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AERODYNAMIC CHARACTERISTICS OF

THE 10-PERCENT-THICK NASA

SUPERCRITICAL AIRFOIL 33 DESIGNED FOR A

NORMAL-FORCE COEFFICIENT OF 0.7

By Charles D. Harris

Langley Resear_.h Center

SUMMARY

............... A 10-percent-thick supercritical airfoil based on an off-deslgn sonic-

pressure plateau criterion has been developed and experimental aerodynamic

characteristics measured. The airfoil had a design normal-force coefficient

of 0.7 and was identifie_ as supercritieal airfoil 33. Results show the air-

foil to have good drag rise characteristics over a wide range of normal-force

coefficients with no measurable shock losses up to the Mach numbers at which

drag divergence occurred for normal-force coefficients up to 0.7. Comparisons

of experimental and theoretical characteristics were made and composite drag

rise characteristics were derived for normal-force coefficients of 0.5 and 0.7

and a Reynolds number of h0 million.

INTRODUCTION

Continued development of supercritlcal airfoil technology has resulted in

recognition of design criteria which permit the design of family related super-

critical airfoils. Based on these criteria, two supererltieal airfoils have

been designed - the 10-percent thick airfoil 33 reported herein and the lh-

>ercent-tbick airfoil of reference i. The design normal-force coefficient was

0.7 for both airfoils.
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SYMBOLS 0_: _'='

Values are given in both SI and U.S. Customary Units. Measurements and

calculations are made in U°8. CustomsryUnits.

C pressure coefficient, P_ - P_

P

Cptsoni c pressure coefficient correspondin 6 to local Mach number of 1.0

c chord of airfoil, 63.5 centimeters (25.0 inches)

cd section drag coefficient

&od, s drag increment due to shock wave los_es

c_ section lift coefficient .......................

cm section pitching-moment coefficient about the quarter-chord point

c section normal-force coefficient
n

K surface curvature, reciprocal of local radiu_ of curvature
,4

M Mach number

m surface slope, dy/dx

p static pressure, newtons per meter 2 (pounds per foot2)

&Pt total-pressure loss, newtons per meter 2 (pounds per foot2)

q dynamic pressure, newtons per meter 2 (pounds per foot 2)

R Reynolds number based on airfoil chord

x ordinate along airfoil reference line measured from airfoil leading

edge, centimeters (inches)

y ordinate normal _o airfoil reference line, centimeters (inches) ,,

z vertical dista_ice in wake profile measured from bottom of rake,

centimeter _ (_nches)
i

u _eometric _ngle of attack of airfoil reference line, degrees

2
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Subscripts:

I. 1 local point on airfoil

= undisturbed stream

APPARATUS AND TECHNIQUES

_t Model Configuration

Ii The supercritical airfoil basic concept and detailed design philosophy arediscussed in reference 2.

I Background.- During initial phases of the two-dimensional supercritieal

:q_ airfoil development program, emphasis was placed upon developing a lO-porcent-

I thick airfoll with the highest drag divergence Mach nt_mber attainable at a

I_• normal-force coefficient of 0.7. The normal-force coefficient of 0.7 was chosen

I " as the design goal since, when account was taken of the sweep effect, it was
representative of lift coefficients at which the advanced technologJ near-sonic

transports utilizing the supercritical airfoil concept were then expected to

__ cruise. These initial phases resulted in supercritical airfoil Ii which has

been reported in reference 3. This airfoil exhibited an u_desirable creep or

gradual increase in the variation of drag coefficient with Mach number of about

i_ counts (cd increment of 0.001_) between M = 0.50 and the drag divergent Mach

_r/ number at the design normal-force coefficient.

• ,.). Subsequent design studies of advanced technology transport configurations

suggested that the near-sonic cruise lift coefficient requirements would be

-_: somewhat lower than originally anticipated. Consequently, the improved super-

i critical airfoil 26a (ref. 4) with coeffi-
wa_ developed a design normal-force

-_ cient of about 0.55. The wlnd-tunnel tests required for this airfoil also pro-
1 - '

vided the opportunity to explore the drag creep p_oblem noted with airfoil ii.

_. _irfoil 26a had no drag creep at normal-force coefficients up to about 0.6 and

t
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the drag divergence Mach number varied from approximately 0.82 at a normal-

force coefficient of 0.30 to 0.78 at a normal-force coefficient of 0.80. As

discussed in reference 4 these improved drag creep characteristics were largely

attributed to a more favorable flow recompression over the forward upper sur-

face and the elimination of a region of overexpansion near the three-quarter-

chord station.

