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Aerodynamic Interference Between Two
Darrieus Wind Turbines

P. R. Schatzle, P. C. Klimas, and H. R. Spahr

Abstract

The effect of aerodynamic interference on the performance

of two curved bladed Darrieus-type vertical axis wind turbines

has been calculated using a vortex/lifting line aerodynamic

model. The turbines have a tower-to-tower separation distance

of 1.5 turbine diameters, with the line of turbine centers

varying with respect to the ambient wind direction. The ef

fects of freestream turbulence were neglected. For the cases

examined, the calculations showed that the downwind turbine

power decrement (1) was significant only when the line of tur

bine centers was coincident with the ambient wind direction,

(2) increased with increasing tipspeed ratio, and (3) is due

more to induced flow angularities downstream than to speed

deficits near the downstream turbine.
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Nomenclature

projected frontal area of turbine, m2

blade chord, m

blade lift coefficient ( L / ~ p V 2c )
3co co

power coefficient ( Q w / ~ p c o V c o Af )

equatorial diameter of turbine, m

chordwise blade force coefficient ( f o r c e / ~ p V 2J1, c)co co e
turbine height, m

blade element length, m

blade lift, N/m

number of blades

turbine power output (Qw), kW

turbine shaft torque, N/m

equatorial radius of turbine, m

Reynolds number based on chord ( P c o V R c / ~ c o )

streamwise induced flow, m/sec

velocity, m/sec

tipspeed ratio (Rw/V co )

local blade angle of attack, deg

dimensionless airfoil circulation ( ~ C L C R c / V c o R )

angular velocity, rad/sec
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Subscripts

R relative to local

co freestream conditions



Introduction

Since its inception, the_ DOE Wind Energy Program has

been largely concerned with the problems associated with

individual wind turbines and systems. As the single turbine

state-of-the-art has progressed, increasing attention is being

given to the operation of turbines in multiple machine arrays.

This attention is required because of the impact of turbine

spacing on interconnect and land usage costs. Small separation

distances work toward minimizing these as long as array members

are not so close as to negatively interfere with each other

aerodynamically. Sandia National Laboratories, with its Dar

rieus Wind Turbine Program, is interested in the problem of

optimizing these separation distances.

Darrieus turbine aerodynamics is different from and some

what more complicated than that of most horizontal axis wind

turbines. Blades normally operate in both the linear and

deep stall portions of the CL vs a curve. Although the wake

may be periodic, it is unsteady and unsymmetrical. The flow

field downstream of an advancing blade differs from that down

stream of a retreating blade and the blades do not operate

independently of each other. There is always some degree of

mutual interaction as blades cut wakes generated by those pre

ceding. A mathematical representation which treats all of these

effects is the vortex/lifting line model developed by Strickland,

Webster, and Nguyen. l In particular, it calculates a highly

detailed wake. This wake is felt to be representative of

actual turbine wakes within a few downwtnd diameters, i.e.,

before the non-included dissipative effects of atmospheric

turbulence are no longer negligible. The model is viable and

may be modified to simultaneously treat more than one turbine.

As long as separation distances are small, the aerodynamic

calculations may be considered realistic.
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This report describes a study of aerodynamic interference

between two Darrieus turbines using a vortex/lifting line model

without the effects of freestream turbulence.

Aerodynamic Model

Strickland, Webster, and Nguyen
l

have developed a three

dimensional model for use in predicting performance and de

tailed blade loads on a single Darrieus turbine, in which the

blades and their wakes are replaced by an equivalent system of

bound and free vortices. As the names imply, the bound vortices

remain attached to the blades and rotate with them while the

free vortices are shed from the blades into the ambient flow.

The strength of the bound vortex (circulation) at any point

on the blade is determined from the local blade lift using the

Kutta-Joukowsky law, while the strengths of the free vortices

are given in terms of the spatial and temporal variation of

the circulation by Helmholtz's and Kelvin's theorems. Once

the strengths of the vortex filaments are known, the Biot

Savart law may be used to determine the velocity induced by

,the entire vortex system on any point. The total velocity seen

by points on the blades is therefore the vector sum of the

ambient, rotational, and induced velocities, while the free

wake filaments experience only the ambient and induced veloci

ties. Having obtained the velocity components on a given blade

segment, the local angle of attack is computed and used to

determine the aerodynamic forces acting on the segment by

interpolation in the lift and drag tables for the particular

airfoil section used. Finally, the velocities of the wake

filaments are integrated with respect to time to yield a

developing wake geometry.

An interesting feature of this model is the fact that a

detailed account of the rate at which energy is extracted from

the wind is communicated downstream via the free vortex sys

tem. As more energy is removed from the wind, the amount of

work done on the turbine increases, which means that the



integral of the chordwise blade forces along the path of rota

tion increases. This implies an increase in the blade lift

since it is the dominant component of the chordwise force.

Accordingly, there is an increase in circulation on the blades

and a corresponding increase in the strength of the shed vor

tices, resulting in higher induced velocities .. A change in

power output thus manifests itself in higher induced veloci

ties downstream.

