
that of the initial mass flux, taken from the superadiabatic layer in the manner 
described above, and that entrained by the plume on its way upward All of this mass 
must be released near that height in the inversion layer where the plume velocity is 
equal to zero Thus the slightly cooler air below the height at which the plume 
temperature equals that of the surroundings is displaced downward 

If the ground temperature increases because of further radioactive heating, it can 
be expected that the mean temperature of a plume rising out of it also mcreases The 
result IS that the plume extends to a higher level in the inversion, thereby displacing 
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slightly warmer air than before, which moves downward and pushes the previously 
displaced air ahead of it Consequently the mean temperature between the plumes 
becomes, in the absence of an effective mixing between the updraft and downdraft 
regions, slightly stratified Barnes and Turner (1969) have suggested that this process is 
similar to overturning fluid in a box that contains a heat source m the center at the 
bottom, a case which they studied in the laboratory Although this model is of 
qualitative interest in that it shows that the process envisioned for heating the spaces 
between thermal plumes does indeed take place, it is not directly applicable because 
the dimensions of the box set a second, lateral-length scale to the convection process, 
whereas, m an atmospheric convection layer, it is likely that the scale is set by the heat 
flux alone This scale seems to be the same as that for the thermals or plumes because, 
in their study of the convection layer, Warner and Telford (1967) found that on the 
average the width between thermals was about equal to the diameter of the thermals 

Since the air between the plumes has been part of the stable layer, its turbulent 
temperature fluctuations must be very small compared to those m the plume This was 
observed by Priesfley (1959), Warner and Telford (1967), and Businger (1969) The 
variance of the temperature fluctuations averaged over the convection layer is highest 
near the surface layer and decreases with height Since observations show that the 
space between the plumes makes practically no contribution to the variance, it follows 
that the temperature fluctuations decrease with height, which is quite compatible with 
finding only small temperature fluctuations in the downward moving air Conse-
quently it IS possible to find a relation between the average temperature gradient for 
the whole convective layer from the conservation equation of the turbulent 
fluctuation balance, Eq 2 45 of Chap 2 (without radiation term) 

- ^— = - 5 w e 3 - - ê  (3 85) 
2 ot 9z 2 dz '• 

The slowness of the heating of the ground makes it likely that the term on the left is 
small Also, it has been argued by Deardorff (1966), on the basis of measurements of 
Telford and Warner (1964), that the dissipation term et is negligible However, this can 
be valid only locally since the production term, averaged over the whole convection 
layer, must balance the dissipation term When we assume that most of the 
fluctuations disappear m the process of mixing of the plume mass in the inversion at 
the top of the convection layer, then ej over the bulk of the convection layer above 
the superadiabatic wall layer can be neglected, the diffusion term thus balances the 
production term From this result, Deardorff inferred that the heat flux must be 
against the gradient, and he derived an upper limit to the magnitude of the positive 
gradient 

According to what has been said, the diffusion term has a value different from zero 
only in the plume, where the mean updraft velocity is probably substantially larger 
than the fluctuation velocities, so that w'6'^ »» w T ^ , where Wp is the average plume 
velocity Integration of Eq 3 67 with these assumptions across a horizontal plane 
z = constant yields 
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H | | = - ^ w p 0 ' ^ - r - p c p (3.86) 

where r is the ratio of the plume area to the total area. As long as r is approximately 
constant and Wp and 5'^ decrease with height in the plume, the term on the right-hand 
side of Eq. 3.86 is positive, i.e., a positive heat flux causes a positive temperature 
gradient, contrary to the usual conduction situation. Note, however, that some drastic 
assumptions are required to arrive at this result, which must ultimately be justified by 
recourse to experiment. A similar line of reasoning as that given here was followed by 
Businger (1969). 

EXPERIMENTS ON 

THE FREE-CONVECTION LAYER 

Since there exists a tremendous amount of literature on free convection, it is the 
opinion of this writer that at present it is not necessary for an understanding of the 
atmospheric convection layer to perform any further experiments on steady free 
convection at a small scale. However, it appears necessary that the abundance of 
theoretical studies be supplemented by a few critical experiments to validate 
conjectures or hypotheses on which the theoretical or numerical models are based. 
Only in this manner can fruitful courses for further theoretical research be discovered. 

Unsteady convection, on the other hand, appears to be very similar in laboratory 
and field, at least in its average features. It is unclear how far the parallel goes, and 
there is very little knowledge of the structure of the convection elements in the 
laboratory except for the qualitative description of Elder (1969) and Foster (1965). It 
also seems desirable to study the structure of the thermals or plumes and the 
mechanism of depletion of, and the accumulation of hot air from, the superadiabatic 
layer. What would be the influence on these processes of a weak shear flow? 

But the most promising and perhaps most important area of research lies in 
measurements of the process of reverse development of a convection layer. When the 
heat flux from the wall becomes zero, then the roughly constant temperature of the 
convection layer lets it appear as a layer of decaying temperature and velocity 
fluctuations. How does this process of decay take place? Is it gradual, or does the flow 
field break down suddenly? How does the inversion migrate downward? How is this 
process affected by the downward flux of heat during radiation cooling of the ground? 
These questions are of great importance for our understanding of the atmospheric 
boundary layer. 
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TWO-DIMENSIONAL 

DISTURBED 

BOUNDARY LAYERS 

INTRODUCTION 

The assumption of uniformly rough terrain at uniform temperature and of unlimited 
extent is an idealization to which natural terrain corresponds only in exceptional cases 
In fact, field experiments for verifying the profile laws described in previous chapters 
always had to be conducted at carefully selected sites that were located only after 
extensive searches. This was necessary because of the boundary-layer nature of the 
atmospheric surface layer. Turbulent boundary layers have a "long memory," i.e., 
disturbances of their equilibrium persist over long distances, and the fluid particles in 
them have a high propagation velocity along a surface as compared with that in the 
direction normal to it. Consequently disturbances might have been generated at the 
surface at large distances upstream from the point at which measurements are taken, 
but because they damp out only slowly they are still reflected in the velocities at a 
comparatively short distance from the ground. Boundary layers that show the 
mfluence of boundary configurations different from the local ones will be termed 
"disturbed" boundary layers. 

Systematic studies of disturbed boundary layers began rather recently. The 
greatest progress has since been made on the problem of the two-dimensional internal 
boundary layer. This is the boundary layer which develops inside another boundary 
layer when the flow that has approached over uniform terrain encounters a step 
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change m surface conditions, such as a change in terrain from smooth to rough or a 
change of surface temperatures from hot to cold, or vice versa, and when the 
discontinuity extends normal to the direction of flow For this type of problem, 
boundary-layer analysis can be applied except directly at the discontinuity 

Meteorologists became interested in internal boundary layers after finding that 
some of the sites selected for micrometeorological field experiments yielded flow 
characteristics significantly different from those to be expected over truly uniform 
terrain By assurmng that the spatial acceleration or advection terms of the boundary 
layer were not equal to zero, they could explain some of the differences Today the 
internal boundary layers can be considered in the planning of micrometeorological field 
experiments The theory is sufficiently developed to determine the necessary fetch 
length for a surface to have adjusted over sufficient height to the new surface 
conditions The criterion for this adjustment to have taken place is that the ground 
shear stress has become constant along the ground and that the constant shear layer 
corresponding to this stress extends over the whole height of interest Apart from this 
application, internal boundary layers should be useful eventually in the quantitative 
prediction of evaporation from small lakes, or from irrigated fields in dry land, and in 
other problems of similar nature where the distance is short over which the wind 
encounters changed boundary conditions The first part of this chapter will be a review 
of internal boundary-layer theory 

The second problem, to be treated only qualitatively m this chapter, is the air flow 
near shelterbelts Shelterbelts have been used from time immemorial, but fluid-
mechanics studies of the flow field, with the aim of deriving design criteria for a most 
efficient shelterbelt, are of very recent origin and have as yet not led to methods of 
predicting the flow field downstream and ahead of shelterbelts Nevertheless, a number 
of facts are known about shelterbelt effects, and their fluid-mechanics aspects will be 
reviewed here 

THE INTERNAL BOUNDARY LAYER 

A typical situation of the boundary-layer flow over a sudden change in roughness 
from a surface whose roughness is described by the roughness height ZQ i to a rougher 
surface with roughness height Z02 is shown in Fig 4 1 Here we assume that the 
roughness heights on either side of the discontinuity correspond to terrain of infinite 
extent There is no fluid-mechanics principle that requires the roughness height to be 
constant in such a situation, nevertheless, all the models of internal boundary layers 
that have been advanced as yet require that the values of ZQ be known upstream and 
downstream from the discontinuity m roughness Usually the assumption is made that 
the Zo values are dependent on the geometries and arrangements of the elements of 
surface roughness only and that they correspond to values found from wind-profile 
measurements over uniform terrain of the same configuration as that existing locally m 
complex terrain 
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Zol, U,i(x) Zo2, U,2(x) 