Recent emphasis on fuel economy has generated considerable interest in a

fuel-conserving aircraft envisioned to cruise at Mach numbers near those of

>
k_ current transports. Such an aircraft could utilize supercrltical airfoil
J.

technology to achieve weight and drag reductions by permitting the use of
thicker wings with higher aspect ratios and less sweep. Because the wings

1 with higher aspect ratio would require airfoils with design normal-force

> coefficients higher than 0.55, airfoil 31 (ref. 5) was developed with the same
1

design noz_al-force coefficient as the earlier airfoil ii (cn = 0.7) but with

-_ significant improvements in the drag characteristics. Drag creep was practically
h
)_ eliminated at normal-force coefficients between about 0.4 and 0.7 and greatly

reduced at other normal-force coefficients. Substantial reductions in the drag

levels preceding drag divergence were also achiaved at all normal-force coeffi-

cients.

_,

" Airfoils through 31 were developed experimentally through intuitive con-tour modifications in the wind tunnel. It was an iterative process consisting

1 of ev_uatlng exl_erimental pressure distributions at design and off-design

conditions and physicall_ alteri_ the airfoil profile to yield the best drag

_ charaet_r!stlCs over a range of test conditions.

The experimental results for these earlier airfoils suggested design

i criteria which would yield the best compromise in drag chsracterlstics over a
4
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range of test conditions. These design criteria consist essentially of th_'ee

principal guidelines which may he used in designing supercritical airfoils.

There are several additional, more detailed, design guidelines (treatment of

" leading and trailing edges, and local minimum thickness constraints, for ex-

ample) which are beyond the intended scope of this report and will be discussed

in a later report.

The first principal guideline, referred to as the sonic plateau criterion,

is that at some incremental normal-force coefficient below the design normal-

force coefficient the pressure distribution on the upper an& lower surfaces

he flat with the upper surface pressures Just below the sonic value. The in-

crement is a function of the design normal-force coefficient and appears to be

a_0ut -0.25 to -0.30 for a design normal-force coefficient of 0.L

On the upper surface the plateau extends from near the leading e_ge to

the start of the aft pressure recovery and on the lower surface from near the

leading edge to the recompression region entering into the cusp. The rearward

extent of the upper surface plateau is determined by the second principal design

guideline which requires that the gradient of the aft pressure recovery be

gradual enough to avoid separationproblems for lift coefficients and Math !

numbers up to the design value. Consequently, the rearward extent of the

upper surface plateau would depend on thickness ratio since the thicker the

i
airfoil_ the higher the induced velocities from which the flow must recover

an_, therefore, the further forward the aft pressure recovery must beEin. The

upper surface plateau extends from approximately 3- to 80-percent chord on the

lO-percent-thiek airfoil 33 and approximately 5- to 66-perccnt chord on the

14_percent-thick airfoil of reference i.
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i_:_ The third principal guideline requires that the airfoil have sufficient

:y"

aft camber so that at design conditions the angle of attack be about zero.

i-_ This prevents a too-forward location of the upper surface crest with the nega-

_ tive pressure coefficients over the mid-chord region acting over a rearward

1 facing surface. Both experiments and theoretical analyses (ref. 6) have in-
?

dieated that an increase in angle of attack to positive values results in an

I_ abrupt increase in wave drag.

_- Based on these criteria two supercritical airfoils were designed - the

14-percent-thlck airfoil reported in reference i eald the lO-percent-thick air-

'-) foil 33 reported herein. The design normal-force ,oefficient was 0.7 for both
)

) airfoils. An iterative design process was used which consisted of altering

i=_- the airfoil coordinates until the viscous, airfoil analysis program of refer-

:= ence 6 indicated that the aforementioned design criteria had _een satisfied.

!_ Geometric characteristics of the experimental 10-percent-thick airfoil 33 are

_- presented in figures i and 2 and compared with those of the earlier lO-percent-

-- thick airfoil 31 (ref. 5). Measured section coordinates of both airfoils are

presented in table I.

, The incremental ordinates between airfoils 31 and 33 delineated in table I

;_, show that the ordinates were modified over the forward upper and lower surfaces,

decreased over the rear upper surface, and increased in the vicinity of the

80-percent chord on the lower sur£aee. Referring to the pressure distribution

for airfoil 31 which np!0roache_ the off-design sonic-plateau criterion (fig. 15(c)

of ref. 5; M = 0.76 and c = 0.46), the _l%erat_ons over the upper surface andn
T

forward lower surface were necessary to obtain the desired plateau pressure

distributions and to reduce the upper surface aft pressure recovery gradient.
?

