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In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed 

at Mach numbers below five.  Such aerodynamic decelerators include parachutes and inflatable 

aerodynamic decelerators (often known as ballutes).  Aerodynamic decelerators play a key role in 

the Entry, Descent, and Landing (EDL) of planetary exploration vehicles.  Among the functions 

performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic 

to subsonic speeds), minimization of descent rate, providing specific descent rates (so that 

scientific measurements can be obtained), providing stability (drogue function - either to prevent 

aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic 

decelerator system deployment (pilot function), providing differences in ballistic coefficients of 

components to enable separation events, and providing height and timeline to allow for 

completion of the EDL sequence.  Challenging aspects in the development of aerodynamic 

decelerators for planetary exploration missions include:  deployment in the unusual combination 

of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body 

entry vehicle, stringent mass and volume constraints, and the requirement for high drag and 

stability.  Furthermore, these aerodynamic decelerators must be qualified for flight without access 

to the exotic operating environment where they are expected to operate.  This paper is an 

introduction to the development and application of aerodynamic decelerators for robotic planetary 

exploration missions (including Earth sample return missions) from the earliest work in the 1960s 

to new ideas and technologies with possible application to future missions.  An extensive list of 

references is provided for additional study. 

Nomenclature 

C
D
0

 = parachute drag coefficient based on its nominal area, S0 

CDp

 = drag coefficient based on the projected frontal area, Sp 

D0 = parachute nominal diameter 

h = altitude 

mv = test vehicle mass 

M = Mach number 

q = dynamic pressure 

Sp = projected frontal area 

S0 = parachute nominal area 

 

ALE = Arbitrary Lagrangian-Eulerian 

BLDT = Balloon Launched Decelerator Test 

CFD = Computational Fluid Dynamics 
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DCSS = Descent Control Sub-System 

DGB = Disk-Gap-Band 

EDL = Entry, Descent, and Landing 

ESA = European Space Agency 

FSI = Fluid-Structures Interaction 

IAD = Inflatable Aerodynamic Decelerator(s) 

JPL = Jet Propulsion Laboratory 

MER = Mars Exploration Rovers 

MOLA = Mars Orbiter Laser Altimeter 

MPF = Mars Pathfinder 

MPL = Mars Polar Lander 

MSL = Mars Science Laboratory 

NASA = National Aeronautics and Space Administration 

PEPP = Planetary Entry Parachute Program 

SPED = Supersonic Planetary Entry Decelerator Program 

SHAPE = Supersonic High Altitude Parachute Experiment 

UTTR = Utah Test and Training Range 

VEM = Vortex Element Methods 

I.  Introduction 

ERODYNAMIC decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary 

exploration vehicles.  In most cases, rigid aeroshells protect the lander during the heat and deceleration pulses 

of entry.  However, such aeroshells do not have sufficient drag area to bring the spacecraft safely to the surface.  It is 

at this point where aerodynamic decelerators are 

called upon to reduce the speed of the vehicle 

(often from supersonic to subsonic Mach 

numbers) and complete the descent and landing 

portions of the EDL sequence.  Table 1 presents a 

list of Western
‡
 past, present, and future planetary 

exploration missions that have or will employ 

aerodynamic decelerators. 

Although the above description of the 

purposes of aerodynamic decelerators seems to 

imply that they are limited to functioning as 

deceleration and terminal descent velocity control 

devices, this is far from the truth.  Aerodynamic 

decelerators serve multiple purposes that must be 

clear in the engineers’ minds as they design, 

develop, and qualify the spacecraft.  Some of 

these purposes include:  deceleration (often from 

supersonic to subsonic speeds), minimize descent 

rate, provide specific descent rate (so that 

scientific measurements can be obtained), provide 

stability (drogue function - either to prevent 

aeroshell tumbling or to meet instrumentation 

requirements), effect further aerodynamic decelerator system deployment (pilot function), provide difference in 

ballistic coefficients (to enable separation events), and provide height and timeline (to allow for completion of the 

EDL sequence). 

In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers 

below five, once the heat and acceleration pulses of entry have passed.  This definition limits the discussion to 

                                                
‡
 Numerous Soviet and Russian planetary exploration missions have also used aerodynamic decelerators.  

Unfortunately, there is almost no literature in English about the aerodynamic decelerators used by these missions.  

Some information on Soviet Mars missions is presented in reference 1.  A survey paper describing the 

accomplishments of Soviet and Russian engineers in this area would be a welcomed addition to the literature. 

A 

Table 1. Western planetary exploration missions flown 

or currently under development using aerodynamic 

decelerators. 

 

Viking 1 & 2 Mars, 1976 

Pioneer Venus, US Venus, 1978 

Galileo, US Jupiter, 1995 

Mars Pathfinder (MPF), US Mars, 1997 

Mars Polar Lander (MPL), US
1
 Mars, 1999 

Beagle 2, UK
1
 Mars, 2003 

Mars Exploration Rovers (MER), US Mars, 2004 

Huygens, Europe Titan, 2004 

Genesis, US
2
 Earth Sample Return from Space, 2004 

Stardust, US Earth Sample Return from Comet, 2006 

Phoenix, US
3
 Mars, 2008 

Mars Science Laboratory (MSL), US
3
 Mars, 2010 

 
1
Lost during EDL sequence 

2
Parachute failed to deploy 

3
Currently under development 
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parachutes and inflatable aerodynamic decelerators (IADs, also known as ballutes).  Devices that are inflated in 

space (i.e., before entry) do not fall under the category of IADs as defined here, even though they are often also 

referred to as ballutes.  Such devices must withstand the heat of entry, which places requirements on them beyond 

those considered in this paper for aerodynamic decelerators. 

The paper’s focus is on robotic planetary exploration missions, including Earth sample return missions, such as 

those listed in table 1.  Note that this emphasis precludes extensive discussions of aerodynamic decelerators for 

manned space missions and/or low-altitude Earth operations (e.g., supersonic parachutes operating at high dynamic 

pressures for weapons delivery).  For information on these areas the reader is directed to references 2 through 4. 

This paper is an introduction to the development and application of aerodynamic decelerators for planetary 

exploration missions from the earliest work in the 1960s, to new ideas and technologies and their possible 

application to future missions.  As the research and applications are reviewed, the technical insights gained from 

them are discussed.  In section II, research and missions up to 1995 are reviewed.  This section includes the Viking, 

Pioneer Venus, and Galileo missions.  In section III, missions from the late 1990s to those currently under 

development for launch by the end of this decade are discussed.  This section includes several Mars missions, the 

Huygens mission to Titan, and two Earth sample return missions.  Finally, in section IV, we look forward and point 

out directions in which additional research and development may support future missions in three areas:  

Computational Fluid Dynamics (CFD) and Fluid-Structures Interaction Analyses (FSI), large subsonic parachutes, 

and inflatable aerodynamic decelerators.  By necessity this paper is merely a brief overview of the field.  We have 

tried to make up for this limitation by providing an extensive list of references for additional study. 

II.  Past 

In this section we review early technology development programs and missions from the 1960s to the 1980s.  

The technology development programs can be organized in three groups:  mission system studies that defined the 

requirements for planetary exploration aerodynamic decelerators, wind tunnel testing, and full-scale flight testing.  

With the technology developed in these early programs the first three planetary exploration missions requiring 

aerodynamic decelerators were flown:  Viking to Mars (1976), Pioneer Venus to Venus (1978), and Galileo to 

Jupiter (1995
§
).  As will be shown, the division between technology development programs and missions was not as 

sharp as it may seem – advances in the understanding of aerodynamic decelerators for planetary exploration were 

also made during the design, development, and qualification phase of these missions. 

A. Technology Development Programs 

Early system design studies (e.g., references 5 to 7) specified the functions aerodynamic decelerators would 

accomplish in planetary exploration missions, identified the range of conditions they would be expected to operate 

in, and suggested possible system configurations.  These system studies were focused on missions to Mars and 

Venus.  In an early study, Worth
5
 identified deceleration, the stabilizing effect of a drogue parachute in the low 

supersonic and transonic flight regimes, descent time, the need for ballistic coefficient differential to effect 

heatshield separation, and a low descent velocity as key functions of aerodynamic decelerators for planetary 

exploration missions.  He concluded with a comment regarding the need for a comprehensive test program to fully 

characterize the performance of the required aerodynamic decelerators in the relevant operating conditions.  In a 

later study, Gillis
6
 noted the operating conditions for aerodynamic decelerators during a Mars mission:  Mach 

numbers up to 2 and dynamic pressures up to 960 Pa for parachutes, and Mach numbers up to 5 for IADs.  The 

upper Mach number limit for parachutes was established in part due to known inflated stability problems associated 

with parachutes above Mach 2.  For missions to Venus, Gillis stated that “the current technology and that under 

development for Earth entry should furnish a good background for mission planning, since the higher atmospheric 

density at Venus should provide entries similar to those on Earth...”.  He was correct on this, as the Pioneer Venus 

mission would prove.  At this time IADs were considered to be a viable option for missions to Mars, and Gillis 

discussed both trailing and attached IADs.  In these early system studies both single-stage (i.e., one aerodynamic 

decelerator) and two-stage systems were considered.  These systems were either hybrid IAD/parachute, IAD-only, 

or parachute-only.  Although these system studies were useful in defining the operating environments and 

requirements for aerodynamic decelerators to be used in planetary exploration, actual performance characteristics 

had to be obtained by wind tunnel and flight testing. 

                                                
§
 Although the Galileo probe made its entry into Jupiter in 1995, its design and development took place during the 

1970s and 80s.  This is why the Galileo probe is included in this section.  The loss of the space shuttle Challenger 

in 1986 delayed the launch of the Galileo mission, and lengthened its trip to Jupiter. 
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Wind tunnel tests with the specific purpose of 

developing parachutes and other aerodynamic 

decelerators for spacecraft applications started in 

the late 1950s.  Maynard
8
 tested various rigid and 

flexible Ribbon parachutes at Mach numbers 

between 1.6 and 3.0.  Although the impetus for 

his work was to support the emerging manned 

space program, the tests were conducted at 

conditions of interest to robotic spacecraft.  Both 

rigid and flexible Ribbon parachutes were tested 

at Earth simulated altitudes from 15 to 37 km.  

Maynard’s results showed that Mach number and 

parachute porosity were key parameters in the 

performance of these parachutes.  Several types of 

instabilities were noted, including oscillations of 

the parachute due apparently to asymmetries in 

the bow shock wave system, and inflation oscillations in which the parachute partially collapsed and re-inflated.  As 

shown in figure 1 from reference 8, these regions of instability depend on the parachute porosity
¶
 and Mach number.  

Another important observation was the variation 

in parachute drag coefficient with Mach number.  