Fig. 4.1 Schematic representation of the development of an internal boundary layer flow from 
smooth to rough 

The boundary-layer nature of the flow field upstream and downstream of the 
roughness discontinuity makes it unlikely that the velocity field at a large distance 
upstream of the discontinuity and at a large height above the downstream rough 
surface is affected by the change in roughness Therefore a region of influence of the 
downwind roughness can be identified by the curve shown in Fig 4 1 and is called 
the internal boundary layer of thickness 5 Above the 6 height lies the outer layer 
where the flow field still is characteristic of the approach conditions, except for a 
displacement 5' of the outer flow field that is required by the condition of continuity. 
Very near the ground, on the other hand, an inner layer exists where the profile has a 
shape that is fully governed by the local boundary conditions, and in it the existence 
of an outer flow is reflected only in the velocity scale of the profile Between the inner 
and the outer layers there exists a blending layer in which the velocity distribution 
gradually changes from the logarithmic profile above the downstream roughness to 
that over the upstream one At large distances from either side of the discontinuity in 
roughness, the shear stress of the surface is adjusted again to such values as would be 
expected if the flow field had developed over uniform terrain 

The Experimental Evidence 

That the qualitative description given m the preceding paragraphs correctly 
represents the internal boundary-layer situation is borne out by experimental 
observation Jacobs (1939), who followed a suggestion of Prandtl, made the first 
experimental investigations of the internal boundary-layer problem The Jacobs 
experiments were performed m duct flow Similar experiments in pipe flow by Logan 
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and Jones (1963) and in ducts by Tani and Makita (1968) and Antonia and Luxton 
(1968) provided experimental data that were not directly apphcable to atmospheric 
conditions, which in view of the discussions in Chap 1 require a very small pressure 
gradient Atmospheric data from Stearns (1964) and Stearns and Lettau (1963) were 
based on experiments over the ice of Lake Mendota, Wis, with artificial downwind 
roughness consisting of bushel baskets or dried pine trees These roughness elements 
were rather large, and the number of profiles taken was not sufficient to provide a 
sensitive test to check theoretical models The best experimental data now available on 
mean velocity profiles were obtained by Bradley (1968) who measured simultaneously 
velocity profiles and ground shear stresses The results of his experiments are shown in 
Fig 4 2, both for the flow from a smooth to a rough surface (Fig 4 2a) and for the 
flow from a rough to a smooth surface (Fig 4 2b) The velocities are made 
nondimensional with suitable reference velocities These are velocities which are 
measured at that height, in centimeters, which is indicated by the index The solid 
lines and the data points represent measurements Note that the uppermost sohd hne 
in Fig 4 2b and the lowest solid line m Fig 4 2a correspond to the velocity 
distributions upstream of the discontinuity in roughness, which are seen to be well 
represented by logarithmic profiles 

Several facts stand out clearly from Bradley's experiment First, the mean velocity 
profile IS practically unchanged above that point where the lower part of the profile 
intersects the original upstream profile This implies that the deflection of the 
streamlines m the change-of-roughness problem of Bradley is very small, and so 6' is a 
small quantity This is due partly to the relatively small change m roughness used by 
Bradley, it is beheved that 5' is of significantly larger magnitude if the flow is, for 
example, from a snow-covered plain onto a forest, from a shore onto a lake, or from 
ice onto bushel baskets Comparable experimental results with similarly detailed 
measurements on such situations are, however, currently not available from field 
observations Similar results have been obtained m the laboratory, such as the flow 
field over multiple fences studied by Kung (1970) or the flow from a smooth 
boundary onto model trees (Meroney, 1968) 

Second, we observe that there is only a small portion of the profile m which the 
velocity distnbution deviates from either the logarithmic profile near the ground or 
aloft Both these observations and the smallness of 5' have been employed successfully 
in simphfying the analytical treatment of the problem 

The shear stresses at ground level as measured by Bradley are shown below the 
velocity profiles in Fig 4 2 The local shear stresses were made nondimensional by 
dividing by the uniform upstream values and were plotted against the distance x from 
the discontinuity Notice that in the smooth-to-rough problem the shear stress initially 
rises very sharply to about twice its value at large fetches, whereas in the 
rough-to-smooth case a drop to about half the large fetch value occurs Theories must 
account for these features 
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The Analytical Formulation of the Internal 

Boundary-Layer Problem 

The basic equations for a two-dimensional, incompressible turbulent flow in 
neutral stratification are, under steady conditions and averaged over time, 

U V- + W -r- = - •r— - + u ) - - r - U W (4 1) 
9x 3z 9x \p I dz 

u^—+w-T- = --5-l-£+w l - ^ - u w (4 2) 
9x 9z 9z \p / o x 

in which only the viscous terms have been neglected The only additional available 
equation is the equation of continuity, 

1^+^=0 (4 3) 
9x 9z 

Thus we have a system of three equations with six unknowns which has to be solved. 
In all published models of disturbed boundary layers, the terms with u'^ and w'̂  

have been neglected at the outset Although observations show that there are 
substantial variations of these quantities from point to point, the contributions made 
by these to the momentum balance are always found to be small compared to those of 
the other terms An assumption that may improve on the simple omission of the 
normal turbulent stress would be that of local isotropy, i.e., u'̂  = w'^, m which case a 
modified pressure p = p + pu'^ may be used. Note that at large distances from the 
discontinuity in boundary conditions both upstream and downstream, the flow along 
the ground is of boundary-layer nature, so that the second equation reduces to 

p + pw'^=Pw (4 4) 

where p^ is the static pressure at the ground, and the pressure-gradient term in the 
first equation becomes 

9 x \ P / 
ilEw + A ( ^ 7 5 _ ^ \ (45) 
p dx 9x \ / 

In flows that are of boundary-layer nature, the changes of u'̂  — w'̂  with x are very 
small, and the second term on the right can safely be neglected. Therefore the pressure 
gradient is impressed by conditions outside the boundary layer which determine p^ . 

Near the discontinuity in surface conditions, the vertical velocity changes rapidly 
with distance x, and, strictly speaking, this change cannot be neglected. The change 



TWO-DIMENSIONAL DISTURBED BOUNDARY LAYERS 

00 

10 

/ f h (16.42) P-H 

A B C 

u,i = 0.038 U2 

0.4 0.6 

Fetch over spikes, m 

'+ 16.42 
fi 6.42 

Data \ o 2.32 
X 1.18 
• 0.32 

0.8 

U/U220 

1.0 

f A 16.42 
P-T theory \ B 6.42 

I C 2.32 

1.2 

—I r 
P-T = Panofsky-Townsend (1964) 

Q P-H = Plate-Hidy (1967) b = 4.8 
•" - Elliott (1965) 

\ 

n \l 
P = Peterson (1969) 

H»ti o 
* P-T at 1 0 0 m -

4 8 12 

Fetch over rough surface, m 

16 

(a ) Variation of surface shearing stress downwind of smooth-rough 

transition (ZQ = 0.002 cm to ZQ = 0.25 cm). 

(From Bradley 1968) 



THE INTERNAL BOUNDARY LAYER 143 

Data 

Fetch over tarmac, m 

r + 12 20 
o 610 
X 2.10 
• 012 

P-T theory 
f A 2.10 
i B 6.10 
I C 12 20 

0 4 8 12 
Fetch over smooth surface, m 

(b) Variation of surface shearing stress downwind of rough-smooth 
transition (ZQ = 0.25 cm to ZQ = 0.002 cm). 

(From Bradley, 1968) 

Fig. 4.2 The experimental data of Bradley (1968), compared with results from different models 
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gives rise to local pressure gradients both in the z and x directions which strongly 
affect the velocity field These local pressure gradients are responsible for many local 
distortions in the velocity field One example is the often observed feature that near 
the edge of a tree stand or a field (i e , m canopy flows) the velocities near the ground 
are much higher than those further mside the canopy. This effect is particularly 
evident in some experimental results of Meroney (1968), an example of which is 
shown m Fig 4.3. These data also show that for small x and in the canopy the 
turbulent intensitiesfu'^/u^j are overshooting those of large x values We infer that 
the region near the discontinuity is one of intense turbulence production which creates 
a strong stress field, so that adjustments to approximately similar profiles take place 
over a comparatively short distance x 

We note also that the strong pressure field which develops near the roughness 
discontinuity leads to an initial deflection of the streamlines away from the rough 
surface. Thus, as is seen in the drag measurements on individual trees shown at the 
bottom of Fig 4.3, only the first row of trees suffers a greatly increased drag, whereas 
the succeeding rows of trees are actually subjected to less drag than those at large 
fetches In extreme conditions, when the first row of trees is so dense that it acts 
aerodynamically similar to a solid wall, it may even happen that the air flow separates 
from the front row, subjecting the next few tree rows to a flow m a separation region 
which exerts a drag in the direction opposite to the flow direction However, such 
occurrences, which are often observed in the related case of the "backward facing 
step," have not been reported for natural surfaces 

There exists only one set of experimental data m which the pressure distributions 
near the discontinuity have been measured in addition to the velocity field. These data 
were taken by Yeh (oral communication). The pressure change was considered m 
numerical calculations by Wagner (1966) and by Onishi and Estoque (1968) who 
found that in the simple case of roughness changes the pressure acts as a smoothing 
function that makes the change from the upstream to the downstream profile across 
the discontinuity less abrupt However, both the experiments of Yeh and the 
numerical results show that the pressure effect is restricted to a fairly narrow region m 
the neighborhood of the discontinuity The pressure effect on the downstream 
boundary layer is very likely a small shift of the origin of the internal boundary layer 
which appears to begin not at the roughness discontinuity but at a location upstream 
or downstream from it, much as in the manner that a virtual origin appears in the 
solutions of other boundary-layer problems in which the boundary-layer assumptions 
are not satisfied at the physical origin of the boundary layer, such as turbulent jets and 
wakes. 