The ordinates on the rear lower surface were increased, with the maxim_Am increase

6
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i at 80-percent, to provide increased depth for control surface and flap structur-

al requirements. Subtracting from the upper surface and adding to the lowersurface over the aft portion of the airfoil in this manner reduced the aft cam-

ber and, therefore, increased the angle of attack required to achieve a given

normal-force coefficient. The ordinates on the lower surface were progressively

increased until the third design criterion was met; that is, that the angle of

attack required for the a_sign normal-force coefficient of 0.7 was approxi-

mately 0°.

Since the best drag characteristics are often obtained on airfoils with a
s_all amount of upper surface trailing-edge separation and since theoretical

treatments of the flow at trailing-edge regions are generally unreAiable, theo-

retically-predicted flow separation at the 98-percent chord location was accepted

_ during the design process. Attempts to achieve a more rearward location of theo-

iI retical separation by reducing the aft pressure recovery gradient would haveforced the rear terminus of the sonic plateau forward, resulting in higher induced
It

velocities in the plateau region and a probable re_iction in drag rise Mach number.

Wind-tunnel model.- The coordinates of the experimental airfoil 33 deviated

i_• slightly from the design profile (not presented). On the upper surface, the

__ L• deviation was nowhere greater than Ax/c = 0.0003 and generally less than 0.0001.

i On the lower surface, deviation was somewhat greater; as much as 0.0005 on the

_} forward region. These small deviations shocld not significantly affect theresults.

Irregularities in the curvature distributions (fig. 2) are due to amall

Iv , surface irregularities that become greatly exaggerated when

examined from the

standpoint of local curvature. Such irregularities are not as apparent in the

" _ slope distributions (fig. 2). Both airfoJls included a traillng-edge cavity

?
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(see the insert in fig. i and the photographs of fig. 3) which had a favorable

effect on the wake as discussed in reference 3.

The wind-tunnel models, mounted in an inverted pcsition, spanned the width

of the tunnel with a span-chord ratio of 3.hS. They were constructed with metal

leading and trailing edges and a metal core around which plastic fill was used

to form the contours of the airfoils. Angle of attack was changed manually by

rotating the model about pivots in the tunnel sidewalls. A photograph and a

_ drawing of a typical airfoil model installed in the tLmnel are shown in figures

_iI 3 and 4, respectively.

Wind Tunnel

The investigation was conducted in the Langley 8-.foot transonic pressure

tunnel (ref. 7). This tunnel is a contlnuous-flow, varlable-pressure wind

tunnel with controls that permit the independent variation of Mash number,

stagnation pressure and t_perature, and dewpoint. It has a 2.16-meter-square

(85.2-inch-square) test section with filleted corners so that the total cross-

sectional area is equivalent to that of a 2.4h-meter-diameter (8-foot-diameter)

circle. The upper and lower test-section walls are axially slotted to permit

':I testing through the transonic speed range. The total slot width at the position

of the model averaged shout 5 percent of the width of the upper and lower walls.

The solid sidewalls sad slotted upper and lower walls make this tunnel

well suited to the investigation of two-dimensional models since the sidewalls

act as endp]ates and the slots permit development of the flow field in the

vertical direction.

Boundary-Layer Transition

Baaed on the technique discussed in reference 8, boundary-layer transitio,

was fixed along the 28-percent chord line on the upper and lower surfaces of
|

8 L
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i-; ..... the models in an attempt to simulate full-scale Reynolds numbers by providing

the same relative trailing-edge boundary-layer displacement thickness at mo_el

7
i_ scale as would exist at full-scale flight conditions. The simulation technique,

_hich requires that laminar flow be maintained ahead of the transition trip, is

limited to ILose test conditions in which shock waves or steep adverse pressure

_. gradients occur behind the point of fixed transition so that the flow is not
!

tripped prematurely. The transition trips consisted of 0.25-cm-wide (0.10-in.)

[__ bands of No. 90 Carborundum _Tains. Analysis of drag and boD/Idary-layer dis-

placement thickness at the trailing edge theoretically computed using reference

12- 6 indicated that the simulated full-scale Reynolds number was around h0 million

i_ rather than the 20 to 30 million quoted for earlier supercritical airfoil in-

vestigations _ef. 3, for example).

i Measurements

Surface-pressure measurements.- Normal force and pitching moments on the

airfoils were determined from surface static-pressure measurements. The surface-

pressure measurements were obtained from a chordwise row of orifices located

approximately 0.32c from the tunnel center llne. Orifices were more concen-

trated near the leading and trailing edges of the airfoil to define the pressure

i_ gradients in these regions. In addition, a rearward facing orifice was included

in the cavity at the trailing edge (identified at an upper surface x/c location

of 1.00). The transducers used in the differential pressure scanning valves to

measure the static pressure at the airfoil surface had a range of +--68.9kN/m 2

(10lblln2).

