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Introduction
Quantitative studies have made much progress in revealing
various aerodynamic mechanisms for force generation in
flapping flight, as extensively reviewed (Weis-Fogh and Jensen,
1956; Ellington, 1984; Dickinson, 1996; Sane, 2003; Lehmann,
2004; Wang, 2005). Less clear is the relative cost of various wing
motions that are capable of generating the same averaged force.
For example, for a given wing, how does the aerodynamic cost
of flapping flight compare to that of a fixed wing flight? A
necessary first step in addressing the question of relative
efficiency is to define a fair and relevant measure for cross-
comparing different wing motions. With the model of
aerodynamic forces and actuators, we can, in principle,
determine efficient wing motions either in real animals or model
systems. Suppose we succeed in doing so, the solutions may still
be non-intuitive due to the fact that a typical wing motion is
described by a large number of parameters. Moreover, some
features in the predicted motions are specific to the model rather
than the original system. The main purpose of this paper is to
seek some common features of efficient flapping motions in a
minimal model, as a step toward understanding the more
complex ones.

Hovering, as opposed to forward flight, is a natural candidate
for comparing the efficiency of two flight strategies: flapping vs
steady flight. In hovering, a moving wing alone generates the
required thrust without the need for additional propulsions. Here,
the word efficiency is used to mean the inverse of the
dimensionless cost. First, an energetic criterion is defined, with
which the relative aerodynamic cost of employing different wing
motions can be compared. Finding efficient wing motions requires
an effective method for reducing the parameter space without
excluding all of the efficient motions. One approach is to use the
observed insect wing motions as a guide to construct families of
wing motions described by a set of physical parameters. The idea

is that the odds of finding efficient solutions among insects’ or
birds’ wing motions are likely to be higher than our random
guesses. In the reduced parameter space, we can identify with
energy-minimizing flapping wing kinematics for various insects,
compare with observed motions, and recognize common features
(Berman and Wang, 2007). In this paper, we seek the simplest
efficient flapping wing motions that can be analyzed in detail. To
this end, we consider a family of up and down motions described
by six parameters and calculate the aerodynamic power in
quasisteady limit. The parameter space was further reduced to
four-dimensions, based on the reasoning described below. An
advantage of working with the remaining four-parameter space is
that it is possible to visualize the parameter space. The sensitivity
of the cost function can be viewed with respect to the wing motion
parameters, and in relation to classical steady wing motion.

A criterion for comparing the aerodynamic cost of a wing
undergoing different hovering wing motions

For animals and airplanes, the total energetic cost is measured
by the consumption of their respective fuels. At the limit where
the conversion rate from chemical to mechanical energy is
independent of the wing motion, the total cost is directly
proportional to the mechanical work. The mechanical work
done by a flapping wing includes aerodynamic and inertial
components. The former is the work done to overcome fluid drag
and the latter, work done to accelerate and decelerate the wing
in a vacuum. The inertial cost can be calculated directly from the
wing kinematics, and unless the elastic storage of the muscles is
perfect, the net inertial cost is non-zero. The aerodynamic cost
can be measured experimentally, calculated using direct
numerical simulations, or estimated by quasi-steady force
models.

The aerodynamic efficiency of transport of a classical airfoil in
steady forward flight is determined by the lift:drag ratio, which is
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the inverse of the aerodynamic work required to transport a unit
weight over a unit distance. A similar ratio can be defined for the
efficiency of endurance, which is proportional to the inverse of the
aerodynamic power required to support a unit weight. These ratios
are often used to compare the relative efficiency of different
airfoils: the higher the ratio, the more efficient the airfoil. For
flapping motions, in addition to cross-comparing different wing
shapes, it is of interest to investigate the relative efficiency of the
same airfoil undergoing different wing motions, which is the focus
of this work.

In the case of a hovering insect, the wing and the weight are
given, and we seek the wing motion that minimizes the mechanic
power subject to the constraint of the weight balance. Specifically,
the aerodynamic cost of endurance (P*) is defined as the
dimensionless aerodynamic power to support a unit weight:

with the constraint:

where F(t) and U(t) are instantaneous aerodynamic force and wing
translational velocity, τ(t) and �

r
(t) the instantaneous aerodynamic

torque and wing angular velocity, Mg the weight, and T the period.
P* is dimensionless, and the reference velocity Uref=��2M�g/���A is
constant for a specific wing of area A and weight Mg. The inertial
cost can be added if we have a model of elastic storage of the muscles
(Berman and Wang, 2007). For the piece-wise constant motions
studied here, the inertial cost is zero except near the transition.