In the following text we shall not only make the assumption that the pressure is 
constant across the layer but also that it is constant everywhere Modifications 
required to account for a pressure gradient m the direction of flow are fairly simple 
and can readily be incorporated into the models This fact has been demonstrated by 
Plate and Hidy (1967). With the assumption of p^ = constant, the set of equations to 
be solved for the internal boundary-layer problem is reduced to 
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U T - + W — = ^ (4.6) 

9x 9z dz 

3x oz 

To these equations we must add a constituent equation for (the kinematic shear stress) 
r and boundary conditions Both conditions are intimately related to the method of 
solution chosen. 

Apart from an early method, in which the internal boundary-layer problem is 
treated as a diffusion problem (Philip, 1959, Dyer, 1963), there are two main methods 
for solving Eqs. 4 6 and 4.7. In one of the two methods, solving is by numerical 
techniques and, in the other, by approximate techniques based on the method of 
Karman—Pohlhausen (Schhchting, 1968, p. 192). The latter, which was introduced to 
the subject of internal boundary-layer calculations by Elliott (1958), avoids the 
problem of specifying shear-stress distributions and thus eliminates the need for much 
of the guessing about the relation between shear stress and mean velocity distribution 
The guessing is replaced by much safer and more easily experimentally demonstrated 
assumptions on the mean velocity distribution 

Karman-Pohlhausen Method for Predicting the 

Characteristics of the Internal Boundary Layer 

The Karman-Pohlhausen method is an approximate method for calculating 
boundary-layer parameters on the basis of an assumed velocity profile in the boundary 
layer The velocity profile is so chosen that it satisfies a number of boundary 
conditions at the ground and at the edge of the boundary layer, as well as some 
integral constraints that are imposed on the flow field by the equations of motion and 
continuity and by the configuration of the surface. The important integral constraint 
imposed by the Karman-Pohlhausen method is the integral momentum equation, 
which is obtamed by a formal integration of Eq. 4.6 across the internal boundary 
layer. This is easily accomplished and leads to the equation 

| ^ j [ % ^ d z - u , A ; ^ « u d z = r , - u l , (4.8) 

where the subscript 6 denotes conditions at the edge 5 of the internal boundary layer 
and u*2 IS the kinematic shear stress at the ground at x. 

In view of the physical situation described in the section entitled The Analytical 
Formulation of the Internal Boundary-Layer Problem, the conditions at 5 are 
determined by the upstream flow, so that, with reference to Fig. 4.1, 

Us =Ui atz = 5 - 5 ' (4.9) 
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and, since the boundary layer upstream of the discontinuity is assumed to be a 
constant-stress layer over the height considered, it follows also that 

Ts=v^li (4.10) 

To complete the system of equations, we must specify the velocity distribution U2 
that not only determines the integrals in Eq. 4.8 but also the displacement 5'. A useful 
profile is 

^ = i l n ^ + f ( | - ) (4.11) 

Since the velocity distribution must become logarithmic near the ground, the function 
f(z/5) must be zero for z ^ 0. Furthermore, continuity of the velocity distribution 
requires 

^ = Un± + fil) (4.12) 
U*2 «• ^02 

ElUott (1958) in his pioneering paper on the subject made the assumptions that 
f = 0 and 6' = 0 so that Eqs. 4.8 to 4.12 lead to a set of two equations for the two 
unknowns, u*2 and 6. The integration of Eq. 4.8 yields a rather complicated algebraic 
expression. Elliott was able to show, however, that except near x = 0 (where, owing to 
pressure effects, the method cannot be expected to give accurate results anyway), the 
internal boundary-layer thickness is well represented by the equation 

_L = a( 'JLy' (4.13) 
0̂ 2 \Zo2/ 

where a is a slowly varying function of Z02/Z01 which can be approximated by 

a = 0.75-0.03 In ̂  (4.14) 
ZQI 

Although Elliott's velocity-profile assumption incorporates the essential features of 
the flow problem, it was found to yield results that were only roughly in agreement 
with observation. Attempts to improve Elliott's model without changing the method of 
approach have centered on improving the assumptions of Elliott. Plate and Hidy (1967) 
retained the velocity-profile assumptions of Elliott but dropped the assumption 5' = 0. 
With 5' small compared to 5, it is possible to write Eq. 4.9 as 



148 TWO-DIMENSIONAL DISTURBED BOUNDARY LAYERS 

They obtained a further simplification from integrating the momentum equation 
between x = 0 and x. For this model the shear stress was set equal to an average value 
along x, and the streamline passing through 5(x) was assumed to be a straight line. The 
advantage of the method of Plate and Hidy (1967) is that it readily permits the 
incorporation of pressure gradients and changes in roughness along the fetch. They 
also found that the method yielded results in good agreement with their laboratory 
data in the complex situation of wind blowing from a smooth shore onto water, in 
which case the wind gives rise to waves that determine the roughness of the surface. 
The comparison of the data with the theory is indicated in Fig. 4.4. The standard 
deviation a^ of the water surface elevation is found to be proportional to Zo2 and is, 
as shown in (b) of Fig. 4.4, a function of x. Also, there existed a pressure gradient that 
was of some effect on the results of the calculations. The velocity distributions were 
found in good agreement with the experiments, as is seen in (a) of Fig. 4.4, until 
x > 2.5 m, at which distance the theory loses its validity because the approach profile 
above the internal boundary layer begins to deviate from the assumed logarithmic 
form. 

The results of the technique of Plate and Hidy for constant Zo2 and zero-pressure 
gradient have been incorporated into a nomogram that can be used in similar 
situations. Introducing the abbreviations 

c = l n A (4.16) 
Zo2 

b = l n ^ (4.17) 
Z Q I 

these results can be put into the form 

5' be 2 

D" 
(4.18) 

f̂  = f? (4.20) 
^ 0 2 ^ 0 2 ^ 

where N, P, and D are polynomials in c and b which are given by 

D = c'*-i-c^ ( b - l ) + c 2 (4.21) 

P = 2bc^ -I- ĉ  (3b^ - 2b) + c (b̂ * - b^) - b^ (4.22) 

N = c% -̂  c' (2b^ - 4b) + c' (b' - 6b^ + 2b) - 2cb=' + 2h^ (4.23) 
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Combinations of these polynomials were plotted for ready use in Fig. 4.5. From this 
figure it is comparatively simple to obtain a solution for a given situation. With given K 

and values of ZQ, we calculate K^XIZQ2 and go into Fig. 4.5a from which we obtain, 
with suitable interpolation for b, the ratio 5/zo2- With this ratio, enter Fig. 4.5b, get 
N/D, and calculate u»2 from Eq. 4.19. The whole process takes only a few minutes. By 
applying this method to Bradley's data for flow from smooth to rough, we find that 5 

0.11 M m l I i l I I l l I ,1 I I I m l 
102 10^ 10^ 10^ 

Fig. 4.5 Graphs for calculating internal boundary layers (from Plate and Hidy, 1967). 
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is remarkably well predicted, as is seen in Fig. 4.2a, whereas initially the shear stress is 
slightly overestimated. At a fetch of 16 m, however, the shear stress agrees very well 
with the measurements. 

The modification of Elliott's method by Plate and Hidy probably yields satisfactory 
results as long as the blending region between the outer flow and the flow in the 
internal boundary layer is thin. This is not likely to apply for large distances x where 
the blending of the two profiles may extend over a substantial portion of the 
boundary layer, so that the blending function f(z/5) becomes significant. 