After reaching a peak at Mach numbers between 

1.8 and 2, the parachute drag coefficient was 

shown to decrease with increasing Mach number 

as shown in figure 2.  Increasing porosity also 

reduced the parachute’s drag coefficient.  Other 

wind tunnel test programs (e.g., references 9 and 

10) yielded similar observations and additional 

insights.  For example, both references 9 and 10 

noted that increasing the suspension line length 

increased the parachute’s drag coefficient.  These 

and other wind tunnel test programs pointed to the 

challenges of flight testing and developing full-

scale parachutes. 

In parallel with these efforts to understand the 

behavior of parachutes, wind tunnel tests of 

trailing rigid and inflatable aerodynamic 

decelerators were being conducted.  References 11 through 13 are examples of these test programs.  Some of the 

wind tunnel models tested were simulations of 

rigid aerodynamic decelerator devices, but others 

were clearly intended to be IADs in full-scale 

operation.  The hoped-for advantage of these 

devices over parachutes was that they would not 

suffer of the instabilities described above.  

McShera
13

 tested flexible IADs that were inflated 

by either an internal gas source or external ram-

air.  The IAD shapes tested included a cone 

balloon, an 80° cone, and a sphere as shown in 

figure 3.  McShera’s results indicated that these 

IADs provided high drag and good stability 

characteristics when operating in the supersonic 

region of the towing vehicle’s wake.  With shorter trailing distances, in the region where the towing vehicle’s wake 

                                                
¶
 Parachute porosity is a measure of the canopy’s open area.  Maynard

8
 uses the term to describe geometric porosity 

– the ratio of the open areas of the canopy such as the vent to the nominal parachute area.  Another measure of 

parachute porosity that includes the effect of fluid flowing through the canopy fabric can also be defined – this is 

usually known as the total porosity. 

 
Figure 1. Ribbon parachute stability regions (from ref. 8). 
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Figure 2. Ribbon parachute drag coefficient vs Mach 

number (data from ref. 8). 

 
 

Figure 3. Trailing inflatable aerodynamic decelerators 

tested by McShera (adapted from ref. 13). 
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is either subsonic or transitioning from subsonic 

to supersonic the IADs’ drag was reduced, and its 

stability characteristics deteriorated.  Attached 

IADs (figure 4) were also the subject of study and 

wind tunnel testing.  In a series of test 

programs,
14-17

 attached IADs of 1.5 m diameter 

were designed, fabricated, and tested in wind 

tunnels at Mach numbers up to 4.4.  These IADs 

were inflated by a combination of evaporating 

liquid to initiate the inflation and ram-air to 

complete and sustain the internal pressure.  

Results indicated that these attached IADs had 

reliable inflation characteristics, high drag 

coefficients (over 1.0 at supersonic speeds based 

on frontal area), and were free of undesirable 

flutter.  In spite of the good performance 

demonstrated in wind tunnel tests by IADs at high 

supersonic Mach numbers, their development 

essentially stopped in the mid 1970s.  No supersonic flight test programs of IADs for planetary exploration were 

conducted.  This seems to have happened because the performance requirements of the first set of planetary 

exploration missions, namely Viking, Pioneer Venus, and Galileo, could be met with parachutes – a more mature 

technology. 

Although wind tunnel testing yielded 

important information about parachutes operating 

at supersonic speeds in low-density environments, 

full-scale flight tests were needed to develop 

practical systems.  In the 1960s and 70s, NASA 

undertook a series of high-altitude, supersonic 

parachute test programs to develop planetary 

parachute technology.  These programs were 

named Planetary Entry Parachute Program 

(PEPP), Supersonic Planetary Entry Decelerator 

Program (SPED), and Supersonic High Altitude 

Parachute Experiment (SHAPE).  Between these 

three programs, sixteen high-altitude supersonic 

flight tests were conducted:  five with Ringsail 

parachutes, three with Cross parachutes, and eight 

with Disk-Gap-Band (DGB) parachutes.  The 

results of these tests were documented in 

references 18 through 44.  A summary of these tests is shown in table 2, and a graph of the test conditions in Mach 

number/dynamic pressure space is shown in figure 5.  These tests were conducted by two tests methods.  One 

method used a surface-launched rocket, with 

parachute deployment occurring at high altitude 

and Mach number.  The other method used a 

balloon to lift the test vehicle to high altitudes.  

After separation from the balloon a set of rockets 

fired, accelerating the vehicle to the desired speed 

for the test.  The flight test sequence for the 

balloon/rocket test method is shown in figure 6.  

This second test method proved to be useful for 

tests in which it was desired to have a blunt-body 

aeroshell upstream of the parachute.  In all of 

these tests the parachute was deployed by a 

mortar.  The emphasis of these tests was clearly to 

develop parachute technology suitable for 

application to Mars EDL. 

 
 

Figure 4. Attached inflatable aerodynamic decelerator 

(from ref. 17). 
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Figure 5. Summary of supersonic parachute flight test 

experience. 

 
Figure 6. Balloon/rocket test method (from ref. 21). 
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Although not all of these flight tests were successful, the results clearly indicated that large parachutes intended 

for supersonic deployment in low-density atmospheres could be designed, built, and successfully flown.  Several of 

the parachute performance characteristics observed in wind tunnel tests also appeared in the flight test data.  The 

full-scale parachutes exhibited supersonic inflation oscillations that increased in violence as the Mach number 

increased.  In addition, the tendency of the drag coefficient to decrease at the higher Mach numbers was also 

observed.  In some flight tests problems related to aeroheating were encountered with some parachutes, in particular 

when operated at Mach numbers above 2.7.  With the results of the wind tunnel and flight-test development 

programs in hand, the groundwork was in place for the development of the parachute system for the Viking mission 

to Mars. 

B. Viking, Pioneer Venus, and Galileo 

The first three planetary exploration missions requiring aerodynamic decelerators are discussed here:  Viking to 

Mars (1976), Pioneer Venus to Venus (1977), and Galileo (1995).  A summary of the aerodynamic decelerator 

system characteristics for these missions (and all other missions discussed in this paper) are given in table 3.  Viking 

used much of the technology developed in the 1960s and 70s for parachutes operating at supersonic speeds in low-

density atmospheres as described above.  Because of the different operating conditions (transonic deployment), 

Pioneer Venus and Galileo were able to draw on Earth-based parachute technology for their systems.  The EDL 

system architectures and requirements allowed these missions to be conducted with parachute technology;  IADs 

were not needed. 

1. Viking 

After considering a variety of options, including a two-stage IAD/reefed parachute system, the Viking mission to 

Mars selected a single, unreefed, DGB parachute to be deployed by a mortar as its aerodynamic decelerator 

system.
45,46

  This system was considered to be the simplest that would meet the Viking aerodynamic deceleration 

requirements.  The experience obtained with similar systems in the technology development programs was also 

critical in the selection process. 

The development and qualification process for the Viking parachute consisted of four main elements:  wind 

tunnel tests,
47-49

 low-altitude subsonic drop tests,
50

 high-altitude flight tests,
51-59

 and mortar tests.
60

  Together, these 

elements constitute the most extensive, and thoroughly documented, parachute development and qualification 

program for an unmanned planetary exploration mission, past or present.  The data generated by Viking is still 

extensively used to develop new planetary parachute systems. 

Table 2. Summary of PEPP, SPED, and SHAPE flight tests. 
 

 

Parachute 

Type 

 

Nominal 

Diameter 

D0 (m) 

Deployment 

Mach 

Number 

M 

Deployment 

Dynamic 

Pressure 

q (Pa) 

 

Deployment 

Altitude 

h (m) 

Test 

Vehicle 

Mass 

mv (kg) 

 
 

Successful? 

 
 

Refs. 

 
 

Notes 

Ringsail 12.2 1.64 436 26.5 108 No 19 A 

Ringsail 26.0 1.16 282 40.4 125 Yes 21, 27 B, C 

Ringsail 9.5 1.39 527 37.3 100 Yes 25 A 

Ringsail 16.6 1.60 555 40.2 244 Yes 35 B 

Ringsail 12.2 2.95 440 52.3 127 Yes 38 A 

Cross 16.6 1.65 607 39.9 257 Yes 31 B 

Cross 9.1 1.57 464 41.5 109 Yes 33 A 

Cross 7.7 1.57 474 40.4 98 No 33 A 

DGB 9.1 1.56 546 38.9 102 Yes 20 A 

DGB 19.7 1.59 555 40.7 248 Yes 28 B 

DGB 12.2 2.72 464 48.3 127 Yes 29 A 

DGB 12.2 1.91 555 42.7 127 Yes 34 A 

DGB 12.2 3.31 508 51.4 129 No 39 A 

DGB 12.2 2.58 972 43.6 127 Yes 42 A, C 

DGB 12.2 2.77 958 43.6 129 No 42 A, C 

DGB 16.8 2.69 886 44.3 1,193 No 43 A 

Notes:  A - Rocket test method;  B - Balloon/rocket test method;  C - Reefed 
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Wind tunnel testing was conducted to finalize the parachute system configuration, and develop the required 

parachute drag coefficient data for mission analyses.  These wind tunnel tests were conducted at Mach numbers 

from 0.2 to 2.6 in various facilities, with and without the aeroshell upstream of the parachute.  Wind tunnel model 

scale was ten percent.  In large part due to the results from the wind tunnel test program, it was decided to increase 

the suspension line length to 1.7D0 (from the 1.0D0 used in the technology development flight test programs 

discussed earlier), and the trailing distance of the parachute to 8.5 aeroshell diameters (measured from the aeroshell 

maximum diameter to the parachute skirt).  These increases in suspension line length and trailing distance increased 

the parachute’s drag coefficient.  The final parachute drag coefficient model used for mission design was as shown 

in figure 7.
61

  This nominal drag curve was derived from wind tunnel test data.  Three observations related to this 

nominal drag curve are particularly interesting:  the almost constant drag coefficient for Mach numbers less than 0.6, 

the large reduction in the drag coefficient at transonic speeds due to interaction with the entry vehicle wake, and the 

reduction in drag coefficient at Mach numbers above 1.4. 

A set of nine low-altitude subsonic development drop tests on engineering models of the parachute system were 

conducted to verify system operation (i.e., from mortar firing to steady state descent under parachute), and the 

structural integrity of the parachute.  These test were initiated at altitudes of approximately 15 km, by dropping a 

slender test vehicle from an airplane.  As a result of this 

test program several changes were made to the system, 

including changes in the parachute disk fabric material, 

and to the mortar cover.  During the last two drop tests 

the parachute was shown to be capable of sustaining a 

load 1.3 times the highest expected on Mars. 

With the parachute system in its final configuration, 

four high-altitude flight tests conducted to qualify the 

system for flight at conditions similar to those that could 

be encountered on Mars.  This was known as the BLDT 

(Balloon Launched Decelerator Test) program, with each 

of the flight tests identified by the initials AV and a 

number (thus, AV-1 was the first test of the series).  