Wake measurements.- Drag forces were determined from vertical variations

of the total and static pressures measured across the wake%_th the profile drag

rake shown in figure h(b). The profiles, scbematlcally illustrated in figure 5,

' represent the momentum losses as indicated by stagnatlon-pressure deficits

)

.'/ il
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. across the wake. The middle section of these profiles reflects viscous and
_: separation lossss in the boundary layer, whereas the "wings" of the profile re-

i fleet direct losses in the shock
stagnation pressure across waves

[ The rake was positioned in the vertical center-line plane of the tunnel,

approximately ]. length rearward of the trailing edge of the airfoil.
chord The'

_ total-pressure tubes were flattened horizontally and closely spaced vertically

(0.36 percent of the airfoil chord) in the region of the wake associated with

>. skin-friction boundary-layer losses. Outside this region, the tube vertical

_'_".......... spacing progressively widened until in the region above the wing where only<
shock losses were anticipated, the total-pressure tubes were spaced apart about

7.2 percent of the chord. Static-pressure tubes were distributed as shown in

figure 4(b). Each static pressure measured was used over a section of the rake

4 to determine local flow conditions in the vicinity of the static-pressure tube

rather than using an average of all the static pressures measured. The rake

was attached to the conventional center line sting mount of the tunnel; this

arrangement permitted it to be moved vertically to center the close concentra-

tion of tubes in the boundary-layer wake. The transducer in the differential-

pressure scanning valve connected to total-pressure tubes intended to measure

boundary-layer losses had a range of +17.2 kN/m 2 (a.5 ib/in2), and the trans-
,=.

- ducers in the valves for measuring shock losses and static pressure had a rangeof +_6.9 _/m 2 (1 lb/in2).

il Reduction of Data

Calculation of and Section normal-force and coeffl-
pitching-moment

cn cm.-

7 clents were obtained by numerical integration (baaed on the trapezoids/ method)

_ of the local surface-p_essure coefficient measured at each orifice multiplied by

an appropriate weighting factom (incremental area).

>.

J
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1 - Calculation of Cd.- To obtain section drag coefficients, point drag coeffi-

i cients were computed for each total-pressure measurement in the wake by using

the procedure of reference 9. These point drag coefficients were then summed I

by numerical integration across the w_ke, again based on the trapezoidal method. 1

2_ Drag increments due to shock wave losses (Aed,s) were determined from integra-
5

tion of the drag measured across the wings (fig. 5) of the wake profile.

Wind-Tumnel-Wall Effects

Because of the uncertainty in lift-ind'Aced i.mterference effects and solid

and wake blockage effects (particularly in the presence of local supercritical

< flow) no corrections for wall effects have been applied to the basic e_p_ri-

mental data. Adjustments for blockage were applied to the composite drag rise

data and are explained in the Discussion section.

TEST 0ONDITIONS

Tests were conducted at Maeh numbers from 0.50 to 0.82 for a stagnation

pressure of 0.1013 MN/m 2 (i atm). The stagnation temperature of the tunnel elf

was automatically controlled at approximately 322 K (120°F) and the air was

dried until the dewpoint in the test section was reduced sufficiently to avoid

condensation effects. Resultant test Reynolds numbers based on the airfoil

chord length were as shown in figure 6.

_ PRESENTATION OF RESULTS

The experimental data reported herein are presented in the following

fig_res_

Figure

Force and moment characteristics ............ 7
_r

Variation of measured section drag eoefflelent wi_h Math number .... 8

,Drag increment due to shock-wave losses .......... 9

Ii
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__gure

Composite drag curves.................. i0

Chordwise pressure distributions at -

M = 0.50..................... ll

M = 0.60. 12

M = 0.70. 13

M = 0.74. 14

M = 0.76. 15

M = 0.77. 16

M = 0.78. 17

M = 0.79_ 18

M = 0.80. 19

M = 0.81. 20

M = 0.82. _-_-==_==:=,-........"........._%_ ........................................?=_'?=-21:_ ..................................