The introduction of the blending function does, however, require an additional 
condition for closing the set of equations. Panofsky and Townsend (1964) reasoned 
that the most unrealistic feature of Elliott's model is the condition, apparently imphed 
by the logarithmic profile in the internal boundary layer, that the shear stress jumps 
discontinuously at z = 5 from u*2 to uJi . This criticism is, however, not entirely 
justified because it requires the mixing-length relation between shear stress and 
velocity profile: 

r = uJ=(Kz)^( |f-y (4.24) 

which actually need not be invoked. Assuming it to be valid, however, and requiring 
continuity of shear stress, we impose an additional condition on the velocity 
distribution that can most simply be met by means of an additional function f(z//i) 
given by the linear relation 

This form was proposed by Panofsky and Townsend (1964). The addition of f(z//i) 
does not change the shape of the distribution very much; however, /i is the upper limit 
of the blending region between the outer and inner velocity profiles which is 
significantly different from the 5 used by Elliott and by Plate and Hidy, where it 
denotes the intersection of the asymptotic forms of the inner and outer profiles. It is 
easily seen that the weakest link in the Panofsky—Townsend theory is the assumed 
form of the blending profile, other profiles leading to substantially different blending 
regions, and thus values of / i , as Townsend (1965) and Taylor (1969a, b) have shown. 
A reahstic estimate of the width of the blending region requires a smoothing velocity 
distribution between the two intersecting asymptotic profiles that must be known 
with some accuracy. A rough guess as used by Panofsky and Townsend will not 
suffice. 

The shear stress calculated by means of the Panofsky—Townsend model does not 
differ much from that found by ElUott's model. The calculations of u|2 for Bradley's 
data are found to be in slightly less satisfactory agreement with the data than the 
calculations using the curves of Fig. 4.6, but the reason for this lies probably more in 
the inclusion of the displacement height by Plate and Hidy which Panofsky and 
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Townsend set deliberately equal to zero, and apparently the error resulting from this 
outweighs the slight improvement gained from the velocity profile 

An attempt at improving the solution of Panofsky and Townsend was made by 
Taylor (1969a) who used a velocity profile that also gave continuity of the shear-stress 
gradient at the edge of the blending region This model was, however, not particularly 
successful, as Taylor has shown in the same paper 

An approach based on the momentum equation was also given by Taylor (1962) 
Since he used the physically not particularly appealing proposition that ZQ IS 
proportional to u« to close his set of equations, his approach can serve only to 
emphasize the elegance of Elliott's model 

Methods Based on Similarity Arguments 

Townsend (1965, 1966) sought to improve the estimate for f(z/5) by investigating 
the conditions under which it can be assumed to be a similarity profile (depending on 
no other length scale than /i) Unlike the previously described models, Townsend's 
solution to the problem uses the equation of motion directly rather than in integrated 
form To obtain a solution, he assumed that the velocity downstream of the 
discontinuity consists of three parts the profile Ui (z) upstream of the discontinuity, a 
component Au that has to be added because of streamline displacement by 6'(z), and 
the remaining difference u' between U2 and Ui which is due to an acceleration of the 
fluid in the internal boundary layer For displacement 6'(z) values that are small 
compared with z, Au can always be expressed by u* 5'(Z)/KZ, obtained from the 
logarithmic Uj profile by expansion in a Taylor series about z Similarity enters 
through the assumptions that 

u ' = ^ f ( r ) ) (4 26) 

and 

T = vili+(ul2-uli)Fiv) (4 27) 

where rj = z//i, and /i and UQ are length and velocity scales, respectively, that depend 
on X only The functions f and F are assumed to depend on T? and not on x The 
functions f and F are related through the mixing-length Eq 4 24, which becomes 

V^ = P (4 28) 

where the prime denotes differentiation with respect to 77 The equations of motion 
and continuity combine to yield for small 5'(z) 

- r^r = F' (4 29) 
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SO that 

F = e'^ (4.30) 

and 

f = Ei(-T?) (4.31) 

where Ei is the exponential integral The scales /j and UQ are found from the 
conditions that the functions f and F are independent of x and that the velocity 
profile must assume the logarithmic shape at the wall. The original calculations of 
Townsend had a small error in not yielding a velocity profile that exactly satisfied the 
latter boundary condition This inconsistency was removed by Blom and Wartena 
(1969) who gave the result for the length scale /i 

,2 X A ( l n A - l ) = 2 . ^ - ^ (4.32) 

With the length scale known, the velocity scale is found to 

(4.33) b I n - ^ -y+(l+M~^y 
Zo2 

where 

M ( I H ^ - I - T ) ' (4.34) 

and 7 = 0 577 is Euler's constant. The shear stress downstream from the discontinuity 
can then be calculated from the relation 

u*2 =u*i +Uo(l+M) (4 35) 

The method of Townsend restores confidence in the meaning of the length /j as 
contrasted to the method of Panofsky and Townsend (1964). However, the Townsend 
method has the general shortcoming of the mixing-length assumption. Further 
improvement of the theory has come from numerical techniques in which more 
appropriate relations between shear stress and mean velocity distributions were used. 
The advantage of Townsend's method lies in the fact that, for the x-dependent 
parameters, curves similar to those shown in Fig 4.6 can be prepared which can be 
applied immediately to a given field situation. So it would be useful if improved shear 
relations could be found compatible with the similarity hypothesis of Townsend As 
yet such investigations have not been made 
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The internal boundary-layer thickness downwind of a roughness discontinuity 
cannot be used directly as a measure of the distance below which the velocity profile 
represents local conditions only Because of the blending region, the velocity profile 
deviates significantly from a logarithmic form in the internal boundary layer, and 
theoretically it is nowhere equal to it An internal-layer height hi below which the 
logarithmic law holds must be smaller than either 6 or /i A suitable definition of hj 
would be found by defining hi as that distance at which the actual velocity profile 
deviates by a specified percentage from the logarithmic profile A practical length 
based on the Townsend length /i has been proposed as hi =0 Hi With this definition 
the adjustment distances become very long For example, Blom and Wartena (1969) 
show that, for a b of 2, a distance of about 15 km is needed for an adjusted log profile 
over a height of hi = 50 m to exist Such lengths make it virtually impossible to find 
anywhere fully developed turbulent boundary layers of thickness much less than 20 m, 
and (if only for lack of steadiness) even a 10 m/sec wind at a height of 50 m cannot be 
expected to keep very constant during the 25 mm that it takes to get from x = 0 km to 
X =15 km 

A method that is related to the similarity solutions of Townsend has been 
employed by Russian workers of the USSR Main Geophysical Observatory (Gandin, 
1952, Dimitriev and Sokolova, 1954, see Panchev and Godev, 1970) 

Numerical Studies 

The internal boundary-layer problem has been treated numerically on high-speed 
computers by a number of workers (Nickerson, 1968, Taylor, 1969a, Wagner, 1966, 
Onishi and Estoque, 1968) by means of the mixing-length relafion These studies differ 
from each other mainly in the use of the boundary conditions and of the governing 
equations The most appropriate formulation of the internal boundary-layer problem 
is based on the set of Eqs 4 6 and 4 7 with the conditions at the boundary that the 
velocity profile must become logarithmic for z ^ O For this formulation, solutions 
have been obtained by Taylor (1969a) which show that the exact numerical solution 
has no significant advantages over the approximate treatments of the previous section 
In particular, Taylor found excellent agreement of the Panofsky-Townsend theory 
with his numerical calculations, except near the discontinuity, where neither method is 
vahd This fact is illustrated in Fig 4 6 

The crucial shortcoming of all these theories is a failure to properly represent the 
relation between shear stress and velocity profile, a difficulty that can be overcome 
only by a more reahstic representation of the effect of upstream conditions on the 
development of the shear stresses and the velocity profiles Whereas the mixing length 
IS a local quantity, the shear stress develops over the whole length of the boundary 
layer, and only its rate of change is related to local conditions (Bradshaw, Ferriss, and 
Atwell, 1967) An equation for the shear stress that accounts for its development can 
be derived from the energy equation, Eq 2 43 of Chap 2 (with buoyancy omitted) 
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Following Townsend (1956), a relation between the total turbulent kinetic energy at a 
point and the shear stress can be postulated 

7 = - ^ = a i ^ (4 36) 

where ai is a constant, equal to about 0 15 This relation is strictly empirical, but of 
surprisingly general vahdity, having been observed to hold in many different types of 
turbulent shear flows With Eq 4 36 the energy equation becomes 

1 dr 9u 9 / / /2 , ' p' \ , ,, ^^^ 
— - r :=r — + r - w q ^ + w - ^ - e (4 37) 
ai dt dz az y P j 

The dissipation e and the two diffusion terms must be related to r and 9u/9z to 
complete the analysis Bradshaw, Ferriss, and Atwell (1967) and independently 
Peterson (1969) have made the assumption that the dissipation is related to the shear 
stress as in a logarithmic equilibrium layer where production of shear stress equals 
dissipation, or 