These tests were conducted using a variant of the 

balloon/rocket test method discussed earlier and shown 

in figure 6.  All four of these tests included the Viking 

aeroshell so the wake effects of the aeroshell on the 

Table 3. Key characteristics of aerodynamic decelerators flown on planetary exploration missions. 
 

Parachute 
 

Mission 
Type Diameter or Area 

 

Deployment Method 

Viking DGB 16.2 m D0 Mortar 

Pioneer Venus (1) Ribless Guide Surface 

(2) Conical Ribbon 

(1) 0.76 m 

(2) 4.94 m 

(1) Mortar 

(2) Pilot Parachute 

Galileo (1) Conical Ribbon 

(2) Conical Ribbon 

(1) 1.14 m D0 

(2) 3.8 m D0 

(1) Mortar 

(2) Pilot Parachute 

Mars Pathfinder DGB 12.7 m D0 Mortar 

Mars Polar Lander DGB 12.7 m D0 Mortar 

Beagle 2 (1) DGB 

(2) Ringsail 

(1) 3.2 m D0 

(2) 10.0 m D0 

(1) Mortar 

(2) Pilot Parachute 

Mars Exploration Rovers DGB 14.1 m D0 Mortar 

Huygens (1) DGB 

(2) DGB 

(3) DGB 

(1) 2.6 m D0 

(2) 8.3 m D0 

(3) 3.0 m D0 

(1) Mortar 

(2) Pilot Parachute 

(3) Pilot Parachute 

Genesis (1) DGB 

(2) Parafoil 

(1) 2.03 m D0 

(2) 325 m
2
 

(1) Mortar 

(2) Pilot Parachute 

Stardust (1) DGB 

(2) Triconical 

(1) 0.8 m D0 

(2) 7.3 m D0 

(1) Mortar 

(2) Pilot Parachute 

Phoenix DGB 11.7 m D0 Mortar 

Mars Science Laboratory DGB 19.7 m D0 Mortar 

 Notes:  Number in parenthesis indicates stage.  Later stages deployed by previous stage. 

 
Figure 7. Viking parachute drag coefficient model 

(redrawn from ref. 61). 
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parachute would be accurately simulated.  Of the four 

tests, three were conducted at supersonic speeds 

(AV-1, -2, and -4), and one at subsonic speed (AV-3).  

The supersonic tests Mach number and dynamic 

pressure at deployment are shown in figure 5.  Flight 

test AV-1 was considered to be a “no test” since 

problems during the balloon launch caused the test 

conditions to be exceeded, with subsequent damage to 

the parachute.  The second test, AV-2, was intended to 

qualify performance at transonic Mach numbers.  The 

purpose of BLDT AV-3 was to qualify the parachute 

system at subsonic speeds and very low dynamic 

pressures.  For flight test AV-3 no rockets were 

necessary – the test vehicle was allowed to drop from 

the balloon until the desired test condition was 

achieved and the parachute deployment sequence 

initiated.  Finally, flight test AV-4 was a reflight of 

AV-1, subjecting the parachute to its highest Mach 

number (2.13) and dynamic pressure (522 Pa).  Flight 

tests AV-2 through -4 were successful, thus qualifying 

the Viking parachute system for flight. 

The final parachute system for the Viking mission 

consisted of a DGB parachute of 16.2 m nominal 

diameter, constructed mainly from Dacron, with a 

total mass of 44 kg, and deployed by a mortar.
61

  

Viking’s parachute in its deployed configuration is 

shown in figure 8.  The design requirements included 

successful deployment, inflation, and structural 

integrity for Mach numbers less than or equal to 2.1, at 

dynamic pressures from 239 to 413 Pa (the BLDT 

program intentionally exceeded these limits).  Proof of 

the suitability of the Viking parachute system was 

obtained from two successful landings on Mars.  The 

performance of the parachute system on Mars is 

documented in reference 62. 

2. Pioneer Venus 

The Pioneer Venus mission included four probes 

that entered the atmosphere of Venus.
63

  Three of 

these probes were identical and are referred to in the 

literature as the “Small Probes.”  Since the Small 

Probes did not include aerodynamic decelerator systems they will not be discussed further in this survey paper.  The 

fourth probe, referred to in the literature as the “Large Probe,” did include an aerodynamic decelerator system, and is 

thus discussed here.
64

  The aerodynamic decelerator for the Large Probe consisted of a two-stage system.  A mortar-

deployed Ribless Guide Surface pilot parachute of 0.76 m diameter was used to deploy a 4.94 m diameter Conical 

Ribbon parachute.
#
  Both the pilot and main parachutes were fabricated from Dacron.  Given the denser Venusian 

atmosphere, and the mission requirements, deployment of the pilot parachute was subsonic, at a nominal Mach 

number of 0.8.
4
  Half a second after mortar firing, the pilot parachute deploys the main parachute.  Shortly after 

main parachute deployment and inflation the heatshield was released.  Nineteen minutes later, at an altitude of 

approximately 47 km above the surface, the payload and main parachute separated, allowing the payload to free-fall 

to the surface.  The high density of the Venusian atmosphere voided the need for a parachute at lower altitudes. 

Initially the main parachute was intended to be of the Ribless Guide Surface type.  However, structural failures 

during drop flight tests of the Ribless Guide Surface main parachute at the design dynamic pressure led to its 

replacement with a stronger Conical Ribbon main parachute.  This change occurred late in the development 

                                                
#
 The available documentation implies that these parachute dimensions are projected diameters. 

 

Figure 8. Viking parachute configuration (adapted 

from ref. 61). 
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program, and is not reflected in some of the earlier published papers on this mission such as reference 65.  

Additional testing of the new system at mortar-firing dynamic pressures up to 5,050 Pa (57 percent above design) 

showed that both the pilot and main parachutes were capable of sustaining the stresses generated by high dynamic 

pressure deployment without structural damage.  Final qualification of the parachute system was performed through 

a successful full-scale system drop test. 

The difference in operating conditions (i.e., Mach number and dynamic pressure) between the Pioneer Venus 

parachute system and those developed under the PEPP, SPED, and SHAPE programs (which were focused on Mars) 

should be noted.  Deployment of the Pioneer Venus parachute was initiated subsonically at high dynamic pressure.  

Parachutes intended for use on Mars initiate deployment supersonically, but at much lower dynamic pressures.  

There is a factor of five or greater in deployment dynamic pressure between parachute systems intended for 

operation on Mars and the Pioneer Venus parachute system (see figure 5). 

3. Galileo 

The Galileo probe to Jupiter used a two-stage parachute system.
66-70

  The first stage was a mortar-deployed pilot 

parachute of 1.14 m nominal diameter.  Almost immediately after its deployment and inflation, the pilot parachute 

was used to deploy the main parachute.  With a nominal diameter of 3.8 m, the main parachute had sufficient drag 

area when fully inflated to effect positive separation of the heatshield and provide the required descent rate.  Both 

the pilot and main parachutes were of the Conical Ribbon design with canopies and suspension lines fabricated from 

Dacron.  The pilot parachute was intended to be deployed at a nominal Mach number of 0.95 and a dynamic 

pressure of 5,985 Pa.  Because of the short time period (1.25 s) between the mortar deployment of the pilot 

parachute and main parachute deployment, the conditions experienced by the main parachute were almost the same 

as those for the pilot parachute.  The high dynamic pressure at deployment for both parachutes indicated that a very 

robust design should be used.  For this strength-critical application a Conical Ribbon parachute was an excellent 

choice.  Note the differences in parachute type (table 2), and deployment conditions (i.e., deployment Mach number 

and dynamic pressure, figure 5) between the Galileo probe parachutes and those tested under the PEPP, SPED, and 

SHAPE programs. 

The design, development, and qualification test program consisted of three major elements:  flight performance 

verification tests, wind tunnel tests, and high-altitude system drop tests.  In the flight performance verification tests 

the parachute system was mounted on a cylindrical test vehicle and dropped from an F-4 aircraft at overload test 

conditions (q = 8,860 Pa for the pilot parachute and 7,900 Pa for the main parachute).  The first of the flight 

performance verification test revealed several problems with the parachutes, including undesired pulsations of the 

pilot parachute and slow inflation of the main canopy.  Canopy modifications solved the problems as was 

demonstrated in a second flight performance verification test.  In the high-altitude drop tests the parachute system 

was deployed behind a simulated Galileo probe.  The first test indicated a severe problem with the main parachute 

inflation – it was erratic and took much longer to reach full inflation than was expected.  Wind tunnel tests indicated 

that the source of the problem was the close proximity of the main parachute to the probe, exacerbated by operation 

at transonic speeds.  An increase in the trailing distance of the main parachute from the original 5.6 to 11 probe 

diameters, in addition to other system changes, resolved the problems.  The effectiveness of these changes was 

demonstrated in a successful second high-altitude drop test. 

The Galileo probe parachute system functioned as intended on Jupiter in 1995, in spite of a 53 second delay in 

firing the mortar for the pilot parachute.  This delay reduced the deployment Mach number, but increased the 

dynamic pressure to a higher-than-nominal 7,260 Pa.  The factors of safety used for the parachute design, which 

were validated through testing, allowed the Galileo parachutes to survive the more stringent deployment condition 

on Jupiter. 

C. Lessons Learned 

The initial technology development programs and missions yielded a significant number of lessons learned.  It 

was shown that parachutes could be used successfully at supersonic speeds in low-density atmospheres.  However, 

at Mach numbers greater than 1.5 parachutes experienced stability problems that increased in violence as the Mach 

number increased.  Over this same range of Mach numbers (i.e., M > 1.5), the drag coefficient of these parachutes 

decreased.  The practical upper Mach number range for parachutes was shown to be somewhere between two and 

three.  At Mach numbers above three, other aerodynamic decelerators were shown to be better options.  For 

supersonic applications in low-density atmospheres the DGB parachute was found to be a suitable choice.  Conical 

Ribbon parachutes were found to be preferred canopy type when deployment had to occur at transonic speeds and 

high dynamic pressures.  The parachute trailing distance, especially behind a blunt entry vehicle, was shown to be a 

key design parameter that needed to be taken into consideration.  Mortars were used by all missions to deploy the 
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pilot parachute in multi-stage systems, or the main canopy in single-stage systems.  This was due to the mortar’s 

ability to deploy the parachute cleanly beyond the recirculating flow region immediately behind the aeroshell. 

Inflatable aerodynamic decelerators, both trailing and attached, were found to be useful aerodynamic 

decelerators.  IADs were designed that avoided the stability and low drag problems inherent in parachutes at Mach 

numbers above two.  This implied that IADs could be appropriate aerodynamic decelerator for applications that 

required deployment at high supersonic and hypersonic conditions.  However, since the initial set of planetary 

exploration missions could be accomplished with parachutes deployed at Mach numbers below 2.1, the development 

of IADs did not go beyond wind tunnel testing, and no significant flight testing was undertaken to further develop 

IAD technology. 