Comparisons of theoretical and experimental characteristics for -

M = 0.76, cn = 0._i_................. 22

M --0,79, cn m 0.535.................. 23

M = 0.77, cn = 0.707................. 2h

Complete surface pressure distributions for the earlier lO-percent-thick

supercritical airfoil 31 are presented in reference 5 and for the family related

14-percent-thick airfoil in reference 1.

DISCUSSION

Measured Aerodynamic Characteristics

Sonic plateau.- Figure 15(e) indicates how close the analytically designed,

experimental lO-percent-thiek airfoil 33 came to satisfying the off-deslgn sonic
I

plateau criterion for M = 0.76 and cn = 0.41. Irregularlties in the plateau

12

00000001-TSA14



3

pressures are due to small surface imperfections which become greatly exagger-

ated when the flow is right on the verge cf sonic velocity. The upper surface

plateau extends from approximately 3- to 80-percent chord and comes much nearer

to satisfying the sonic-plateau criterion than that for airfoil 31 (ref. 5).

t •The aft pressure recovery gradient is considerably reduced and the trailing-

I edge pressure recovery more positive, compared with airfoil 31.

The characteristic supereritleal pressure distribution at near design

• conditions (slightly decelerating upper surface velocities terminated by a very

:- weak recompression near the midehord and followed by a near-sonic plateau be-

,I fore entering the final trailing-edge pressure recovery) for an angle of attack

near the design value of 0° (fig. 24) occurs at the experimental conditions of

M = 0.77 and cn = 0.71 (fig. 16(f)). The increment between normal-force coeffi-

cients at design and off-design sonic plateau conditions is, therefore, about

-0.25 to -0.30 as suggested.

_ Measured dra_ characteristics.- Figure 8 indicates that although airfoil

33 had slightly lower drag divergence Mach numbers than airfoil 31 because of

earlier onset of shock losses (fig. 9), the drag characteristics of airfoil 33

preceding drag divergence were much improved compared to those of airfoil 31.

The improved drag characteristics preceding drag divergence are associated

primarily with reduced aft adverse pressure gradients which result in less

profile drag. The increased wave losses are associated with the more positive

angle of attack required to achieve the same normal-force coefficients as air-

foil 31 because of the reduced aft camber and with the influence of the increased

curvature over the upper surface mid-chord region (fig. 2(a)). These increased

) Wave losses occur at conditions beyond the design conditions however, and were
L
-_ 'toleratedin exchange for enhanced performance preceding drag divergence.

-1 13
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The apparent dips in the dra_ rise curves (fig. 8) should not be inter-

preted as being due to reductions in shock losses as the design Math number is

approached. At cn = 0.7, for example, there is a dip near M = 0.77 but there

are no shock losses evident (fig. 9) below M = 0.77. In an attempt to simulate

full scale Reynoidsnumbers for the design Mach number, botmdary-layer transi-

tlon trips were fixed at 28-percent chord. At M = 0.70, the pressure distri-
bution for en = 0.7 (fig. 13) was such that laminar flow could not be maintained

_= back to the trip. The higher drag level preceding M = 0.77was, therefore, due

to premature boundary-layer transition with greater skin friction drag than

I there would have been if laminar flow could have been maintained back to thetrip at 28-percent chord. Higher drag levels preceding t_e clip are not asso-

1 ciated with increased form drag due to separation effects since no losses in

_- trailing-edge pressure recovery were evident.

i Measured pitching-moment characteristics.- The negative or leading edge

_ do-_n pitching moments of airfoil 31 (fig. 7) were reduced by about Ac = 0.01
_ m

_I because of the reduced aft camber incorporated into airfoil 33. At design

_i conditions (M _ 0.78 and cn = 0.7 for airfoil 33 (fig. 7), and M _ 0.74 and
=

c = 0.7 for the lh-percent-thick airfoil of reference i) pitching-moment coeffi-
n

_. cients were practically the same for the family related 10- and lh-percent

I airfoils.

Comparison With Theory

I CorreJ ,%tionwas established between experimental and theoretically pre-

i _ dicted data using the viscous, analysis program of reference 6. Representative

results are presented in figures 22 to 2h. Since the viscous analysis program

was known to overpredict trailing-edge prL:_urc recovery, Math number was varied ,

I_ to achieve the best matches of bhe theoretical and experimental pressure14

I .........
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distributions over the forward regions of the airfoil and shock wave locations

for given normal-force coefficients. The results indicate the Mach number and

angle of attack adjustments needed to correct for tunnel wall interference

effects.