Y = e (4 38) 

where L is a characteristic length, corresponding to a characteristic time ti of Eq 2 87 
in Chap 2 given by Ti = L/r'^ In the constant-stress layer, T = u*, and since near the 
wall dissipation and production are very nearly balanced (Bradshaw et al, 1967), it 
follows that near the wall L = xz, and this form has been assumed by Peterson (1969) 
to be valid throughout the boundary layer This assumption is rather difficult to 
accept, on physical grounds, and if erroneous may also lead to nonreahstic results in 
view of Bradshaw's observation that the functional form of L significantly affects the 
results 

The pressure-diffusion term in Eq 4 37 was neglected, both by Peterson and by 
Bradshaw et al The latter also neglected the energy-diffusion term Peterson argued 
that the energy diffusion is of the gradient type 

A ^ = - K ^ (4 39) 

It IS logical to assume that the diffusion coefficient is the same as for momentum 

^ = - K M f (440) 

Apparently the exact form of the energy diffusion term is of no particular importance, 
and the assumptions of Eqs 4 39 and 4 40 are quite reasonable Inserting the forms for 
e and the diffusion term into Eq 4 37 yields, for a steady flow, 
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_ 9 r , — 9 T _ „ , , 9 U , 9 / 9 r / 9 U \ „ . r^ 

9x 9z 9z 9z I oz; 9z/ z 
(4 41) 

where a Karman constant of 0.4 has been used 
Equation 4 41 is the third equation required to solve the internal boundary-layer 

problem previously mentioned. Numerical solutions obtained by Peterson differ from 
those obtained on the basis of mixing theories by showing a transitional profile in the 
blending region with double curvature, the profile having a gradient which overshoots 
that of the two asymptotic logarithmic profiles This is evident in Fig. 4.7 where the 
nondimensional gradient calculated by Peterson 

, 0 4z 9u 
r^ 9z 

(4.42) 

has been plotted as a function of z which is made nondimensional by dividing it 
through the internal boundary-layer thickness 5 (defined as that distance from the 
ground at which the shear stress T = 0.99u* i) . The types of profiles corresponding to 
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Fig. 4.7 Nondimensional wind-velocity gradient as a function of z/6 (from Peterson, 1969) 
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this result are similar to the ones observed by Bradley (1968) Also, the shear-stress 
distributions at the ground computed by Peterson are in better agreement with 
Bradley's experimental results than any of the other theories, as is shown in Fig 4 2, 

Other attempts have been made to develop a constituent equation for the shear 
stress on the basis of rate equations, but we mention only that of Smith (1967) who 
developed a conservation equation for the eddy diffusivity K, on rather questionable 
physical grounds. 

Further Developments in the Theory 

of Internal Boundary Layers 

The problem of the internal boundary layer has been developed as far as is 
justifiable for the change downstream of a logarithmic velocity profile, and further 
investigations along this line must either incorporate more elaborate upstream velocity 
distributions or must include added terrain features or boundary conditions of higher 
degrees of complexity. Thus the model of Townsend (1966) was extended by Blom 
and Wartena (1969) to more than one discontinuity in wall roughness, and the 
problem of the thermally stratified boundary layer was treated by Blackadar et al 
(1967), Taylor (1970, and Panchev and Godev (1970) who also refer to work on the 
subject by Nadejdma (1964, 1966) Basically the problem was treated by 
simultaneously solving the heat equation (Eq. 2 40 of Chap. 2) and Eqs. 4.1 to 4.3 and 
by connecting profiles of temperature and velocity through suitable exchange 
coefficients for heat flux and shear stress. Typical is the system of equations used by 
Taylor (1970) who adds to the system of equations (Eqs. 4.1 to 4.3) the heat-flux 
equation, Eq. 2 40 of Chap 2 (with d0/dt instead of 90/9t and with conduction and 
dissipation neglected) 

_90 , _90 9H ,, .-•. 

" 9 7 " " 9 i = - 9 ^ (4-43) 

and the Businger—Dyer formulation of the temperature and velocity profiles m 
unstably stratified flow 

u Kz 9u ,. ... 
7 ^ = - — r - (4.44) 

H = - ^ I ' | ^ (4.45) 
0H 9z 

with 

*M = ( i - /3r ) ' ' ^̂ ^̂ ^ 
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and 

<t>H=4>u (4-47) 

with L assumed to be given by 

corresponding to the upstream condition, or for neutral upstream conditions 

L = - ^ i ^ ( 0 " 2 - ' ^ i ) (4.49) 

The numerical results obtained from this model await verification by field experi-
ments, and the vahdity of the basic assumptions requires laboratory checking. The 
presently available data by Dyer and Crawford (1965) are not sufficient for this 
purpo'se. 

It can be expected that internal boundary-layer theory apphes not only to the case 
of slight stratification, in which the log-linear law is approximately vahd, but also to 
conditions of free convection. A remarkable feature of internal boundary layers with 
thermal'stratification is the possibihty of finding free convection layers capped by a 
layer with unstable temperature gradients. This situation can occur when neutrally 
stratified but cold air moves onto a warm surface and is heated sufficiently from below 
so that a free-convection layer exists above the local superadiabatic layer. In the 
free-convection layer, the temperature is roughly constant but warmer than in the air 
above; consequently a heat flux to the outer air and an unstable gradient of 
temperature exist. Evidence for such a situation exists, for example, in temperature 
profiles (unpubUshed) taken in a wind tunnel by S. Arya. The structure of such layers 
is of some interest in environmental studies because they might be responsible for 
trapping air pollutants in environments where ordinary inversions cannot be found. 

From a complete theory of the internal boundary layer, we must be able to predict 
the effects of simultaneous changes of heat flux and roughness, such as are 
encountered by sea breezes or similar flows. The internal boundary-layer model 
provides the lower boundary conditions for more general sea-breeze models, such as 
the ones that are studied by Estoque (1961, 1962). In nature such problems are 
further complicated by the diurnal cycle in heating of the ground and by the 
differences in heat-transfer characteristics of complex natural terrain. An illustration 
of this is given in Fig. 4.8 (from Carson and Nelson, 1969) in which temperature 
distributions over Chicago during a breeze from the cold water of Lake Michigan are 
shown for three different locations. Because the lake water is colder than the higher air 
masses, a strong inversion exists over the lake. Upon reaching the shore the inversion is 
lifted above the warmer ground. Further inland, not only is the inversion raised but 
the ground temperature increases also. Furthermore, since the profiles were taken 
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Fig. 4.9 The flow zones of a boundary layer disturbed by a shelterbelt (from Plate and Lin, 

1965). 
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almost simultaneously, the air masses seen at the different stations are not the same. 
Thus, although the situation shown in Fig. 4 9 indicates unmistakably the existence of 
an internal boundary layer, at present we cannot calculate wind or temperature 
profiles for it. A more thorough discussion of the sea breeze over Lake Michigan has 
been given by Moroz (1967). 

SHELTERBELTS* 

The complexity of the flow around a wind shelter is evident from the schematic 
situation shown in Fig. 4.9. A boundary-layer flow is approaching a wedge-shaped 
obstruction that has been placed on a flat plate. No less than seven flow zones of 
different aerodynamic behavior can be distinguished In zone 1 the flow field is mostly 
determined by the conditions in the undisturbed boundary layer far upstream from 
the wedge. In zone 2 the flow field is displaced and distorted owing to the presence of 
the wedge, with the lower boundary of zone 2 given by the separation-induced shear 
layer that starts at the edge of the wedge and forms the transition to the highly 
retarded flow in zone 3 When the wedge is solid, backflow may occur, leading to a 
separation bubble with a reattachment point, at a distance L downstream from the 
wedge. Downstream of the reattachment point, the flow is again in the direction of the 
mean wind. In layer 5 the flow gradually increases in velocity until at some large 
distance the "inner layer" 5 has blended with the outer flow, and a new and thicker 
boundary layer is formed which adjusts to the local boundary conditions at the ground 
until the effect of the obstruction can only be inferred by comparing the 
boundary-layer thickness with the thickness that would have existed if the wedge had 
not been there. The flow in the region downstream from reattachment is that of the 
adjustment of an initial velocity profile to the local boundary conditions and can be 
determined, in principle, from an initial profile downwind of reattachment by 
methods of boundary-layer calculations, as has been done by Plate (1967) for 
distances larger than 35h, where h is the height of the obstruction. At present, 
however, such analyses depend on empirical observations and assumptions, and further 
research is needed to eliminate the empirical constants Here we shall be concerned 
mostly with zones 2 and 6, which are most important to the sheltering problem 

The most common design requirement for a shelterbelt is that the wind be reduced 
below the dangerous level over a maximum distance behind the shelterbelt. 
Discovering the shelter that does this most efficiently has been the objective of much 
of the research on shelterbelts. It is an enormously complex analytical problem since it 
requires a solution of the full turbulent Navier—Stokes equation for a complete 
treatment. It is not surprising that most shelterbelt research has been done 
experimentally and by trial and error, by evaluating the wind reduction behind 
existing belts. Most often quoted are the results of Nageli (1941) who obtained an 

•This section is based on a paper that is to be published m the Journal of Agricultural 
Meteorology, 1971 
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optimum solution of sorts by showing that a screen having medium density reduced 
the velocity by at least 20% over a larger distance than either a very dense screen or a 
screen with very high porosity. Similar results were found in a wind tunnel by Blenk 
and Trienes (1956). A generally accepted optimum shape has not been found, and 
most field research has been conducted on existing shelterbelts for a post facto 
assessment of their effect. Reviews of field results are given by Geiger (1965) and van 
derLinde(1962). 