III.  Present 

This section discusses missions flown from 1990 to the present, and missions currently under development for 

flight by 2010.  Mars, with six missions, was a favorite destination in this time period.  However, there were also 

two sample return missions (Genesis, 2004 and Stardust, 2005), as well as one mission to Titan (Huygens, 2005). 

A. Missions to Mars – 1997 to 2010 

A renewed interest in the exploration of Mars has led to four missions being flown between 1997 and 2004, and 

two more to be flown before the end of this decade.  Because of their similarities to Viking, all of these missions 

have made extensive use of Viking parachute heritage for their own parachute systems.
71

  In this section all of these 

missions are discussed – including those that did not succeed.  Valuable lessons can be learned from all of them. 

1. Mars Pathfinder 

After a 20-year gap since the Viking mission, the Mars Pathfinder (MPF) mission revitalized the exploration of 

Mars.  Due to costs constraints it was decided to use as much of the Viking heritage technologies as possible.  

Among these technologies was the aerodynamic decelerator.  Mars Pathfinder used a mortar-deployed single-stage 

DGB parachute of 12.7 m nominal diameter.
72

  The airbag landing system used by MPF placed stability 

requirements on the parachute that could not be met with a canopy of the geometry flown by Viking.  Thus, the 

Viking DGB parachute was modified to increase its stability.  The principal modification made to improve stability 

was an increase in the length of the band.  This change had been shown to increase the stability of DGB parachutes 

in wind tunnel tests.  Qualification of the MPF parachute was conducted through low-altitude flight tests in addition 

to making extensive use of heritage data from previous research programs and the Viking mission.  Parachute 

deployment on Mars took place at a Mach number of 1.71 and a dynamic pressure of 588 Pa.
73

  The MPF parachute 

performed as required, placing its payload safely on the surface of Mars on July 4, 1997.  This successful landing 

indicated that a planetary parachute system could be designed without conducting a high-altitude (and high-cost) 

supersonic flight test program by judicious use of heritage designs and data.  Flight performance of the MPF 

parachute was reconstructed by Witkowski
73

, and Desai et al.
74

. 

2. Mars Polar Lander 

The Mars Polar Lander (MPL)
75

 used a flight spare parachute system from MPF.  Thus, it was identical to that 

described above.  Parachute deployment initiation is estimated to have occurred at a Mach number between 1.7 and 

1.85, at a corresponding dynamic pressure between 440 and 564 Pa.
76

  The parachute system was qualified mainly 

by heritage using data from the MPF qualification test program.  All attempts to contact the spacecraft after EDL 

were unsuccessful – MPL was lost.  The JPL special review board convened to investigate the loss concluded that 

the most likely cause of failure was premature shutdown of the descent engines.  It was the board’s judgment that 

the parachute system was unlikely to have been source of failure. 

3. Mars Exploration Rovers 

In January 2004 two Mars Exploration Rovers (MER A and B), successfully landed on the surface of Mars.
77, 78

  

The MER EDL system was initially intended to be a built-to-print (with minor modifications) of the MPF EDL 

system.  However, as the design progressed the entry mass increased from 585 kg for MPF to 830 kg for MER.  

Thus, the final MER EDL system design had little in common with the MPF EDL system other than the general 

system architecture and the aeroshell external dimensions. 

The MER parachute system consisted of a single-stage mortar-deployed DGB parachute of 14.1 m in 

diameter.
79, 80

  As with the MPF DGB parachute, the MER DGB parachute had an elongated band (as compared to 

the Viking DGB parachute geometry) to enhance the parachute’s stability – a key requirement of MPF’s and MER’s 

EDL architecture.  Deployment of the parachute was initiated at a dynamic pressure of approximately 729 Pa for 
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MER A and 765 Pa for MER B, with corresponding Mach numbers of approximately 1.8 and 1.9, respectively.  The 

dynamic pressure at deployment was significantly higher than that experienced by Viking and MPF. 

Design, development, and qualification
81

 of the MER parachute system was conducted through a series of ground 

tests,
82

 sub-scale wind tunnel tests,
83

 low-altitude drop tests,
84, 85

 and full-scale wind tunnel tests.
86, 87

  Particularly 

interesting in these series of tests was the full-scale structural qualification test program conducted in the NASA 

Ames National Full-Scale Aerodynamics Complex.  Testing in this facility allowed improved control of the test 

conditions and opening loads (as compared to low-altitude drop testing), in addition to providing the desired infinite 

mass inflation condition.  In concert with these test programs, significant efforts were expended in modeling the 

parachute system dynamics.
88, 89

  As with the other missions to Mars in this time period, MER made extensive use of 

the Viking heritage in the design and qualification of its parachute system. 

4. Beagle 2 

Beagle 2 was a joint United Kingdom/European Space Agency program to place a small lander (69 kg entry 

mass)
90

 on the surface of Mars.  This spacecraft used a two-stage parachute system.  A small DGB drogue parachute 

was to be mortar-deployed at a Mach number of approximately 1.5.  Once the lander decelerated to a Mach number 

between 0.4 and 0.6, the drogue parachute was to deploy a Ringsail main parachute of 10.0 m in nominal 

diameter.
91-93

  An interesting aspect of this mission was the use of a Ringsail main parachute, instead of the 

commonly used DGB canopy.  This was done to take advantage of the greater drag coefficient provided by Ringsail 

canopies as compared to DGB canopies.  Key elements of the design, development, and qualification test program 

included low altitude tests for drag, stability, and structural strength, ground vehicle tow tests for structural strength, 

and high-speed main parachute extraction tests.  The Mars Express spacecraft released Beagle 2 on December 19, 

2003.  Entry onto Mars occurred on December 25, 2003.  Contact was never established with Beagle 2, and the 

mission was considered lost.  A Commission of Inquiry was constituted to investigate the loss.
90

  Although the 

available information was insufficient to firmly establish a root cause for the loss, several possibilities were 

identified.  Two of these possibilities involved the parachute:  re-contact between the back cover (suspended under 

the drogue parachute) and the main parachute after separation, and rebounding of the air-bag encapsulated lander 

and the main parachute.  The failure of Beagle 2 underscored the need for ample margins in all aspects of planetary 

parachute system design. 

5. Phoenix 

The Phoenix lander is a sister ship to the Mars Polar Lander discussed above.  It was supposed to have been 

flown in 2001, but failure of the Mars Polar Lander in 1999 forced it into storage – to be revived as the Phoenix 

mission scheduled for landing on Mars in 2008.  The single-stage parachute system consists of a mortar-deployed 

DGB parachute of 11.73 m nominal diameter.  This parachute will use the Viking DGB parachute canopy geometry.  

Nominal parachute deployment is intended to occur at a dynamic pressure of 430 Pa and a Mach number of 1.3.  

Parachute system qualification will take place through ground testing, and low-altitude drop testing for structural 

qualification of the parachute.  As with other missions, Viking heritage will be used to show compliance with some 

of the parachute system requirements. 

6. Mars Science Laboratory 

With an entry mass of approximately 2,700 kg, and an aeroshell of 4.5 m in diameter, the Mars Science 

Laboratory (MSL) will be the largest lander mission yet flown to Mars when it arrives in 2010.
94

  Its aerodynamic 

decelerator consists of a single-state parachute system:  a mortar-deployed DGB parachute of 19.7 m nominal 

diameter.  Nominal parachute deployment is intended to occur at a dynamic pressure of 525 Pa and a Mach number 

of 2.0.  The parachute canopy geometry is of the Viking type.  System qualification is planned to take place through 

ground testing, and wind tunnel testing for parachute structural qualification as was done for MER.  Again, Viking 

heritage will be used to shown compliance with some of the parachute system requirements.  One interesting aspect 

of the MSL parachute system design, development, and qualification is its use of CFD and FSI to provide supporting 

insights and data on the parachute.  To our knowledge this is the first planetary mission to use CFD and FSI in this 

way. 

B. Huygens 

The Huygens probe, part of the Cassini mission to Saturn, was designed to investigate the atmosphere of Titan, 

Saturn's largest moon.  The passage of the probe through the atmosphere was controlled by the Descent Control 

Sub-System (DCSS), which comprised three parachutes and associated mechanisms.  The Cassini-Huygens 

spacecraft was launched in October 1997. 
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Huygens had a mass of 320 kg at entry and a landed mass of 197 kg.  The parachute sequence for the probe is 

shown in figure 9.  It starts at Mach number of 1.49, 156 km above the surface of Titan (figure 9a).  At this point, 

271 seconds after first encountering the atmosphere, 

the probe is still encased in its protective aeroshell.  

The first function of the parachute system is to 

remove the backshell using a mortar-deployed, 

2.59 m DGB parachute of a design geometrically 

similar to that used on Viking (figure 9b).  As the 

pilot parachute separates the backshell from the 

probe (figure 9c), a second, 8.31 m parachute is 

deployed by a bridle.  This parachute, a DGB of a 

slightly different design, provides stability as the 

probe decelerates through the transonic regime 

(figure 9d) and sufficient drag to ensure separation 

of the heatshield from the probe when it is released 

32.5 seconds into the sequence (figure 9e).  Once 

the aeroshell has separated from the probe, the 

science instruments start to take data as the probe 

descends through the upper atmosphere (figure 9f).  

If the probe were to remain in this configuration the 

probe descent to the surface would take over 5 hours.  Since battery life for the probe is only guaranteed for a little 

over 2.5 hours, the main parachute is released 15 minutes after the start of the descent sequence and in turn deploys 

a 3.03 m stabilizing drogue (figure 9g) for the descent to the surface.  The sequence has been documented in detail 

in reference 95.  The mass of the flight Huygens Descent Control Sub-System, including all mechanisms and 

containers, was 11.9 kg. 

After trade studies the DGB was selected for all stages, based on Viking heritage.  Initially all parachutes had 

scaled Viking geometry with a reduced number of gores.  A very robust margin policy was adopted for the Huygens 

parachutes to allow for uncertainties in operational conditions and material degradation during the voyage. 

Unlike Viking, probe stability during descent was critical for Huygens.  The probe attitude had to be maintained 

at less than 10 degrees to the vertical in order to avoid loss of up-link.  Pitch rate had to be less than 6 deg/s to 

prevent blurring of the images produced by the onboard camera.  A very stable parachute was therefore mandatory.  

The aerodynamic stability of the DGB design is provided by the geometric porosity of the gap and the intrinsic 

porosity of the parachute material.  In low Earth atmosphere stability is good.  During development of the 

parachutes an analysis of the effects of the Titan atmosphere on the porosity characteristics revealed that the intrinsic 

porosity of the material became very low at high altitudes on Titan, substantially reducing the stability of the 

parachute.
96

  To compensate a new DGB gore pattern was adopted with increased geometric porosity for the main 

parachute and stabilizing drogue stages.  The stability of the DGB parachutes used on MER and Mars Pathfinder 

was enhanced in a different manner, by extending the band length. 