Note that in the case of steady wing motion (Fig.·1B), P* has the
familiar form: P*=CD(�)/CL

3/2(�), where CL(�) and CD(�) are lift
and drag coefficients, respectively. For general wing motions, this
simple ratio no longer holds, and thus maximizing the averaged
lift:drag ratio is not equivalent to minimizing the aerodynamic
power. We further note that P* is proportional to the specific power,
power per mass supported (Ellington, 1984). The main difference
is that here the specific power is only compared among the motions
that generate the same force. This difference matters when the
aerodynamics force coefficients depend indirectly on the net force
due to, for example, the change of the Reynolds number of the flow
required to generate the specified force.

Two-stroke wing motions and a model of quasi-steady forces
The steady forward flight motion is defined by the wing velocity,
U, and the angle of attack, � (stroke-I, Fig.·1A). Similarly, the
rotary wing motion is defined by the angular velocity, � and �.
The simplest flapping motion is a back-and-forth motion, which
can be viewed as a rotary motion projected onto the diameter
keeping the same angle of attack and velocity (Fig.·1B). In the
quasi-steady limit considered here, these symmetrical back and
forth motions are equivalent to the rotary motion. Among them, the
one that minimizes P* has �m that minimizes CD/CL

3/2 and Um that
balances the weight at �m=G�CL(�m)U2

mA=Mg.
The next simplest flapping motion (Stroke-II, Fig.·1E) consists

of two constant motions arranged in a V-shape, and is defined by
seven parameters: the velocity (Ud,u), the angle of attack (�d,u), the

0

F(t)·zdt = Mg ,
T

(2)
⌠
⎮
⌡

 
1

T

[F(t)·U(t) + τ(t)·�(t)]dt

 P* = ,
MgTUref

(1) 
0

T⌠
⎮
⌡

r

angle of stroke path (�d,u) during down (d) and up (u) strokes, and
the fraction of a period spent on the upstroke (�). Six of them are
independent if we further require that two ends of V maintain the
same altitude. A pair of mirror images of each V-shape forms a
figure-eight (Fig.·1F), which is a hovering motion.

These two-stroke motions are piece-wise constant, thus the main
unsteady aerodynamic effect is the dynamic stall, during which the
leading edge vortex forms and remains attached while producing a
force that is roughly constant at a given angle (Francis and Cohen,
1933; Ellington, 1984; Dickinson and Götz, 1993; Ellington et al.,
1996; Wang, 2000; Usherwood and Ellington, 2002). At this limit,
the empirical formula to fit the lift-drag at relative low Reynolds
numbers (~102) can be expressed as (Wang, 2005):

CL(�) = CL (�/4) sin2(�–�0l)·, (3)

CD(�) = CD(0) + G[CD(�/2)–CD(0)] [1–cos2(�–�0d)]·, (4)

where CL and CD are lift and drag coefficients, respectively, � the
angle of attack, �0l the angle at which lift is zero and �0d the angle
at which the drag is minimal. �0l and �0d are non-zero for
asymmetrical airfoils. Similar form was also obtained to fit the
experimental measurements of lift–drag characteristics of
helicopter blades during dynamic stall at much higher Reynolds
numbers of about 106 (Leishman, 2000). The fit of this formula to
airfoil data is shown in Fig.·2. Note that Eqn·3 differs from the
classical Joukowski’s lift in its angle dependence, sin2� rather than
sin�, and it is to be applied to all angles of attack during dynamic
stall.
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Fig.·1. Wing motions. (A) Steady forward flight, (B) hovering using a pair of
motion in part a, (C) gliding (rotation of A), (D) gliding followed by a vertical
upstroke, (E) gliding followed by a lift-generating upstroke, and (F) hovering
using a mirror pair of E. Parameters: �d,u are the angle of attack in down-
and upstrokes, respectively, �d,u the angle of the stroke plane, Ud,u the
velocity, and � the fraction of time spent on the upstroke, i.e.
Uu/Ud=[(1–�)/�]/(sin�d/sin�u).
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Efficient two-stroke wing motions
In this minimal model, the parameter space is six-dimensional,
which is still difficult to visualize directly. To further reduce the
number of parameters, we make two observations. The first is that
the classical airfoil motion of a fixed or rotating wing uses only
aerodynamic lift, but not drag, to support a weight (Wang, 2004).
If the airfoil is reoriented such that the net force is vertical
(Fig.·1C), as in gliding, the wing can support an additional
weight by a factor of ��1+�[CD�2(��)/�CL