The only theoretical treatment of the shelterbelt problem known to the writer was 
given by Kaiser (1959) who assumed that sheltering results from diffusion of the 
momentum defect downwind from the shelter as if it were a passive scalar. This model 
is physically unreaUstic and somewhat oversimplified, yet it does point to the decisive 
role that the drag plays in the shelter problem. It also leads to a prediction of velocity 
profiles that are described by the error function over a part of the air layer in the 
sheltered region. It would indeed be too much to expect an analytical solution that 
covers all details of the shelterbelt flow. However, many aspects of the flow field are 
very similar to well-known aerodynamic situations, and in this chapter we shall 
concentrate on these aerodynamic features. They form the building blocks from which 
ultimately a model for calculating the effect of shelters must be constructed. 

The Flow in the Sheltered Region 

Behind a Solid Shelter 

A detailed study of the flow field directly downwind of the obstruction has been 
made, for a sohd shelter, by Chang (1966) who used experimental data obtained in a 
wind tunnel at Colorado State University. The upper part of some of his mean velocity 
profiles is shown in Fig. 4.10a. The velocity profiles are poorly defined in the 
separation bubble below the parts of the profiles shown because large pressure 
gradients exist as indicated in Fig. 4.10c which distort pitot—static tube measurements 
and because the low mean velocities, at high turbulence levels, cast serious doubts on 
measurements obtained with hot wire anemometers in this region. Similar measure-
ments behind obstacles consisting of a fence have been given by Good and Joubert 
(1967) and by Mueller, Korst, and Chow (1963) for an obstacle with a quarter-circle 
cross section that faces the flow with the round surface. Measurements behind a 
sharp-edged plate placed perpendicular to an airstream were reported by Arie and 
Rouse (1956). All these measurements have in common that they show a very rapid 
change of velocity across a curve that can be identified as the location of all velocities 
equal to one-half the velocity u, outside the boundary layer. This curve is identical to 
the separation streamline near the upper edge of the shelter. It will be taken as the 
intrinsic x-axis, with the z coordinate measured from it. The flow field has all the 
characteristics of the flow that results if an upper airstream with initially uniform 
velocity u<„ is joined along the separation streamline with a lower stream of zero 
velocity, or, in the case of a porous shelter, with velocity Uj, through the shelter, with 
a lower stream of velocity uj,. The solution for this flow situation is well known (see 
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Fig. 4.13 The experimental values x/ah vs x/h from mean velocity data 

How the wind profile develops near the ground downwind of the shelter is another 
aspect of flow with a porous shelter which at present is not fully understood 
Evidently the analytical model of the two parallel currents loses its usefulness as soon 
as the presence of the lower boundary makes itself felt on the blending region between 
the currents On the other hand, for the large values of û j/Uoo the coefficient X de 
creases so that blending between inner and outer flow proceeds at a slower rate But 
large values Ut,/Uo„ mean little sheltering and large velocity gradients near the ground 
We can see that there exists an optimum porosity at which Uj, is a minimum over the 
longest distance As already mentioned, such an optimum has indeed been found in 
natural environments, as shown in Fig 4 14, which is from Nageh (1941) The shelter-
ing was determined by measuring the actual wind velocity at a height of 1 4 m and 
dividing It by the velocity that would have existed m the absence of a shelter A 
shelterbelt of medium density showed the best results Systematic wind-tunnel tests by 
Jensen (1954) and by Blenk and Trienes (1956) showed a maximum sheltering to be 
associated with porosities (defined as percentage of open area in the total area of the 
screen) of from 35 to 50% 

Displacement of the Separation Streamline 

The error-function profile is a reahstic representation of the mean velocity 
distribution in the neighborhood of the separation streamline But the development 
was assumed to take place along the curve given by u/u^ = 05 which was found 
experimentally A prediction of the flow field between the shelter and the 

• 
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Fig. 4.14 Sheltering at different porosities, according to Nageh (1941) 

reattachment point is possible only if the location of this curve can be determined 
with only a knowledge of the velocity distribution in the undisturbed boundary layer 
and of the characteristics of the shelter At present such a prediction is not possible 
We may, however, gain some understanding of how this location depends on the drag 
on the shelter and on the base pressure behind it, i e , how it depends on the pressure 
distribution about the shelter 

The effect of the shelter on the separation streamline may be considered in an 
analysis that neglects the effect of the lower boundary except by letting the ground 
form a streamline The flow shown in Fig 4 15 represents a simplified model of this 
situation For generahty, a porous screen is considered The screen introduces a 
momentum sink that leads to a deceleration of the flow upstream from u,„ to u^, 

where Uj, is the velocity through the shelter, and to an upward deflection of the 
streamlines as a result of mass conservation A measure of the streamline displacement, 
or of the vertical extent of the sheltered area, can be obtained by applying the 
conservation of mass and of momentum principles to the free-body diagram indicated 
by A, B, C, and D in Fig 4 15 The change in momentum must be balanced by the 
external forces in the x direction If the effect of blending is neglected, which is likely 
to be permissible near the screen, then the sum 2 ^ ^ of momentum fluxes and forces 
on CD 

ScD = (pul + Pb)h* + (pul + p.)(/ - h*) (4 54) 

where the subscript °° refers to conditions in the undisturbed flow far from the lower 
boundary, the subscript b refers to conditions slightly behind the screen, and p is the 
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pressure For definitions of the length parameters in Eq 4.54, see Fig 4.15 For AB 

one gets 

2 A B = + ( P U - + P J ^ (4 55) 

The momentum flux across BC is +pu„ x Qg^ where Qg^ is the volume flux across 

BC, which evidently is the difference in volume flux into AB and out of CD, so that 

Zgc = -pUo„(u„ - Ub)h=' (4 56) 
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Fig. 4.15 Momentum balance with boundary-layer-type velocity profile neglected 

The additional external force acting on the fluid is the drag on the screen, so that 

Newton's second law leads to 

D - - ^CD + ^̂ AB "•" ^ B C 

The solutionf of this equation for h*/h is, with Eqs 4 54 to 4 56 

(4 57) 

(4 58) 

fA similar derivation for a solid plate in a stream of fluid has been given by Reichardt (as 
quoted by G Birkhoff, m Hydrodynamics, Dover Publications, Inc , 1950) who applied these 
ideas to predict the width of a cavitation bubble 
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where Cp is the drag coefficient and Q is the base pressure coefficient, defined by 

r - D _ 2 JQ ( P f r o n t - P b ) d z . n _ Poo - Pb C4 cq-v 
%pulh. p u ^ %pu, 

When U{, is equal to zero, the height h* of the sheltered region is proportional to 
Cj)h/Q. This result is in good agreement with experimental data, both for a flat plate 
in a free stream, like the result of Arie and Rouse (1956) and for a plate in a boundary 
layer, as shown by Plate (1964). Plate found that Cp = 1.65Q and h* = 1.67h, the 
latter result based on data of Nagabhushanaiah (1961). Apparently Eq. 4.58 is an 
approximation only since both the approach velocity profile and the diffusion of the 
interface between flow in the shelter and outside the shelter are neglected. More 
accurate results by Good and Joubert (1968) have shown that Cp = 1.82Q; however, 
these writers have not given parallel results on h*. 

When U(, -> u„, the pressure at both front and back of the screen approaches poo, 
and thus both Cp and Q approach zero at the same rate, so that in the limit u^ = u„; 
h* = h, as it must. For small values of uj,/u„, it is likely that h*/h decreases below the 
value at VL^/U^ = 0 because the ratio CQ/Q remains roughly constant. Consequently a 
porous screen results in a smaller height of the sheltered volume as compared to a solid 
screen. 