The Huygens parachute system was subjected to an extensive test campaign
97, 98 

to verify deployment, inflation, 

aerodynamic performance and structural integrity.  Wind tunnel testing in the 4.0 m by 2.7 m subsonic tunnel at the 

Defence Research Agency, Bedford, UK and the 4.9 m by 4.9 m transonic tunnel at Arnold Engineering 

Development Center in Tennessee yielded a comprehensive aerodynamic database for both the Viking DGB 

configuration and the increased geometric porosity Huygens configuration over the range Mach 0.2 to Mach 1.5.  

Full scale drop testing, using a specially developed instrumented vehicle, was used to verify full scale subsonic 

performance and structural strength.
99

  This included a 25 percent overload test.  The full sequence of operation of 

the parachute system, from initiation of the mortar through to ground impact, was finally qualified by means of a 

high-altitude test.  In this test a probe model was dropped from a balloon flying at 40 km altitude.  Mach number for 

the first two parachute stages could not be matched but dynamic pressure was as predicted for the mission.
100, 101

 

During the 7-year voyage from Earth to Titan the probe trajectory was changed as a result of improved 

knowledge of the atmosphere, revised arrival conditions and a new analysis of the sequence detection algorithm.  As 

a result the maximum deployment Mach number increased from Mach 1.76 to Mach 2.0 and the dynamic pressure 

range increased from 287-440 Pa to 240-500 Pa.  A revalidation of the Huygens parachute system was therefore 

necessary for the more severe operational range.  The system was shown still to have positive margins throughout, a 

vindication of the robust margin policy.
102

  Final demonstration of the design was achieved when the probe 

successfully landed on the surface of Titan on January 14, 2005. 

Figure 9. Huygens probe parachute sequence. 
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C. Sample Return Missions:  Genesis and Stardust 

Two sample return missions were flown in the time period encompassed within this section:  Genesis and 

Stardust.  Both of these missions used parachutes during the final phase of their EDL sequences. 

1. Genesis 

Genesis was a mission intended to return samples of solar wind to Earth.
103

  The entry system consisted of a 

blunt-body aeroshell with a diameter of 1.52 m and an entry mass of 205 kg.  Genesis’ aerodynamic decelerator was 

a two-stage system.  The first stage consisted of a mortar-deployed DGB drogue parachute of 2.03 m nominal 

diameter.  This drogue parachute was to be deployed at supersonic speed for the purpose of stabilizing the aeroshell 

during the transonic phase and to slow the vehicle to subsonic speeds.  Once the aeroshell had decelerated to 

subsonic speed, the drogue parachute was to be used to deploy a 325 m
2
 nominal area parafoil second stage.

104
  

Before the sample return capsule was to land, a helicopter was to capture the descending parafoil and sample return 

capsule to avoid the accelerations associated with landing impact.  Design, development, and qualification of the 

Genesis parachute system was performed through ground and low-altitude flight testing, in addition to using 

heritage data from previous research efforts and missions.  Genesis returned to Earth on September 8, 2004.  

Unfortunately the drogue parachute was not deployed, and Genesis crashed onto the Utah Test and Training Range 

(UTTR).  The Mishap Investigation Board convened to investigate the failure determined that the root cause was the 

incorrect installation of the G-switch sensor used to command the mortar firing.
105

  Because of this incorrect 

installation the command to fire the mortar was never issued. 

2. Stardust 

Stardust was a mission intended to return comet and interstellar dust particles to Earth.
106

  The entry system 

consisted of a 0.8 m diameter blunt-body aeroshell with an entry mass of 46 kg.  Stardust’s aerodynamic decelerator 

was a two-stage system.  The first stage consisted of a mortar-deployed DGB drogue parachute of 0.83 m nominal 

diameter.  This drogue parachute was deployed at a Mach number of approximately 1.4 for the purpose of 

stabilizing the aeroshell during the transonic phase and to slow the entry vehicle to subsonic speeds.  Once the 

aeroshell had decelerated to a Mach number of approximately 0.15, the drogue parachute was used to deploy a 7.3 m 

nominal diameter Triconical main parachute.  This main parachute was sized to reduce the landing speed to 4.4 m/s.  

Design, development, and qualification of the Stardust parachute system was performed through ground and low-

altitude flight testing, in addition to using data from the Huygens mission as heritage.
107

  Stardust successfully 

landed at the UTTR on January 15, 2006. 

D. Lessons Learned 

All missions in this time period used a mortar-deployed DGB parachute for at least one, if not all, of its stages.  

The DGB parachute has turned out to be a versatile canopy design for planetary missions.  It has been used in a 

variety of nominal diameters from less than one to almost twenty meters, and modified to yield the stability required 

by specific missions.  Judicious use of the Viking heritage, especially with regards to the supersonic flight test data, 

has allowed for parachute systems to be designed, built, and qualified without repeating the expensive high-altitude 

supersonic flight test program conducted by the Viking mission.  However, this success comes with the limitation of 

staying within this heritage – an ill-defined boundary.  Wind tunnel testing, both sub-scale and full-scale, proved 

again to be a useful tool in the design, development, and qualification of parachute systems.  Lessons to be learned 

from failed missions included the importance of triggering devices and switches (i.e., MPL and Genesis), and the 

importance of conservatism and margin in the design (Beagle 2). 

IV.  Future 

As we look to future missions, three technologies stand out as having the potential to significantly improve 

aerodynamic decelerators:  Computational Fluid Dynamics (CFD) and Fluid-Structures Interaction Analyses (FSI), 

large subsonic parachutes, and inflatable aerodynamic decelerators.  These technologies are discussed in this section. 

A. Computational Fluid Dynamics and Fluid-Structures Interaction Analyses 

The solution of the coupled flow around an inflating, decelerating parachute structure would provide improved 

understanding of parachute aerodynamic performance and improved prediction of loads and stresses in the parachute 

structure, leading to more efficient designs.  Moreover, fully validated analytical methods could contribute to the 

verification process, reducing development costs. 
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The analysis of parachutes is, however, difficult.  It necessitates the solution of unsteady, separated compressible 

flows about a flexible, porous body with non-uniform upstream flow conditions.  In supersonic flow the wake of the 

payload interacts strongly with the stagnant region inside the parachute.  Nonetheless there have been many efforts 

to apply computational fluid dynamics and fluid structure interaction to parachutes.  A useful summary of work up 

to 1995 is provided in reference 108. 

Most early studies were based on gridless, Vortex Element Methods (VEM).
109-111

  This approach represented the 

parachute canopy with bound vortex elements or sheets and allowed the computation of the inviscid, incompressible 

flow around parachute shaped bodies, added masses and pressure distributions.  VEM methods were refined to 

model viscous flow and predict the drag of rigid parachute shapes during steady and unsteady motion.
112-116

  The 

coupling of VEM fluid codes to structural codes has also allowed the modeling of parachute inflation.
117-119

  

Chatzikonstantinou
120-122 

reports the use of a VEM code coupled to a structural code to model ram-air parachutes.  

VEM methods are powerful and computer efficient.  Vortex elements need only be placed in regions where there is 

vorticity.  For a divergence free flow field the flow is completely defined by the vorticity.  Moreover, there is no 

numerical dissipation associated with the transport of vorticity.  Separation has to be handled by prescription of a 

separation location or integral boundary layer calculation.  This method has only been used to date for 

incompressible flows. 

Early use of 3-D Navier-Stokes based CFD codes for predicting the flow over rigid parachute shapes are 

reported in references 123 and 124.  Strickland
108

 reports loose coupling of CFD to a structural code model a cross 

parachute.  Sahu
125

 describes the loose coupling a 3-D incompressible Navier-Stokes code to the CALA parachute 

structural code for a flat circular parachute in steady descent.  References 126 through 129 describe the extensive US 

Army efforts to model fluid structure interaction using the stabilized space-time formulation of the time dependent 

Navier-Stokes equations coupled to a finite element code.  These efforts were applied to a man carrying parachutes 

and cargo parachute clusters, and gliding parachutes during descent. 

Using conventional grid based CFD, to properly resolve the flow it is necessary to include a significant 

proportion of the wake region in the calculation.  In order to resolve the wake structure and reduce numerical 

dissipation it must be finely gridded.  Moreover, to model a flexible body re-gridding is required at every time step, 

significantly increasing computational costs.  Conventional CFD is therefore best suited to modeling the flow 

around rigid parachute shapes. 

Early use of the Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations for modeling 

decelerators is described in references 130 through 132.  ALE is a technique for modeling material deformation with 

a discretised mesh by allowing the material to flow through the mesh to varying extent.  In the zero-mass flow 

condition, the mesh deforms with the material as loads are applied to the structure;  this is the Lagrangian method 

typically used for finite element modeling.  In the total mass flow conditions, the mesh remains fixed in space and 

the code tracks the deformation and movement of the material through the mesh;  this is the Eulerian method as 

typified by CFD solvers.  Moreover, a Lagrangian, fixed mesh body can be allowed to move through and interact 

with surrounding Eulerian material.  By defining appropriate material properties and equations of state for the 

Eulerian material, full coupling between the fluid and the flexible parachute can be simulated. 

The early studies modeled simple configurations: 

disks, hemispherical cups and rigid parachute models.  

This technique recently advanced rapidly with the 

introduction of an ALE solver into the explicit finite 

element code LS-DYNA, allowing fully coupled fluid 

structure interaction simulation for compressible 

flows.  Taylor
133

 reports the use of the code to study 

the post inflation collapse phenomenon and Tutt
134

 

discusses modeling of parachute inflation.  Simulation 

of the Huygens parachute system in the supersonic 

regime was presented by Lingard.
135

 This work for the 

first time revealed the complex interaction between 

the forebody wake and the parachute bow shock as 

shown in figure 10. 

Coupled FSI based on the ALE methodology promises rapid acceleration of the understanding of parachute 

performance.  Simulation of parachute inflation is feasible in the near future and, since the fluid code is coupled to a 

detailed structural model, detailed unsteady stress prediction is available.  This tool is currently being used to 

support the NASA Mars Science Laboratory and ESA ExoMars parachute development programs. 

 
Figure 10. FSI simulation density contours of the 

Huygens main parachute at Mach 1.5 (from ref. 135). 
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Figure 11. Hypercone IAD concept. 
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Figure 12. Comparison between the Hypercone IAD, rigid 

aeroshell, and parachute drag performance.  All drag 

coefficients are based on the projected frontal area. 