The presence of the free vortex system downwind of the

turbine thus makes this model an attractive candidate for use

in studying the aerodynamic interference on turbines in proximity.

The VDART3 computer code developed by Strickland, et al ~ has

been modified by the present authors in order to predict per

formance of an arbitrary number of Darrieus turbines. The

turbines are required to be geometrically identical and to

operate in phase but may be located wherever desired. A fur-

ther refinement has been to interpolate on Reynolds number as

well as angle of attack when computing blade element forces

from the tabulated airfoil section data. In addition, an exten

sive graphics capability has been added in order to speed

interpretation of results. This is described in more detail

in the section Computer Codes Used. The ability of the modi

fied code (VDARTC) to accurately predict performance of a single

turbine is demonstrated in Fig. 1 while the predicted wake

geometry for the same turbine is given in Fig. 2.

Computer Codes Used

The mathematical model of clustered three-dimensional

vertical axis wind turbines, discussed in the previous sec

tion, was implemented in computer code VDARTC. VDARTC, while

based on the VDART3 computer code
2

, has been modified exten

sively by:
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1. Permitting the definition of the locations of the

clustered turbines and computing the locations of

each blade element for each turbine.

2. Properly allocating the array elements for computed

variables to the appropriate blade elements for each

wind turbine.

3. Adding a two-dimensional interpolation subroutine to

include the effects of local blade element Reynolds

number and the angle of attack on aerodynamic coef

ficients.

The program is now operational on the Sandia CDC Cyber 76

and 7600 computers using 111,216 (octal) w o ~ d s of small core

memory and 155,030 (octal) words of large core memory in a

batch mode.

The mathematical model of clustered wind turbines was also

implemented in computer code WINMIL, an interactive graphics

computer code being developed at Sandia to analyze two- and

three-dimensional vertical axis wind turbines and giromills.

The interactive feature, with human engineering, allows one to

rapidly and easily make runs and the graphics output, described

later, helps provide insight into the wake structure from the

turbines and the variations of pertinent blade parameters with

blade azimuthal position.

The graphics implementation of the clustered wind turbine

model was based on the VDARTC computer code, with the simplifi

cation made to use a constant Reynolds number for all blade

elements to minimize computer core requirements. To minimize

core requirements, WINMIL consists of 29 overlays with 353

FORTRAN subroutines. WINMIL uses the Graphics Compatibility

System (GCS) graphics language
3
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For short runs, WINMIL is used on a Sandia CDC 6600 com

puter using Network Operating System (NOS) software in an

interactive mode with Texas Instrument Silent 700 series ter

minals, and Tektronix 4006, 4010, 4012, 4013, 4014, 4015, 4027

(color terminal), 4051, and 4081 terminals. The computer code

uses 107,603 (octal) core locations.

For longer runs, the interactive WINMIL program prepares

the input data and then routes it to the Sandia Cyber 76 or

7600 computers using SCOPE operating software. The batch ver

sion of the WINMIL program uses 120,102 (octal) words of small

core memory and 166,100 words of large core memory.

Output of the WINMIL program consists of:

1. Plots of the aerodynamic data b e i ~ g used for the air

foil and Reynolds number selected.

2. Plots of the vortex wakes shed by the equatorial ele

ment of each blade of each t u r ~ f n e .

3. Plots of airfoil angle of attack, airfoil nondimen

sional circulation, airfoil nondimensional normal

force, and local nondimensional total velocity for

each equatorial element of each blade of each turbine

as a function of azimuthal position around the rotor

revolution.

4. Tabulated average rotor power coefficients for each

revolution.

This graphical output is easily available in a number of

forms. These include hardcopy plots from the interactive ter

minals and black and white and color 35 mm slides and black

and white and color movies made by off-line computer output

microfilm systems. Some of this graphical output has been

used in the preparation of this report.
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Some of the runs required to generate the results·for one

orientation of the turbines and one tipspeed ratio required

over two hours of CDC Cyber 76 or 7600 computer time. Obvious

ly, both Sandia National Laboratories and its contractors 7 are

pursuing ways to reduce the computer time required by these

computer codes.

Test Cases

The large amount of CPU time required to run VDARTC pre

vents an extensive compilation of interference data in this

report. Presented here is the predicted interference effect

between two Darrieus wind turbines (Sandia 17-m configuration)

with tower-to-tower spacing equal to three equatorial radii.

The Sandia 17-m turbine is a HID = 1, troposkein approximation,

blade planform machine having 2 blades of 0.61 m chord NACA 0015

profile. It develops 80 kW in a 19.7 mlsec ambient wind at

1585 m altitude. The turbine solidity, a, is 0.146. Eight

different orientations of the turbines were investigated as

shown in Fig. 3, and the corresponding power coefficients ob

tained at a tipspeed ratio of 3 are tabulated in Table 1.

This tipspeed ratio was chosen because historically, the maximum

value of shaft power is obtained near X
oo

= 3. Of special

interest is the case where the turbines are a l i ~ n e d in the

streamwise direction (configuration A) since the largest power

loss occurs there. For this orientation, a more complete power

curve was generated and is shown in Fig,. 4 compared to the pre

dicted single turbine curve. The band on the downwind turbine

prediction arises from the difficulty in obtaining numerical

convergence at moderately high tipspeed ratios. Finally, Fig.