1 When the flow over the model is subcritical (fig. 22, for example) the

blockage or Mach n,_ber correction required to match the experimental and theo-

retical pressure distributions over the forward region of the airfoil are small

and tend to agree with _hat would be predicted by subcritical theory (ref. 10,

for exsmr21e). When substantial amounts of supercritical flow begin to appear

over the airfoil blockage corrections become significant as indicated by figures

23 and 2_.

Attention must he called to two important points in the correlations shown

in figures 22 to 2h. The total theoretical drag calculated h_" the viscous,

i- analysis program of reference 6 is calculated in two parts; profile drag, con-

sisting of skin friction and form or pressure drag, and the contribution of

wave drag which exists in supersonic flow. Experience has indicated that be-

cause of overprediction of wave losses the total theoretical dra_ tends to

become too large as soon as supercritical flow appears on the airfoil. Con-

sequently, the theoretical drag shown in figures 22 to 2h is that drag associ-

ated with only profile drag and agrees well with the experimental drag. if the

wave losses as calculated by the method of reference 6 were taken into account,

the theoretical drag would be greater than the experimental drag by O.OOlO and

I, 0.0019 for figures 23 and 2_ respectively.

_I The second point which must be made concerning the correlation figurespertains to the po,3ition of Doundary-l_yer transition specified for the theo-

"retical data. Reference 6 neglects the laminar portion of the flow ahead of

S

'I
A
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the transition point, Because of the lengthy run of laminar flow (28-percent)

and its effect on the turbulent boundary-layer development on the model, the

neglected laminar boundsry had to be taken into account. This was accomplished

by specifying a transition point forward of 28-percent chord in the theoretical

calculations to get better agreement between the theoretical and experimental

drag for flow conditions with no supercritical flow (zero wave losses) and

where the experimental transition occurred at 28-percent chord. The theoreti-

cal calculations shown in figures 22 to 24 were, therefore, calculated for !

tunnel Reynolds numbers with transition fixed at 2M-percent chord.

Composite Drag and Angle-of-Attack Characteristics

Drag.- A combination of experimental and theoretical drag characteristics

for airfoil SS is shown in figure i0 in order to synthesize a realistic drag

rise curve for a full-scale Reynolds number. Theoretical drag values (solid

line) based on _0 million Re,molds number and boundary-layer transition at B-

percent chord are used for Mach numbers up to the Mach number at which shock

losses become evident in the experimental data. Because of the inaccuracy of

the theoretical wave losses, experimental drag values (dashed line) are used

beyond that point. The experimental and theoretical drag agree at the Junction

of the solid and dashed lines. The nominal Mach numbers for the experimental

data were reduced by the increments indicated by figures 23 and 2_ to be re-

quired to r,ccount for blockage effects.

The gradual increase in drag with Mach number up to drag divergence was

associated with increased profile drag due to the effect of Mach number on the

induced velocities. As noted in an earlier section there were no measurable

shock losses up to the Mach numbers at which drag diverged.

16...............
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An_le of stt_k.- Theoretical angles of attack required to obtain the de-

sired section li_ coefficients are also shown in figure i0 and are near zero

\ _ the design or cruise Mach numbers. The difference in angles of attack for

cn = 0.5 and 0.7 provide an indic_ion of the li_ curve slope in this lift

raBge.

3ONCLUDING REMARKSA lO-percent_hiek supercritic_ airfoil based on an off-design sonic

pressure plateau criterion has been developed and experimental aerodynamic

_, characteristics measured. The airfoil had good drag rise characteristics over

_ a wide range of normal-force coefficients with no :_easurable shock losses up

I to the Mach numbers at which drag divergence occurre, for normal-force coeffi-cients up to 0.7. Comparisons of experimental and theoretical characteristics

were made _d composite _ag rise characteristics were derived for normal-force

_ coefficients of 0.5 and 0.7 and a Reynolds number of _0 million.

o

)
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TABLE L- SECTION C00RDI_ATE$

c = 63.5 cm (25 in.); airfoil 31 has
an upper-

surface leading-edge radius of 0.0169c and a

lower surface leading-edge radius of 0.0176c;

airfoil 33 has a leading-edge radius of 0.015c;

a(y/e) = (y/C)airfoiI 33 - (Y/C)airfoil Sl1

l(ylC)u (ylC)l (_le)u [ (ylC)l

i-_ x/c I A(y/e)u A(y/e)l
Airfoil 31 Airfoil 33

r.