B. Large Subsonic Parachutes 

Trade studies for Mars missions significantly larger than MSL, for example those with entry mass between 4,000 

and 5,000 kg, indicate that parachutes with large subsonic drag areas may be required.
136

  Such parachutes may be 

part of a two-stage system, with the first stage being an improved supersonic parachute based on current DGB 

technology, or an inflatable supersonic decelerator capable of deploying above Mach 3. 

For a single-canopy Ringsail parachute system with entry mass in the 4,000 to 5,000 kg range the parachute 

nominal diameter is estimated to be between 43 and 50 m.  Although Ringsail parachutes with nominal diameter up 

to 58 m have been successfully tested at subsonic speed and low altitude on Earth, on Mars these parachutes will be 

operating in a low-density environment at Mach numbers up to 0.8.  A recent NASA effort
137,138

 to develop a 33.5 m 

nominal diameter Ringsail parachute had some success, but difficulties with pilot parachute deployment of such a 

large canopy in a low-density atmosphere were not fully resolved before the program was terminated.  A clustered-

canopy design with multiple smaller canopies may solve some of the deployment problems by shortening the 

inflation time.  However, canopy clusters exhibit their own unique problems such as asynchronous inflation of the 

canopies.  Development of large subsonic parachutes for Mars missions remains as a project for the future – one that 

will require significant testing before all problems are resolved, and confidence in the system is raised to the level 

required by flight projects. 

C. Inflatable Aerodynamic Decelerators 

To land large payloads on Mars at altitudes above the Mars 

Orbiter Laser Altimeter (MOLA) datum with the constraints of 

current launch vehicle fairing dimensions necessitates parachute 

deployment at Mach numbers above the currently qualified maximum 

of Mach 2.1.
71

 The DGB parachute has been used for all Mars 

missions to date, and has been tested successfully to Mach 2.7.  

However, as has been previously discussed, increasingly violent 

inflation instabilities and reductions in drag coefficient above Mach 

1.5 limit the useful Mach number operational range of parachutes to 

somewhere between Mach 2 and 3. These problems with parachutes 

have renewed interest in IADs.  

The Hypercone,
139

 shown in figure 11, is an attached inflatable 

aerodynamic decelerator designed to provide deceleration and 

stabilization in the Martian atmosphere from approximately Mach 4 to subsonic conditions. It comprises an inflated 

torus supporting a conical fabric membrane forward section. The Hypercone is fully flexible and can be packed like 

a parachute. It is deployed directly 

attached to the lander.  The aerodynamic 

drag of the Hypercone increases with 

Mach number in the transonic and low 

supersonic Mach number range in a 

manner similar to an aeroshell, whereas 

the drag of a parachute reduces at low 

supersonic Mach numbers as shown in 

figure 12. The Hypercone therefore can 

provide an efficient bridging decelerator 

between the aeroshell and a subsonic 

parachute.  

Studies
 

comprising trajectory, 

aerodynamic, structural and stability 

analyses, showed that the Hypercone is a 

viable device that provides mass savings 

and risk reduction over a conventional 

parachute system and can contribute to 

achieving larger lander mass.  A 14 m 

diameter Hypercone with a mass fraction 

of only 3.8% was shown to facilitate the delivery of a 4,000 kg lander to a site 2.5 km above the MOLA reference 

surface.
139
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V.  Concluding Remarks 

The aerodynamic decelerator technology developed by previous generations of researchers and engineers have 

served us well for several decades.  In large part the usefulness of their work was not only in their technical 

accomplishments, but also in the fact that they documented their efforts – both successful and unsuccessful.  These 

heritage data has allowed us to design new systems without having to completely retrace their path.  However, these 

technologies are reaching their performance limits.  Future planetary exploration missions will need new 

developments to provide the needed drag area and Mach number operational range.
71

  New-technology larger 

parachutes may provide the required drag area, while inflatable aerodynamic decelerators may allow deployment at 

higher Mach numbers.  In the development of these new technologies, computational fluid dynamics and fluid-

structures interaction analyses will be of value in the design and analysis of aerodynamic decelerators, and in the 

definition of cost-effective qualification test programs.  However, just as in the past, an investment will need to be 

made to develop these new technologies.  A decade of experimentation led to the development of the Viking 

parachute system – at that time a new technology.  To support future missions the technology development must 

start well in advance. 

References 
1
Perminov, V. G., “The Difficult Road to Mars – A Brief History of Mars Exploration in the Soviet Union,” NASA 

Monographs in Aerospace History Number 15, NASA NP-1999-06-251-HQ, 1999. 
2
Ravnitzky, M. J., Patel, S. N., and Lawrence, R. A., “To Fall from Space:  Parachutes and the Space Program,” AIAA Paper 

89-0926, 1989. 
3
Knacke, T. W., Parachute Recovery Systems Design Manual, Para Publishing, Santa Barbara, California, 1992.  (Also 

available as U.S. Naval Weapons Center Report NWC-TP-6575.) 
4
Ewing, E. G., Bixby, H. W., and Knacke, T. W., “Recovery System Design Guide,” AFFDL-TR-78-151, 1978. 

5
Worth, R. N., “Descent and Landing Systems for Unmanned Mars Entry,” Journal of Spacecraft and Rockets, Vol. 3, No. 

12, 1966, pp. 1744-1748. 
6
Gillis, C. L., “Deployable Aerodynamic Decelerators for Space Missions,” Journal of Spacecraft and Rockets, Vol. 6, No. 8, 

1969, pp. 885-890. 
7
Anon., “Titan/Mars Hard Lander, Volume 1:  1400 lb Capsule System Design Study,” NASA CR-66727-1, 1969. 

8
Maynard, J. D., “Aerodynamic Characteristics of Parachutes at Mach Numbers from 1.6 to 3,” NASA TN D-752, 1961. 

9
Charczenko, N., “Wind-Tunnel Investigation of Drag and Stability of Parachutes at Supersonic Speeds,” NASA TM X-991, 

1964. 
10

 Mayhue, R. J. and Bobbitt, P. J., “Drag Characteristics of a Disk-Gap-Band Parachute with a Nominal Diameter of 1.65 

Meters at Mach Numbers from 2.0 to 3.0,” NASA TN D-6894, 1972. 
11

Charczenko, N. and McShera, T., “Aerodynamic Characteristics of Towed Cones Used as Decelerators at Mach Numbers 

from 1.57 to 4.65,” NASA TN D-994, 1961. 
12

Charczenko, N., “Aerodynamic Characteristics of Towed Spheres, Conical Rings, and Cones Used as Decelerators at Mach 

Numbers from 1.57 to 4.65,” NASA TN D-1789, 1963. 
13

McShera, J. T., “Aerodynamic Drag and Stability Characteristics of Towed Inflatable Decelerators at Supersonic Speeds,” 

NASA TN D-1601, 1963. 
14

Barton, R. R., “Development of Attached Inflatable Decelerators for Supersonic Applications,” NASA CR-66613, 1968. 
15

Mikulas Jr., M. M. and Bohon, H. L., “Development Status of Attached Inflatable Decelerators,” Journal of Spacecraft and 

Rockets, Vol. 6, No. 6, 1969, pp. 654-660. 
16

Bohon, H. L. and Miserentino, H. L., “Deployment and Performance Characteristics of 5-Foot-Diameter (1.5 m) Attached 

Inflatable Decelerators from Mach Number 2.2 to 4.4,” NASA TN D-5840, 1970. 
17

Bohon, H. L., Sawyer, J. W., and Miserentino, R., “Deployment and Performance Characteristics of 1.5-Meter Supersonic 

Attached Inflatable Decelerators,” NASA TN D-7550, 1974. 
18

Boettcher, E. W., “Planetary Entry Parachute Program, Cross Parachute Engineering Design Report,” NASA CR-66590, 

1967. 
19

Eckstrom, C. V. and Murrow, H. N., “Flight Test of a 40-Foot-Nominal-Diameter Modified Ringsail Parachute Deployed at 

a Mach Number of 1.64 and a Dynamic Pressure of 9.1 Pounds per Square Foot,” NASA TM X-1484, 1967. 
20

Eckstrom, C. V. and Preisser, J. S., “Flight Test of a 30-Foot-Nominal-Diameter Disk-Gap-Band Parachute Deployed at a 

Mach Number of 1.56 and a Dynamic Pressure of 11.4 Pounds per Square Foot,” NASA TM X-1451, 1967. 
21

Darnell, W. L., Henning, A. B., and Lundstrom, R. R., “Flight Test of a 15-Foot-Diameter (4.6 Meter) 120° Conical 

Spacecraft Simulating Parachute Deployment in a Mars Atmosphere,” NASA TN D-4266, 1967. 
22

Lemke, R. A., “Final Report: 40 Ft DGB parachute,” NASA CR-66587, 1967. 
23

Lemke, R. A., Moroney, R. D., Neuhaus, T. J., and Niccum, R. J., “Design Report, 65 Foot Diameter D-G-B Parachute, 

Planetary Entry Parachute Program,” NASA-CR-66589, 1967. 
24

McFall, J. C. and Murrow Jr., H. N., “Parachute Testing at Altitudes Between 30 and 90 Kilometers,” Journal of Spacecraft 

and Rockets, Vol. 4, June, 1967, pp. 796-798. 



17 

American Institute of Aeronautics and Astronautics 

 

25
Preisser, J. S. and Eckstrom, C. V., “Flight Test of a 31.2-Foot-Diameter Modified Ringsail Parachute Deployed at a Mach 

Number of 1.39 and a Dynamic Pressure of 11.0 Pounds per Square Foot,” NASA TM X-1414, 1967. 
26

Stone, F. J., “Final Technical Report, 55-ft-D0 Ringsail Parachute, Planetary Entry Parachute Program,” NASA CR-66588, 

1967. 
27

Whitlock, C. H., Bendura, R. J., and Coltrane, L. C., “Performance of a 26-Meter-Diameter Ringsail Parachute in a 

Simulated Martian Environment,” NASA TM X-1356, 1967. 
28

Bendura, R. J., Huckins III, E. K., and Coltrane, L. C., “Performance of a 19.7-Meter-Diameter Disk-Gap-Band Parachute 

in a Simulated Martian Environment,” NASA TM X-1499, 1968. 
29

Eckstrom, C. V. and Preisser, J. S., “Flight Test of a 40-Foot-Nominal-Diameter Disk-Gap-Band Parachute Deployed at a 

Mach Number of 2.72 and a Dynamic Pressure of 9.7 Pounds per Square Foot,” NASA TM X-1623, 1968. 
30

Gillis, C. L. and Bendura, R. J., “Full-Scale Simulation of Parachute Deployment Environment in the Atmosphere of 

Mars,” Proceedings of the 14
th

 Annual Technical Meeting, Institute of Environmental Sciences, 1968, pp. 469-475. 
31

Lundstrom, R. R., Darnell, W. L., and Coltrane, L. C., “Performance of a 16.6-Meter-Diameter Cross Parachute in a 