2�(��)]–1. Consider the ideal
case in which the downstroke is a gliding motion and the
upstroke returns instantaneously, consuming no energy, to
support a specified weight, UI/Ud=[1+CD

2(�)/CL
2(�)]S and

PII*/PI*=[1+CD
2(�)/CL

2(�)]K<1. This gliding motion is more efficient
and is used as the downstroke of the flapping motions studied
below.

Research article

An upstroke must return in a finite time and it costs energy. At
first sight, the least costly upstroke seems to be the vertical upstroke
at zero angle of attack (Fig.·1D), because it moves along the
shortest path and the wing experiences the least drag. However, this
is not the case (Fig.·3). To find a more efficient upstroke, we note
the angle dependence of the aerodynamic force at small angles. As
� deviates from zero, to the leading order, the lift increases as �,
as given by the Kutta–Joukowski theory, while the drag increases
as �2. At small �, �2��, thus an upstroke at small angle of attack
generates a lift at a relatively small cost, which can be advantageous
compared to that with �=0, which generates no lift. These lift-
generating strokes replace the vertical upstroke. The two-stroke
motion is now described by four parameters, (�u, �u, �, �d), and
the corresponding P* is given by:

where

We minimize P* with respect to (�, �u, �u) for each downstroke
parameterized by �d in Matlab.

The cost to transit between the two piece-wise constant strokes
is neglected in the calculation of P*. Its contribution is small
compared to the rest of the stroke in the large stroke-amplitude
limit. More interestingly, the wing pitch reversal does not
necessarily require additional power (Bergou et al., 2007; Berman
and Wang, 2007), which is discussed later.

G�A[CD(�d)U3Td + CD(�)U3Tu] P* = ,
MgTUref
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 Ud =

 CT(�d)(1–�) +  [CL(�u)cos�u – CD(�d)sin�u�]

Uu  = ,
Ud

(7)

 CT =  CL + CD . (8)
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Fig.·3. Two-stroke flapping motions near the optimum. (A) 1/P* vs �d for steady motion (black), two-stroke motion composed of a gliding downstroke
followed by a vertical upstroke (green), and two-stroke motion composed of the same gliding stroke followed by a near optimal lift-generating upstroke (red).
(B) The near optimal down- and upstrokes. Ai, Bi, airfoil NACA2414 at Re~3	105; Aii, Bii, plate at Re~103.
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Fig.·3A compares 1/P* among three kinds of wing motions:
back-and-forth motion with a constant angle of attack (�d) two-
stroke, composed of a gliding downstroke with the same angle of
attack (�d) followed by a vertical upstroke at zero angle of attack,
and two-stroke composed of the same gliding stroke followed by
an optimized upstroke. Two representative Reynolds numbers (Re)
are shown: 103, close to that of an insect, and 3	105, close to that
of a low-speed airplane. The maximum lift:drag ratios are 4.7 and
60, respectively. In both cases, there are multiple asymmetrical
down-and-up flapping motions (Fig.·3B), whose P* are close to
minimal, but slightly higher than the minimum of CD/CL

3/2 of the
steady wing motion.

By definition, the first derivative of a function at minimum
(inside the domain) is zero, and the sensitivity to parameters is
given by higher order derivatives. In the case of back-and-forth
motions, the efficiency drops relatively quickly as the angle of
attack deviates from the optimal angle, whereas in the case of up-
and-down motions, the minimum is much more flat. Fig.·4C shows
the iso-surfaces of 1/P* as a function of parameters of the upstroke,
(�, �u, �u) for a given �d. Their shapes near the maximum have a
tube-like structure. The longitudinal direction of the tube
corresponds to the multiple solutions found here.