The Drag on the Shelter 

The drag on the shelter is governed not only by the shape and porosity of the 
shelter but also by the aerodynamic characteristics of the approaching boundary-layer 
flow. This has been made clear in the researches of Plate (1964) and Good and Joubert 
(1968). The latter have shown that, if the height of the (solid) shelter is less than 0.5 
times the thickness of the boundary layer (as is usual for real shelterbelts), then the 
approaching boundary-layer flow sets the scales for modeling all the features of the 
problem. Thus if the velocity profile that would exist at the location of the shelter in 
the absence of the shelter is logarithmic and described by a profile of the form 

u 1 z 
- = - l n — (4.60) 
U^ K ZQ ^ ^ 

where K is von Karman's constant (~0.4), then the shear velocity u^ sets the velocity 
scale for the drag, and the roughness height ZQ of the surface configuration sets the 
length scale. Consequently we may expect to find that a drag coefficient C^ of the 
shelterbelt based on u* 

C* = 1 7 - ^ (4-61) 
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is a universal function of h/zo- The experiments of Good and Joubert (1968) were 
made with a smooth surface only. In that case there is no characteristic length of the 
rough surface, and the only length that can be used to represent the surface 
characteristics must be based on the kinematic viscosity v and the shear velocity u^. 
Consequently it is found that 

• . = f . ( ^ ) 
(4.62) 

for a smooth surface (Good and Joubert, 1968), and for a rough surface we may put 

C . = f , ( i L ) (4.63) 
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Fig. 4.16 Drag coefficients of fences in thick boundary layers. 

The functions fi and fa are, of course, dependent also on shelter geometries. As yet 
only Eq. 4.62 has been tested experimentally and only for sharp-edged shelters, with 
the results shown in Fig. 4.16. 

In Fig. 4.16 the data are fitted by a straight line, whose equation has been given by 
Good and Joubert (1968) to 

C*= 277 log ^ - 2 6 8 (4.64) 
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Analogously, we expect to find, for a fully rough surface 

C*=Alog—+ B (4.65) 

The results in Eqs. 4.64 and 4.65 have an important consequence for modehng a solid 
shelter in a wind tunnel. Identical drag coefficients are obtained if, for a rough 
approach flow, the ratio h/zo is kept constant—i.e., if the geometries of the shelter 
are identical in model and prototype and if h/6 <0.15 in the model—which implies 

^model = ^Omodel (4 gg-j 

' 'prototype ^o prototype 

Consequently, in selecting a profile of the mean velocity distribution upstream of the 
shelter, we determine the scale factor for the experiments. It should be noted that 
Blenk and Trienes (1956) did not attempt to scale Nageli's (1941) flows in this 
manner; they needed an arbitrary conversion factor of 0.5 for reducing the downwind 
distance to make their experimental data conform to the results of NageH. This is a 
clear indication that modeling was not properly accompUshed. 

How the drag coefficient of a porous shelter is related to the approach velocity 
profile can now only be surmised. It should be defined more suitably by using Uj, as 
reference velocity: 

C„ = —^7- (4.67) 

in which Cp, D, and U(, are unknowns whose interrelations are not known. The drag 
coefficient Cp depends on the porosity and also on the Reynolds number of the 
elements forming the shelter. For screens consisting of wires, some systematic 
experiments have been made to determine this dependency by stretching screens 
across the whole cross section of a wind tunnel and measuring the pressure drop at a 
given approach velocity. Typical are the investigations of Schubauer et al. (1950). In a 
natural shelter it is usually not possible to specify the porosity and the sizes of the 
shelter elements, and all estimates of the drag must rely either on direct measurement 
of the flow near similar installations or on guesses. Such measurements must naturally 
be made at a time during the growing season which corresponds to the time shelter is 
required by the crops; otherwise differences in foUage or shelter growth might be 
sufficient to render valueless any conclusions based on the experiment. 

The Pressure Effects 

The main difficuhy in predicting drag forces on the sheUer stems from our 
inability to determine the base pressure, i.e., the pressure at the back of the shelter. It 
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IS obvious from Eq 4 59 that the larger the difference between pressure on the front 
and the base pressure, the larger the drag The pressure on the front of the shelter is 
generally determined, for a solid shelter, by the flow pressure of the approaching flow 
on the face of the shelter, independent of the shape of the shelter This is strictly true 
for a plate suspended in the free stream, with velocity u„ and pressure p„, of a wind 
tunnel The pressure on the front in that case can be calculated from inviscid flow 
theory (Arie and Rouse, 1956), and the maximum pressure at the center of the plate is 
found to be exactly equal to the stagnation pressure p^j = p„„ + %pvil calculated from 
Bernoulli's equation For a shelter immersed in a boundary layer, the approach flow is 
modified by the presence of the ground This modification begins, according to 
surface-pressure measurements of Good and Joubert (1968) along a smooth floor at a 
distance of x = 15 (8lh)° ' h upstream of the shelter where 5 is the boundary-layer 
thickness, upon approaching the shelter the flow is retarded more strongly near the 
surface than at higher elevations, and eventually separation occurs at a short distance 
in front of the shelter The separation "bubble" does not extend over the full height of 
the shelter, and a stagnation point exists at about 0 5h to 0 7h from the ground at the 
face of the shelter Below the stagnation streamline the flow is downward, a standing 
eddy forms m the corner between ground and shelter Above this eddy the flow is 
accelerating toward the upper edge of the shelter This flow field changes the pressure 
distribution from what would be expected had the ground not exerted any friction, in 
particular, the pressure maximum appears at the stagnation point and not at ground 
level 

Clearly such a flow field does not exist in front of a porous shelter because the 
porosity does not permit a pressure buildup m front that leads to separation It is 
hkely that at the rear of the screen the pressure is about constant, as it is for the 
sohd-fence case, and that the velocity distribution across the screens is fairly uniform 
The latter is evident in some of the velocity profiles reported by Blenk and Trienes 
(1956) A similar observation has also been made at the edge of a forest Alow level 
jet is often observed which extends over the first few tree rows and then settles down 
to a roughly uniform velocity over a substantial part of the tree height (Reifsnyder, 
1955, Meroney, 1967) This uniform velocity makes it likely that the pressure across 
the front of the shelters is also fairly uniform, as long as the shelter is of 
approximately constant porosity In that case the pressure drop across the shelter is 
proportional to the square of the velocity through the shelter, with a factor of 
proportionality depending on the porosity only 

The pressures in front and in the rear of the shelter are not independent because 
the air flowing over the top of the shelter provides a "leak" connecting the two 
pressures However, the mechanism by which the pressure at the back side is governed 
is not yet understood The prediction of the base pressure is a problem of considerable 
importance in aerodynamics, and much work has been done on it, particularly for 
applications of supersonic aerodynamics (i e , Brown and Stewartson, 1969, for a 
recent survey) For low-speed aerodynamics the problem apparently has parts that 
complicate its solution even further, such as the turbulence in the blending region 
which is likely to be an important factor in the transmission of pressure gradients, or 

• 
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the smaller pressure differences between base pressure and free-stream pressure, which 
leads to a curved separation streamline. The pressure field that arises is illustrated for 
the data of Chang (1966) in Fig. 4.10c, in which isobars have been indicated. It is 
noteworthy that substantial pressure gradients exist in both the longitudinal and 
vertical directions. These pressure gradients indicate that, in the sheltered region, it is 
not permissible to simphfy the Navier—Stokes equations by using the boundary-layer 
assumptions. 

Measurements along the ground have shown that the negative pressure downstream 
of the shelter is approximately constant over a distance of about three times the height * 
h and then starts rising very rapidly until, in the neighborhood of reattachment, it 
reaches a maximum that is shghtly above the pressure in the free stream. Further 
downstream it slowly decreases and reaches asymptotically the free-stream pressure, as 
IS required by the boundary-layer character of the redeveloping flow. This is illustrated 
in Fig. 4.17. The figure was obtained by plotting nondimensional pressure differences 
(Pwall ~ P»)/pui vs. x/h, and the distributions are independent of velocity and scale 
uniquely for a particular shelter 

0 20 40 60 
x/h 

Fig. 4.17 Pressure distnbutions along the ground (from Plate and Lin, 1965) 
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The difference between ground and free-stream pressure gives rise to a vertical 
force on the flow in the blending region which tends to push the separation streamline 
toward the ground. This is called the "Coanda" effect. The curvature of the 
streamlines, as expressed by the radius of curvature R, can be approximately inferred 
by applying the momentum-conservation law to a small element out of the blending 
region, as indicated in Fig. 4.18. 

• Streamline 

Fig. 4.18 Illustrating the Coanda effect. 

Let the element have a velocity u, which, by the definition of a streamline, is 
directed normal to the radius of curvature R, and let the pressure across the element 
change by an amount 3p/9z dz. The centrifugal force on the element then must be 
balanced by the resultant of pressure forces and shear forces on the front and rear 
faces of the element; or, neglecting the latter, the momentum-balance equation yields 

1 = 1 9£ 
R pu^ 9z 

(4.68) 

or in nondimensional form 

h ^ h Pwall ~ P. 
R x"" %pui u"" 9T? 