Simulated Martian Environment,” NASA TM X-1543, 1968. 
32

Lundstrom, R. R., Darnell, W. L., and Henning, A. B., “A Method for Making Large-Scale Decelerator Tests in a 

Simulated Mars Environment,” AIAA Paper 68-241, 1968. 
33

Preisser, J. S. and Eckstrom, C. V., “Flight Test of a 30-Foot-Nominal-Diameter Cross Parachute Deployed at a Mach 

Number of 1.57 and a Dynamic Pressure of 9.7 Pounds per Square Foot,” NASA TM X-1542, 1968. 
34

Preisser, J. S. and Eckstrom, C. V., “Flight Test of a 40-Foot-Nominal-Diameter Disk-Gap-Band Parachute Deployed at a 

Mach Number of 1.91 and a Dynamic Pressure of 11.6 Pounds per Square Foot,” NASA TM X-1575, 1968. 
35

Whitlock, C. H., Henning, A. B., and Coltrane, L. C., “Performance of a 16.6-Meter-Diameter Modified Ringsail Parachute 

in a Simulated Martian Environment,” NASA TM X-1500, 1968. 
36

Murrow, H. N. and McFall Jr., J. C., “Some Test Results from the NASA Planetary Entry Parachute Program,” Journal of 

Spacecraft and Rockets, Vol. 6, No. 5, 1969, pp. 621-623. 
37

Whitlock, C. H. and Bendura, R. J., “Inflation and Performance of Three Parachute Configurations from Supersonic Flight 

Tests in a Low-Density Environment,” NASA TN D-5296, 1969. 
38

Eckstrom, C. V., “High-Altitude Flight Test of a 40-Foot-Diameter (12.2-meter) Ringsail Parachute at a Deployment Mach 

Number of 2.95,” NASA TN D-5796, 1970. 
39

Eckstrom, C. V., “Flight Test of a 40-Foot-Nominal-Diameter Disk-Gap-Band Parachute Deployed at a Mach Number of 

3.31 and a Dynamic Pressure of 10.6 Pounds per Square Foot,” NASA TM X-1924, 1970. 
40

Murrow, H. N. and Eckstrom, C. V., “Low- and High-Altitude Tests of Parachutes Designed for Use in Low-Density 

Atmospheres,” AIAA Paper 70-1164, 1970. 
41

Eckstrom, C. V. and Murrow, H. N., “Flight Tests of Cross, Modified Ringsail, and Disk-Gap-Band Parachutes from a 

Deployment Altitude of 3.05 km (10 000 ft),” NASA TM X-2221, 1971. 
42

Preisser, J. S. and Grow, R. B., “High-Altitude Flight Test of a Reefed 12.2-Meter-Diameter Disk-Gap-Band Parachute 

with Deployment at a Mach Number of 2.58,” NASA TN D-6469, 1971. 
43

Eckstrom, C. V. and Branscome, D. R., “High-Altitude Flight Test of a Disk-Gap-Band Parachute Deployed Behind a Bluff 

Body at a Mach Number of 2.69,” NASA TM X-2671, 1972. 
44

Henning, A. B. and Lundstrom, R. R., “Flight Test of an Erectable Spacecraft Used for Decelerator Testing at Simulated 

Mars Entry Conditions,” NASA TN D-6910, 1972. 
45

Lau, R. A. and Hussong, J. C., “The Viking Mars Lander Decelerator System,” AIAA Paper 70-1162, 1970. 
46

Gillis, C. L., “The Viking Decelerator System – An Overview,” AIAA Paper 73-442, 1973. 
47

Jaremenko, I., Steinberg, S., and Faye-Petersen, R., “Scale Model Test Results of the Viking Parachute System at Mach 

Numbers from 0.1 through 2.6,” NASA CR-149377, 1971. 
48

Reichenau, D. E. A., “Aerodynamic Characteristics of Disk-Gap-Band Parachutes in the Wake of Viking Entry Forebodies 

at Mach Numbers from 0.2 to 2.6,” AEDC-TR-72-78, 1972. 
49

Steinberg, S., Siemers III, P. M., and Slayman, R. G., “Development of the Viking Parachute Configuration by Wind-

Tunnel Investigation,” Journal of Spacecraft and Rockets, Vol. 11, No. 2, 1974, pp. 101-107. 
50

Murrow, H. N., Eckstrom, C. V., and Henke, D. W., “Development Flight Tests of the Viking Decelerator System,” AIAA 

Paper 73-455, 1973. 
51

Dickinson, D., Schlemmer, J., Hicks, F., Michel, F., and Moog, R. D., “Balloon Launched Decelerator Test Program, Post-

Flight Test Report, BLDT Vehicle AV-1,” NASA CR-112176, 1972. 
52

Dickinson, D., Schlemmer, J., Hicks, F., Michel, F., and Moog, R. D., “Balloon Launched Decelerator Test Program, Post-

Flight Test Report, BLDT Vehicle AV-2,” NASA CR-112177, 1972. 
53

Dickinson, D., Schlemmer, J., Hicks, F., Michel, F., and Moog, R. D., “Balloon Launched Decelerator Test Program, Post-

Flight Test Report, BLDT Vehicle AV-3,” NASA CR-112178, 1973. 
54

Dickinson, D., Schlemmer, J., Hicks, F., Michel, F., and Moog, R. D., “Balloon Launched Decelerator Test Program, Post-

Flight Test Report, BLDT Vehicle AV-4,” NASA CR-112179, 1972. 
55

Moog, R. D. and Michel, F. C., “Balloon Launched Viking Decelerator Test Program Summary Report,” NASA CR-

112288, 1973. 
56

Raper, J. L., Lundstrom, R. R., and Michel, F. C., “The Viking Parachute Qualification Test Technique,” AIAA Paper 73-

456, 1973. 



18 

American Institute of Aeronautics and Astronautics 

 

57
Lundstrom, R. R., Raper, J. L., Bendura, R. J., and Shields, E. W., “Flight Tests of Viking Parachute System in Three Mach 

Number Regimes, Part I – Vehicle Description, Test Operations, and Performance,” NASA TN D-7692, 1974. 
58

Bendura, R. J., Lundstrom, R. R., Renfroe, P. G., and LeCroy, S. R., “Flight Tests of Viking Parachute System in Three 

Mach Number Regimes, Part II – Parachute Test Results,” NASA TN D-7734, 1974. 
59

Moog, R. D., Bendura, R. J., Timmons, J. D., and Lau, R. A., “Qualification Tests of the Viking Decelerator System,” 

Journal of Spacecraft and Rockets, Vol. 11, No. 3, 1974, pp. 188-195. 
60

Brecht, J. P., Pleasants, J. E., and Mehring, R. D., “The Viking Mortar:  Design, Development, and Flight Qualification,” 

AIAA Paper 73-458, 1973. 
61

Anon., “Viking Lander “As Built” Performance Capabilities,” Martin Marietta Corp. Report, NASA Contract NAS1-9000, 

1976. 
62

Ingoldby, R. N., Michel, F. C., Flaherty, T. M., Doty, M. G., Preston, B., Villyard, K. W., and Steele, R. D., “Entry Data 

Analysis for Viking Landers 1 and 2 – Final Report,” NASA CR-159388, 1976. 
63

Brodsky, R. F. (ed.), Pioneer Venus - Case Study in Spacecraft Design, AIAA Professional Study Series, AIAA, Reston, 

Virginia, 1979. 
64

Talley, R. G., “Pioneer Venus Deceleration Module Final Report,” General Electric, Re-entry Environmental Systems 

Division, Philadelphia, Pennsylvania, 1978. 
65

Nolte, L. J. and Sommer, S. C., “Probing a Planetary Atmosphere:  Pioneer Venus Spacecraft Description,” AIAA Paper 

75-1160, 1975. 
66

Rodier, R. W., Thuss, R. J., and Terhune, J. E., “Parachute Design for the Galileo Jupiter Entry Probe,” AIAA Paper 81-

1951, 1981. 
67

Vojvodich, N. S., Drean, R. J., Schaupp, R. W., and Farless, D. L., “Galileo Atmospheric Entry Probe Mission 

Description,” AIAA Paper 83-0100, 1983. 
68

Corridan, R., Givens, J., and Kepley, B., “Transonic Wind Tunnel Investigation of the Galileo Probe Parachute 

Configuration,” AIAA Paper 84-0823, 1984 
69

McMenamin, H. J. and Pochettino, L. R., “Galileo Parachute System Modification Program,” AIAA Paper 84-0824, 1984. 
70

McMenamin, H. J., “Galileo Parachute System Performance,” AIAA Paper 97-1510, 1997. 
71

Braun, R. D. and Manning, R. M., “Mars Exploration Entry, Descent, and Landing Challenges,” IEEEAC Paper 0076, 

2006. 
72

Fallon II, E. J., “System Design Overview of the Mars Pathfinder Decelerator Subsystem,” AIAA Paper 97-1511, 1997. 
73

Witkowski, A., “Mars Pathfinder Parachute System Performance,” AIAA Paper 99-1701, 1999. 
74

Desai, P. N., Schofield, J. T., and Lisano, M. E., “Flight Reconstruction of the Mars Pathfinder Disk-Gap-Band Parachute 

Drag Coefficient,” AIAA Paper 2003-2126, 2003. 
75

National Aeronautics and Space Administration, “1998 Mars Missions Press Kit,” NASA, 1998. 
76

JPL Special Review Board, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” JPL D-18709, 

2000. 
77

Witkowski, A., Kandis, M., Bruno, R., and Cruz, J. R., “Mars Exploration Rover Parachute System Performance,” AIAA 

Paper 2005-1605, 2005. 
78

Desai, P. N. and Knocke, P. C., “Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis,” AIAA Paper 

2004-5092, 2004. 
79

Witkowski, A. and Bruno, R., “Mars Exploration Rover Parachute Decelerator System Program Overview,” AIAA Paper 

2003-2100, 2003. 
80

Steltzner, A., Desai, P., Lee, W., and Bruno, R., “The Mars Exploration Rovers Entry Descent and Landing and the Use of 

Aerodynamic Decelerators,” AIAA Paper 2003-2125, 2003. 
81

Steltzner, A., Cruz, J., Bruno, R., and Mitcheltree, R., “Opportunities and Limitations in Low Earth Subsonic Testing for 

Qualification of Extraterrestrial Supersonic Parachute Designs,” AIAA Paper 2003-2135, 2003. 
82

Vasas, R. E. and Styner, J., “Mars Exploration Rover Parachute Mortar Deployer Development,” AIAA Paper 2003-2137, 

2003. 
83

Cruz, J. R., Mineck, R. E., Keller, D. F., and Bobskill, M. V., “Wind Tunnel Testing of Various Disk-Gap-Band 

Parachutes,” AIAA Paper 2003-2129, 2003. 
84

Taeger, Y. and Witkowski, A., “A Summary of Dynamic Testing of the Mars Exploration Rover Parachute Decelerator 

System,” AIAA Paper 2003-2127, 2003. 
85

Way, D. W., Desai, P. N., Engelund, W. C., Cruz, J. R., and Hughes, S. J., “Design and Analysis of the Drop Test Vehicle 

for the Mars Exploration Rover Parachute Structural Tests,” AIAA Paper 2003-2128, 2003. 
86

Cruz, J. R., Kandis, M., and Witkowski, A., “Opening Loads Analyses for Various Disk-Gap-Band Parachutes,” AIAA 

Paper 2003-2131, 2003. 
87

Zell, P. T., Cruz, J. R., and Witkowski, A., “Structural Testing of Parachutes in the National Full-Scale Aerodynamics 

Complex 80-by-120-foot Wind Tunnel at NASA Ames Research Center,” AIAA Paper 2003-2130, 2003. 
88

Mitcheltree, R. A., “Dynamic Scaling for Earth Based Testing of Mars Terminal Descent Dynamics,” AIAA Paper 2003-

5391, 2003. 
89

Raiszadeh, B. and Queen, E. M., “Mars Exploration Rover Terminal Descent Mission Modeling and Simulation,” AAS 04-

271, 2004. 
90

Bonnefoy, R., Link D., et al., “Beagle 2 ESA/UK Commission of Inquiry,” 2004. 