5 presents a typical sequence of plots which shows the develop

ment of the free vortex systems for both turbines (X = 4).
00



Configuration

A

B

C

D

E

F

G

H

Single Turbine

TABLE 1

Predicted Power Coefficients for
Different Configurations, X = 3ex>

Turbine

.200

.199

.199

. 1 99

.160

.197

.199

.200

. 199

Turbine 2

.160

.197

.199

.200

.200

.199

.199

.199

Discussion of Results

The data summarized in Table 1 indic~te that, for a tower

to-tower spacing of three equatorial radii and Xex> = 3, the only

orientation which produces a significant change in turbine

power output is when the turbines are aligned in the stream

wise direction. This is not surprising since the wake from the

upwind turbine passes through the downwind turbine in this

alignment, but not in the others. A more thorough investiga

tion of the power curve (Fig. 4) for this alignment indicates

that the power loss in the downwind turbine increases as the

tipspeed ratio increases, at least over the range of speed pre

sented.

The power loss at a given tipspeed ratio may be explained

by considering the structure of the free vortex system associa

ted with the upwlnd turbine. Figure 6 shows how the circula

tion on the equatorial blade element of the upwind turbine

varies with angular position (8) of the turbine (the sign

convention for 8 is shown in Fig. 7). Kelvin's theorem dic

tates that the strength of a shed vortex is equal in magnitude
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and opposite in sign to the temporal change in circulation of

a blade element. It is evident that the circulation becomes

increasingly negative over the left-hand side of the rotor

(8 = 90° to 8 = 270°, roughly), and positive over the right

hand side (8 = 270° back through 8 = 0° to 8 = 90°). This

means that, on the average, the vortices shed during the right

hand half of the revolution will be negative sense (clockwise

viewed from above) and those shed on the left-hand side will

be positive sense (counterclockwise viewed from above). This

situation is illustrated in Fig. 7. It can be seen that a

significant streamwise velocity is induced against the ambient

flow by the free vortex system. The variation of the induced

streamwise flow seen by a blade element as it rotates around

the turbine is shown for both turbines in Fig. 8. (The data in

Figs. 8-11 are for the equatorial blade segments, configuration

A, X = 4. Downwind 1 and 2 refer to different blades on the
00

downwind turbine.) It might be expected that the difference

in power output of the two turbines is due to smaller total

velocity (greater induced flow) seen by the downwind turbine

blades. Figure 9 shows, however, that although the variation

of total velocity with 8 has a different character for the

two turbines, the total velocities themselves (ambient plus

induced plus rotation) are not significantly different. This

is because the total velocity is dominated by the rotational

component of velocity, at least at moderate tipspeed ratios.

The major effect of the induced streamwise flow is to modify

the local blade element angle of attack as shown in Fig. 10.

This results in lower chordwise blade forces (Fig. 11) and,

hence, lower torque and power. Therefore, as the tipspeed

ratio of the upwind turbine increases, the blade circulation

increases accompanied by an increase in the strength of the

shed vortices, resulting in higher induced velocities, lower

angles of attack downstream, and correspondingly, lower torque

and power output. The trends in Fig. 4 thus appear reasonable.



Conclusions

The mutual aerodynamic interference between two 17-m dia

meter Darrieus wind turbines with a tower-to-tower separation

distance of 1.5 diameter has been calculated using a vortex/

lifting line model neglecting the effects of freestream tur

bulence. The calculations showed that, for the configurations

examined, downstream turbine power reductions:

1. Are significant only when the two turbines were aligned

with the ambient wind direction.

2. Increase with increasing tipspeed ratio for a fixed

separation distance.

3. Are due more to changes in downstream flow angulari

ties than velocity deficits.

The calculation of downstream turbine power decrements

at separation distances greater than 1.5 diameter could be

calculated if a suitable velocity deficit decay model were

added to the basic vortex scheme.
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FIGURE 1 Single Turbine Efficiency - Predicted vs Measured

FIGURE 2 Predicted Wake Geometry - Sandia 17-m Turbine, X
oo

= 4

(Wake From Equatorial Segment of One Blade Only)

FIGURE 3 Orientation of Turbines in T e ~ t Case

FIGURE 4 Predicted Turbine Efficiencies, Configuration A

FIGURE 5 Predicted Wake Geometry, Configuration A, X = 4
00

(Wake From Equatorial Segment of One Blade Only)

FIGURE 6 Azimuthal Variation of Circulation, Equatorial Seg

ment of Upwind Turbine, X = 4
00

FIGURE 7 Streamwise Flow Induced by Vortex System

FIGURE 8 Azimuthal Variation of Induced Streamwise Flow,

X = 4
00

FIGURE 9 Azimuthal Variation of Total Velocity, Equatorial

Segments, X = 4
00

FIGURE 10 Azimuthal Variation Angle of Attack, Equatorial

Segments, X = 4
00

FIGURE 11 Azimuthal Variation of Chordwise Blade Force,

Equatorial Segments, X
oo

= 4
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