(4.69) 
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where 

P ' % n "g(^) (4.70) 
Pwall ~ P=c 

The pressure-gradient function g(rj) in Eq. 4.70 is probably depending on the geometry 
only and may be assumed to obey a similarity law depending on the same similarity 
variable r? as the mean velocity distribution. For the curve u = 0.5 u^, the function 
2(u^/u^)(3p79i7) is a constant = a, and the radius of curvature becomes 

h ^P^^^liLzl. (4.71) 

with a maximum value of 

| = . Q | (4.72) 

Although this equation represents only an approximation, it shows that the larger 
the pressure difference p^aii ~ P~ the smaller the radius of curvature. A solid fence 
with a large base-pressure coefficient yields a more rapid turning of the u = 0.5u„ curve 
toward the ground than a porous screen. The Coanda effect is at least in part 
responsible for the rapid loss of sheltering efficiency of a solid screen. A porous screen, 
with its higher velocity in the blending region and its lower base pressure, exhibits 
significantly smaller streamline curvature. 

Turbulence in the Sheltered Region 

More important than the Coanda effect on the wind field behind the shelter is the 
turbulence that is found in the air flow. The turbulence, whose vertical component is 
w' and whose longitudinal component is u', gives rise to turbulent shear stresses 
7 = -pu'w' that not only adjust the mean velocity distribution but are also responsible 
in producing turbulence. The strong mean velocity gradients generated by separation 
from the shelter edge interact with the shear stresses existing in the undisturbed flow 
to produce more turbulence for small values of û , than for large values. To see this, 
consider the energy balance of the turbulent motion, integrated over a volume 
consisting of a slice of (infinitesimal) length Ax, of infinite vertical extent and of unit 
width 
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where small terms have been neglected. The overbars denote time averages. In Eq. 4.73 
q̂  is the kinetic energy of the turbulent motion at a point 

^ = ^ ( 7 ^ + 7 " ^ + ^ ) (4.74) 

and D is the dissipation of kinetic energy into heat in the volume. The term on the left 
is the rate of change of turbulent energy in the volume which, for steady flows, can be 
expressed by 

This term is determined mostly by the first term on the right in Eq. 4.73, which 
represents the turbulence production and which in the stages of growth of the 
separation layer considerably exceeds the dissipation. By inserting Eqs. 4.50 and 4.51 
into the production term of Eq. 4.73, and by neglecting the dissipation term as 
compared with the production, we readily find that in the blending region the 
turbulence increases at a rate proportional to (u^ — u^) (u^ — u ,̂) and independent of 
X, until the presence of the ground modifies the turbulence structure. Consequently a 
more solid fence has associated with it a larger turbulence level, i.e., the total amount 
of turbulence downstream of a porous screen is lower than that behind a solid screen. 
This situation will certainly affect the turbulent-transport processes in the sheltered 
region and will thus explain why higher evaporation rates are observed behind a solid 
screen than behind a porous screen, as was observed by Blenk and Trienes (1956). 
Perhaps a more important factor in determining exchange processes behind a soUd 
screen is the return flow in the separation bubble which has associated with it strong 
vertical currents. These currents do not exist behind porous screens, so that for either 
of these reasons, if wind protection is the most important task of the shelterbelt, a 
porous screen has great advantages over a solid one. 

Application to Shelterbelt Design 

The preceding discussion indicates that sufficient information is not yet available 
for an aerodynamically most efficient shelterbelt design. But we now know what 
information is needed and how it can be obtained. 

The first requirement is a knowledge of the velocity profile at the location of the 
shelter before the shelter is to be planted or constructed. This information is readily 
available; a good guess on the u* and ZQ values of the undisturbed boundary layer can 
be had either by taking some local measurements or by consulting Chap. 1 or the 
existing literature on the velocity distribution near natural surfaces, such as Geiger 
(1965, p. 275). But to go beyond this, we must make a number of assumptions that 
only for a solid shelterbelt are backed by experimental evidence. A drag coefficient 
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and a base-pressure coefficient must be determined to predict the location of the 
separation streamline, and a velocity û , must be assumed Then it is possible to 
calculate the height h* from Eq 4 58 to a first approximation and to calculate the 
blending velocity profile by using Eq 4 52, perhaps with CTQ the sohd-screen value 

RESEARCH NEEDS ON DISTURBED BOUNDARY LAYERS 

The two problems treated in this chapter are only a sample, albeit an important 
one, of the types of problems that are encountered when real terrain effects must be 
considered Any added complexity of the terrain increases the difficulty of analytical 
treatment while at the same time making the situation more special and of less general 
apphcabihty Very soon a point is reached when further investigations of more 
complex terrains become impractical, the amount of time and effort expended in 
solving the problem for the flow field is no longer in reasonable proportion to the 
value of the information obtained It is for these situations that field or wind-tunnel 
measurements on the actual terrain or a model thereof must be made There exist, 
however, a number of problems associated with aspects of disturbed boundary layers 
which are of sufficient generahty to warrant further fundamental and analytical 
studies 

A set of experiments must be made that exactly represents the analog of the 
analytical model of the internal boundary layer In this situation the turbulent energy 
balance should be determined to serve as a verification of the existing hypotheses 
(such as the shear-stress relation developed by Peterson, 1969) or as a starting point 
for improvements and modifications of existing models The modifications should 
include studies of the effect of zero-plane displacements (such as required for applying 
internal boundary-layer concepts to the flow field near the edge of a forest) and of 
fmite lateral extent of the area of changed roughness Studies of interaction of internal 
boundary layers with the temperature field and with diffusing agents, as have already 
been done by Taylor (1970), need better experimental foundations and require 
laboratory investigations 

All the internal boundary-layer models are concerned with an initially fully 
developed logarithmic profile, thus restricting their apphcabihty to studies of the inner 
layer of the planetary boundary layer An investigation of the effect of a change of 
roughness on the geostrophic drag coefficient and on the outer part of the planetary 
boundary layer may yield useful information on how much area needs to be covered 
with uniform or approximately uniform roughness for the concept of a geostrophic 
drag coefficient to become vahd The apparent success of inferring this coefficient 
from measured wind data over less than ideal terrain, as shown in Fig 1 5 of Chap 1, 
lets it appear that such an area is much smaller than we would expect from 
internal boundary-layer calculations 

To fill in the gaps m our knowledge of shelterbelt action, we should reanalyze 
existing wind-tunnel data and field data of flows behind shelterbelts and perform 
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parallel experiments in wind tunnels and in the field. Natural shelter materials preclude 
the use of wind tunnels for the direct design of an optimum shelter. Since leaf area, 
growth rate, density, and shape of shelterbelts vary too much to be predictable in 
advance, the greatest use of a wind tunnel may be found in one of the two following 
areas. 

The wind tunnel can be useful in evaluating the efficiency and arrangement of 
windbreaks made of nonrandom materials, which may consist of regular arrangements 
of slats, reeds, bamboo, or other material of a similar kind. These materials can be 
studied effectively in a wind tunnel because their geometry is reproducible, and their 
drag characteristics can be determined in the same manner as was described for 
screens. We can investigate in the same way the optimum design of a windbreak with 
respect to cost and efficiency. Some experiments by Japanese workers (Sato et al., 
1952) along these lines have already been performed. During these experiments due 
regard must be given to the approach velocity profile, its roughness height ZQ, and its 
shear velocity u, , as well as to the other aerodynamic factors of the surroundings 
which might affect the sheltering. 

The second application is to the evaluation of the effect of terrain modifications in 
the neighborhood of the shelter on existing shelterbelts. Field experiments yield the 
necessary information on the approach wind distribution and on the sheltering from 
which a model of the undisturbed situation can be made. As was pointed out earUer, 
geometric similarity might suffice for this purpose in addition to scaling of the ZQ 
values by the scale of the shelter model. If the experiments yield significantly different 
sheltering coefficients, improvements can be made by trial and error by blocking or 
widening the interstices between the shelter elements. 

Design of new shelters and classification of existing shelters may be aided by some 
fundamental research that would improve our understanding of the aerodynamic 
effects of shelterbelts. From the discussion in previous sections it is clear that the 
effect of porosity on the sheltering is incompletely understood, as is the effect of 
roughness on drag. To this we may add systematic investigations of the effect of 
finite-width shelters, shelters that are not oriented perpendicular to the wind, and the 
modification of the flow field by multiple shelterbelts. 
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for sheltered region, 168 

for thermal plume, 130 
for turbulent flow, 4 

Conservation of momentum, for 
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for free convection, 102-103 
integral equation of Karman, 41 
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definition of, 36 
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structure of, 36 
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m turbulent flow, 12, 14 
Energy diffusion, 8, 68, 156 
Energy dissipation, definition of, 8 
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maximum of, 9 
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Energy equation (see Conservation of 
energy) 
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Inner layer, of internal boundary 

layer, 139 

of planetary boundary layer, 12 ff., 177 

of shelterbelt flow, 161 

Intermittency, 22 

Internal boundary layer, definition of, 137 
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thickness of, 139 
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Nusselt number, definition of, 104 
m free convection, 109, H I , 129 

Optimum porosity, 166 
Optimum shelter, 161, 177-178 
Outer layer, of internal boundary 

layer, 139 
of planetary boundary layer, 17 ff , 177 
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definition of, 6 
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