19 

American Institute of Aeronautics and Astronautics 

 

91
Fallon, E. J. and Sinclair, R., “Design and Development of the Main Parachute for the Beagle 2 Mars Lander,” AIAA Paper 

2003-2153, 2003. 
92

Haig, A., “Five Month Program for the New Main Parachute for the Beagle 2 Mars Lander,” AIAA Paper 2003-2170, 2003. 
93

Northey, D., “The Main Parachute for the Beagle 2 Mars Lander,” AIAA 2003-2171, 2003. 
94

Way, D. W., Powell, R. W., Chen, A., and Steltzner, A. D., “Asymptotic Parachute Performance Sensitivity,” IEEEAC 

Paper 1465, 2005. 
95

Neal, M. F. and Wellings, P. J., “Descent Control Subsystem for the Huygens Probe,” AIAA Paper 95-1533, 1995. 
96

Lingard, J. S. and Underwood, J. C., “The Effect of Low Density Atmospheres on the Aerodynamic Coefficients of 

Parachutes,” AIAA Paper 95-1556, 1995. 
97

Lingard, J. S. and Underwood, J. C., “Wind Tunnel Testing of Disk-Gap-Parachutes related to the Cassini Huygens 

Mission,” AIAA Paper 93-1200, 1993. 
98

Underwood, J. C. and Sinclair, R. J. “Wind Tunnel Testing of Parachutes for the Huygens Probe,” The Aeronautical 

Journal, October 1997. 
99

Underwood, J. C., “Development Testing of Disk-Gap-Band Parachutes for the Huygens Probe,” AIAA Paper 95-1549, 

1995. 
100

Underwood, J. C., “A System Drop Test of the Huygens Probe,” AIAA Paper 97-1429, 1997.  
101

Jäkel, E., Rideau, P., Nugteren, P. R., Underwood, J., Faucon, P., and Lebreton, J.-P., “Drop Test of the Huygens Probe 

from a Stratospheric Balloon,” Advances in Space Research, Vol. 21, No. 7, 1998, pp. 1033-1039. 
102

Underwood, J.C. and Lingard, J.S., “Revalidation of the Huygens Descent Control Sub-System,” Presented at the 2
nd

 

International Planetary Probe Workshop, August 23 - 26, 2004, NASA Ames Conference Center, Moffett Field, California USA, 

2004.
 

103
National Aeronautics and Space Administration, “Genesis Sample Return Press Kit,” NASA, 2004. 

104
Haggard, R., Brown, G., and Corwin, R., “Parafoil Mid-Air Retrieval for Space Sample Return Missions,” AIAA Paper 

2001-2018, 2001. 
105

Ryschkewitsch, M., et al., “Genesis Mishap Investigation Board Report, Volume I,” NASA, 2005. 
106

National Aeronautics and Space Administration, “Stardust Sample Return Press Kit,” NASA, 2006. 
107

Witkowski, A., “The Stardust Sample Return Capsule Parachute Recovery System,” AIAA Paper 99-1741, 1999. 
108

Strickland J. H. and Higuchi H., “Parachute Aerodynamics: an Assessment of Prediction Capability (1995),” AIAA Paper 

95-1531, 1995.  
109

Klimas, P. C., “Internal Parachute Flows,” Journal of Aircraft, Vol. 9, No. 4, 1972, pp. 313-314.  
110

Klimas, P. C., “Fluid Mass Associated with an Axisymmetric Parachute Canopy,” AIAA Paper 75-1352, 1975. 
111

Klimas, P. C., “Inflating Parachute Differential Pressures,” Journal of Aircraft, Vol. 16, No. 12, 1979, p. 861. 
112

Meyer, J. and Purvis, J. W., “Vortex Lattice Theory Applied to Parachute Canopy Configurations,” AIAA Paper 84-0795, 

1984. 
113

Strickland, J. H., “On the Utilization of Vortex Methods for Parachute Aerodynamic Predictions,” AIAA Paper 86-2455, 

1986. 
114

Strickland, J. H., “A Vortex Panel Analysis of Circular-Arc Bluff Bodies in Unsteady Flow,” AIAA Paper 89-0930, 1989.
 

115
Higuchi H. and Park W. C., “Computations of Flow Past Solid and Slotted Two Dimensional Bluff Bodies with Vortex 

Tracing Method,” AIAA Paper 89-0929, 1989. 
116

Strickland, J. H., “A Prediction Method for Unsteady Axisymmetric Flow Over Parachutes,” AIAA Paper 93-1217, 1993. 
117

McCoy, H. H. and Werme, T. D., “Axisymmetric Vortex Lattice Methods Applied to Parachute Shapes,” AIAA Paper 86-

2456, 1986. 
118

Strickland, J. H., Homicz, G. F., Gossler, A. A., and Porter, V. L., “On the Development of a Gridless Inflation Code for 

Parachute Simulations,” AIAA Paper 2001-2000, 2001. 
119

Strickland, J. H., Porter, V. L., and Homicz, G. F., “Fluid-Structure Coupling for Lightweight Flexible Bodies,” AIAA 

Paper 2003-2157, 2003. 
120

Chatzikonstantinou, T., “Numerical Analysis of Three-Dimensional Non Rigid Wings,” AIAA Paper 89-907, 1989. 
121

Chatzikonstantinou, T., “Recent Advances in the Numerical Analysis of Ram Air Wings - The Three Dimensional 

Simulation Code 'PARA3D',” AIAA Paper 93-1203, 1993. 
122

Chatzikonstantinou, T., “Problems in Ram Air Wing Modeling and Their Solution in the Three Dimensional Simulation 

Code 'PARA3D',” AIAA Paper 99-1716, 1999. 
123

Barnette D. W., “Preliminary Numerical Simulations for Parachutes Using a Navier Stokes Solver on a Zoned Grid,” 

AIAA Paper 91-0876, 1991. 
124

Nelsen, J. M., “Computational Fluid Dynamics Studies of Solid and Ribbon 12-Gore Parachute Canopies in Subsonic and 

Supersonic Flow,” AIAA Paper 95-1558, 1995. 
125

Sahu, J., Cooper, G., and Benney R., “3-D Parachute Descent Analysis Using Coupled CFD and Structural Codes,” AIAA 

Paper 95-1580, 1995. 
126

Stein, K. R., Benney, R. J., Kalro, V., Johnson, A. A., and Tezduyar, T. E., “Parallel Computation of Parachute Fluid-

Structure Interactions,” AIAA Paper 97-1505, 1997. 
127

Stein, K. R., Benney, R. J., Tezduyar, T., Kalro, V., Leonard, J. W., and Accorsi, M. L., “3-D computation of Parachute 

Fluid-Structure Interactions - Performance and Control,” AIAA Paper 99-1714, 1999. 



20 

American Institute of Aeronautics and Astronautics 

 

128
Accorsi, M. L., Lu, K., Leonard, J. W., Benney, R. J., and Stein, K. R., “Issues in Parachute Structural Modeling - 

Damping and Wrinkling,” AIAA Paper 99-1729, 1999. 
129

Benney, R. J., Stein K. R., Tezduyar, T. E., Accorsi, M. L., Zhang, W., and Leonard, J. W., “Fluid-Structure Interaction 

Modeling of the U.S. Army Personnel Parachute System,” AIAA Paper 2000-4310, 2000. 
130

Steeves, E. C., “Prediction of Decelerator Behavior Using Computational Fluid Dynamics,” AIAA Paper 86-2457, 1986. 
131

Steeves, E. C., “Analysis of Decelerators in Motion Using Computational Fluid Dynamics,” AIAA Paper 89-0931, 1989. 
132

Stein, K., “Computations of the Flow Characteristics of Aerodynamic Decelerators using Computational Fluid Dynamics,” 

AIAA Paper 91-0866, 1991. 
133

Taylor, A. P., “An Investigation of Apparent Mass of Parachutes under Post Inflation Collapse Dynamic Loading Through 

the Use of Fluid Structure Interaction Simulations,” AIAA Paper 2003-2104, 2003. 
134

Tutt, B. and Taylor, A. P., “The Use of LS- DYNA to Simulate the Inflation of a Parachute Canopy,” AIAA Paper 2005-

1608, 2005. 
135

Lingard, J. S. and Darley, M. G., “Simulation of Parachute Fluid Structure Interaction in Supersonic Flow,” AIAA Paper 

2005-1607, 2005. 
136

Cruz, J. R., Cianciolo, A. D., Powell, R. W., Simonsen, L. C., and Tolson, R. H., “Entry, Descent, and Landing 

Technology Concept Trade Study for Increasing Payload Mass to the Surface of Mars,” Presented at the Association 

Aeronautique et Astronautique de France 4
th

 International Conference on Atmospheric Reentry Vehicles and Systems, Arcachon, 

France, March 2005. 
137

Witkowski, A., Machalick, W., and Taeger, Y., “Mars Subsonic Parachute Technology Task System Overview,” AIAA 

Paper 2005-1657, 2005. 
138

Mitcheltree, R., Bruno, R., Slimko, E., Baffes, C., Konefat, E., and Witkowski, A., “High Altitude Test Program for a 

Mars Subsonic Parachute,” AIAA Paper 2005-1659, 2005. 
139

Brown, G. J., Epp, C., Graves, C., Lingard, J. S., Darley, M. G., “Hypercone Inflatable Supersonic Decelerator,” AIAA 

Paper 2003-2167, 2003. 

 

 