Among the parameters in the quasi-steady force model, the one
that is most sensitive to Re is CD(0); CD(0)~1/��Re. To investigate

the effect of Re, CD(0) is varied from 0.3 to 0.003, which
corresponds to Re from ~102 to ~106, estimated using the Blasius
theory of flow past a plate (Glauert, 1947). To see the effect of wing
shape, the calculation was repeated using ten randomly chosen
published lift–drag characteristics for airfoils in NACA-4digit, DH
and Xfoil-series (Selig, 2002). For low Reynolds number plates,
CL(�/4) and CD(�/2) are varied between 1 and 2.5, to simulate the
effect of the sharpness of the wing tip (Wang, 2000). The extended
tube structure is found for all tested Reynolds numbers and wing
shapes.

Concluding remarks
The above analysis was partly motivated by the question
concerning the relative efficiency of flapping and steady wing
motions that support the same weight. The two-stroke model
suggests that at the limit where the lift and drag are described by
the translational quasi-steady forces, the most efficient motion to
support a given weight is the steady wing motion at the optimal
angle of attack. There are multiple flapping motions that are very
close to the optimum. The efficient two-stroke motions have in
common that the downstroke is a gliding motion at an arbitrary
angle of attack and the upstroke operates near the optimal angle of
attack. We are currently investigating if flapping flight can be more
efficient than the steady wing motion when the unsteady
aerodynamics effects are included.

Another motivation came from our interest in understanding
whether insects are aerodynamically efficient; specifically, whether
hovering insects have found some energy-minimizing wing
kinematics, given that hovering is an energy-demanding mode of
flight. The idea of optimization in biological systems is open to
debate. Without testable predictions, however, it is difficult to make
progress. Using the same criterion as discussed here, various
published wing strokes were examined (Berman and Wang, 2007),
for fruit flies (Ennos, 1989; Fry et al., 2003), a bumblebee (Dudley
and Ellington, 1990) and a hawkmoth (Willmott and Ellington,
1997), and it was found that some of the specific features of the
predicted energy-minimizing hovering kinematics, e.g. the
frequency and the wing stroke pattern, are qualitatively and
quantitatively similar to the previously observed data. This,
however, does not imply that all hovering insects fly using a single
pattern of wing motion. Optimal wing motion depends on the wing
morphology and lift–drag characteristics. Even for a specific wing,
there can be many solutions that are very close to optimal, as
indicated here with a four-parameter model. This multiplicity of

Fig.·4. The isosurface of 1/P* as a function of �d, �u, �. It has a cylindrical-like shape whose longitudinal direction corresponds to the multiple solutions
shown in Fig.·3. Starting from the innermost surface, the iso-surface values are 1/P*=58.5, 58, 57.5, 57 (A) and 4.7, 4.6, 4.5, 4.4 (B).

A

B

Fig.·5. Strokes A and B generate almost the same amount of force. The
only difference occurs near the end of the stroke when the wing reverses
its pitch. In A the leading edge remains the same, and in B it switches. The
wing pitching in stroke A can be facilitated by wing inertia and aerodynamic
torque as the wing decelerates (Berman and Wang, 2007; Bergou et al.,
2007).
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solutions does not contradict the idea that energy-minimizing
shapes the wing kinematics. Instead, we should expect variations
in the observed wing kinematics that have comparable efficiency
near the optimal.

Finally, to comment on the transition between the up- and
downstrokes, the cost of which is assumed to be small. Although
muscles in insects are known to be capable of actively pitching the
wing (Ellington, 1984; Dickinson et al., 1993), the net power
required to pitch the wing in the observed motions of a dragonfly,
a fruit fly and a hawkmoth was found to be negative (Bergou et al.,
2007). Thus in theory, wing pitching can be aided by aerodynamic
torque and does not require additional power. This, and the fact that
almost all insects maintain the same leading edge (Fig.·5), suggest
that insects may benefit from passive wing pitch reversal during
steady flight to simplify control.

The work is supported by NSF, AFOSR, and Packard Foundation.
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