3.0 0.0 0.0 0.0 0.0 0.0 0.0

.oo2 .oo8o -.0o81 .o075 -.oo75 -.0oo5 .ooo6

.oo5 .012o -.o123 .o116 -.o116 -.0004 .ooo7

.OlO .o159 -.o164 .o156 -.o156 -.0003 .0008

.020 .0209 -.0215 .0206 -.0203 -.0003 .oo12

.030 .o2_4 -.0250 .02_0 -.0235 -.0004 .oo15

.o_0 " .o271 -.0274 .0267 -.o262 -.o004 .oo12

.o5o .o29_ -.0@95 .0289 -.o284 -.0005 .oo11

.060 .0313 -.031h .0308 -.0303 -.0005 .0011

.070 .0329 _.0330 .0325 -.0320 -.0004 .0010

.080 .034h -.03_4 ,0340 -.0335 -.0004 .0009

.090 .0357 -.0358 .035h -.03h9 -.0003 .0009

.100 .0369 -.0370 .0367 -.0362 -.0002 .0008

.110 .0380 -.0381 .0379 -.037h -.0001 .0007

.120 .0391 -.0392 .0389 -.0385 -.0002 .0007

.130 .Oh01 -.0402 .0399 -.0395 -.0002 .0007

.140 .0410 -.Ohll .0408 -.0_o5 -.0002 .ooo6

.150 .0418 -.042o .Ohl7 -.Ohlh -.oo01 .0006

.160 .o426 -.0427 .0425 -.o422 -.o001 .ooo3

.170 .0433 -.OhBh .0432 -.043o -.oo01 .ooo_

.180 .Ohio -.o_40 .0439 -.0437 -.o001 .0003 t

.190 .04_6 -.0446 .04_6 -.0444 0.0 .0002

v

2O
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i TABLE I.- SECTION COORDINATES - Continued

t " (yle)u (ylc)I (ylc)u (ylc)I

I xlc a(ylc)u A(ylc)I
Airfoil 31 Airfoil 53

il 0.200 0.0452 -o.ok52 o.o45e -o.o45o o.o 0.0002
.2ZO .0457 -.0457 .0457 -.0456 0.0 .0001

_. .22o .o462 -.o462 .o462 -.0462 o.o o.o
.23o .o467 -.o467 .o467 -.0467 0.0 o o

%_ .24o .O_7l -.o47z .o_72 -.o472 .oooz -.OOOl
.25o .0475 -.0475 .o476 -.o476 .oooz -.OOOl

.260 .0478 -.0479 .0480 -.0480 .0002 -.OOOl

...... 270 .04Bl -.0482 .0483 -.0484 .0002 -.0002

.28o .o484 -.o485 .o486 -.o487 .o002 -.ooo2

l .29o .o487 -.o488 .o489 -.o49o .ooo2 -.o002
_, .300 .0489 -.0491 .0491 -.0493 .0002 -.0002

i _ .310 .0491 -.0493 .0493 -.0495 .0002 -.0002

_ol .320 .0_93 -.0495 .0495 -.0497 .0002 -.0002

•330 .0495 -.0497 .0496 -.0499 .0001 -.0002

Ii .340 .o497 -.0498 .0497 -.o5oo o.o -.ooo2

.350 .0498 -.0499 .0498 -.0501 0.0 -.0002

.360 .0499 -.0499 .0499 -.0502 0.0 -.0003

.370 .0500 -.0_99 .0500 -.0_02 0.0 -.O003

! .380 .0500 -.0499 .0500 -.0502 0.0 -.0003

_ .390 .0500 -.049B .0500 -.0502 0.0 -.0004.4oo .o5oo -.o497 .o5oo -.o5oi o.o -.ooo4

I ._io .o5oo -.o495 .0499 -.o50o -.0ooi -.ooo5

.42o .05oo -.o493 .o498 -.o499 -.ooo2 -.ooo6

.43o .o499 -,o_91 .o497 -,o497 -,ooo2 -.ooo6

.44o .o498 -.o_88 .o496 -.o495 -.ooo2 -.ooo7

,450 .o497 -.0485 .o_95 -.0492 -.ooo2 -.ooo7

.46o .0695 -.o482 .o493 -.0488 -.ooo2 -.ooo6\

I! .470 .0493 -.0478 .0_91 -.048_ -.0002 -.0006

l , ,

21/
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TABLE I.- SECTION COORDINATES - Continued

l (ylc)u (ylc)1 (ylc)u (YI)l
xlc _- ACyl¢)u ACylc)l

Airfoil 31 Airfoil 33

i
O.hSC O.Ohgl -o.oh7h 0.oh89 -o.ohSo -0.000'2 -0.0006

.h9o .oh89 -.OhTO .o_87 -.o_75 -.oo02 -.ooo5

•500 .0487 -.0h65 .0484 -.0_70 -.0o03 -.0005

.Szo .o_85 -.oh59 .0_81 -.o_6_ -.oooh -.ooo5

.520 .0_82 -.0_53 .0h78 -.0457 -.0004 -.0004

.530 .0_79 -.Ohh6 .0475 -.OhSO -.0004 -.O00h

•5_0 .0h76 -.0_39 .0472 -.0_42 -.O00h -.0003

•550 .0h73 -.0431 .0_68 -.0434 -.0005 -.0003

.560 .oh69 -.0h22 .Oh6_ -.0_25 -.0(_5 ........ -.0o03

.570 .0_65 -.0413 .0_60 -.0415 -.0o05 -.0o02

.580 ,0h61 -.Oh03 .0h56 -.Oh05 -.0005 -.0002

.59o .0457 -.0392 .OhSl -.o394 -.0o06 -.0o02

.600 .0453 -.03Bl .0_6 -.0382 -.0007 -.oooz

.610 .Ohh8 -.0369 .04_1 -.0370 -.0007 -.oo01

.620 .ohh3 -.0356 .0_36 -.o357 -.0007 -.0o01

.630 .0h38 -.03h2 .Oh3O -.03_3 -.0o08 -.00Ol

.6_o .0433 -.0327 .0424 -.o329 -.0o09 -.0002

,650 .0h28 -.0311 .0_18 -.0315 -.oulo -.o004

.660 .0h22 -.029h .Oh12 -,0300 -.o0±o -.oo06

•670 .Oh16 -.0277 .Oh05 -.o285 -.0011 -.O00d

.680 .Oh09 -.0260 .0398 -.0270 -.0011 -.0010

.690 .OhO2 -.02h2 .0391 -.0255 -.0011 -.-013

•700 .0395 -.022k .0383 -.0259 -.0012 -.0015

.710 .0387 -.0206 .0375 -.0223 -.0012 -.o017

•720 .0379 -.0188 .0367 -.0207 -.0012 -.oo19

•730 .0371 -.0171 .0358 -.0191 -.0013 -.Co20

.ThO .0363 -._tSh .03h9 -.o175 -.oo14 -.oo21

•TSO .o35h -.0137 .03ko -.o159 -.oo14 -.oo22

22
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TABLE I.- SECTION COORDINATES - Concluded

(y/c)u (y/c)l (ylc)u (y/c)1

xlc ^Cylc)u _(ylC)l
Airfoil 31 Airfoil 33

0.760 0.0345 -0.0121 0.0330 -0.0143 -0.0015 -0.0022

•770 .0336 -.0105 .0320 -.0128 -.0016 -.0023

•780 .0326 -.0089 .0309 -.0113 -.0017 -.0024

•790 .0315 -.0074 .0298 -.0099 -.0017 -.0025

.800 .0304 -.0060 .0287 -.0085 -.0017 -.0025

.810 .0292 -.0047 .0275 -.0072 -.0017 -.0025

.820 .0280 -.0035 .0262 -.0060 -.0018 -.0025

.830 .0267 -.0024 .0248 -.0049 -.0019 -.0025

.840 .0254 -.0014 .0234 -.0038 -.0020 -.0024

.850 .0240 -.0006 .0219 -.0029 -.0021 -.0023

.860 .0225 0.0 .0204 -.0022 -.0021 -.0022

.870 .0210 .0005 .0188 -.0017 -.0022 -.0022
47_

.880 .0194 .0007 .017] -.0014 -.0023 -.0021

.890 .0176 .0007 .0153 -.0013 -.0023 -.0020

.900 .0157 .0005 .0135 -.0013 -.0022 -.0018

.910 .0137 .0001 .0116 -.0016 -.0021 -.0017

•920 .0116 -.0005 .0096 -.0021 -.0020 -.0016

!- .930 .0093 -.0014 .0075 -.0028 -.0018 -.0014

.940 .0069 -.0026 .0054 -.0039 -.0015 -.0013

.950 .0044 -.0041 .003_ -.0053 -.0012 -.0012

.960 .0019 -.0059 .0008 -.0069 -.0011 -.0010

.970 -.0008 -.0080 -.0017 -.0088 -.0009 -.0008

.980 -.0037 -.0105 -.0044 -.0110 -.0007 -.0005

.990 -.0068 ' -.0133 -.0074 -.0135 -.0006 -.0002

1.000 -_ -.0164 .... .0163 --- .0001

i
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