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Abs_act

This paper offers analytical capability for
aerodynamic parametric studies and sensitivity analysis of
rotary wings in axial flight by using a 3-dimensional un-
distorted wake model in curved lifting-line theory. The
governing equations are solved by both the Multhopp In-
terpolation technique and the Vortex Lattice method. The
singularity from the bound vortices is eliminated through
the Hadamard's f'mite part concept. Good numerical
agreement between both analytical methods and finite dif-
ference methods are found. Parametric studies were made

to assess the effects of several shape variables on
aerodynamic loads. It is found, for example, that a rotor
blade with out-of-plane and inplane curvature can
theoretically increase lift in the inboard and outboard
regions respectively without introducing an additional in-

duced drag.

AR aspect ratio, R / ct

a lift curve slope, =2_
b number of blades

c chord length

co chord length at blade root

c t chord length at blade tip

ce equivalent chord

"6 c(x)/c°

CL total lift coefficient

CD_ total induced drag coefficient

Cp+ total induced power coefficient

K coefficient factor, ce I co

M number of terms in Multhopp Interpolation

Technique or number of panels in VLM
m summation integer;, also weighting factor

index

p tip shape parameter
R rotor radius

r radial distance

SR area of a rotor in X-Y plane, =R ce

x, y, z normalized coordinates with respect to R

13 tip length parameter

_i twist shape parameter; also tan-t(_)

inplane curvature
0 twist angle
"O(r) O(x)lOo

0o twist angle at blade root

0 t twist angle at blade tip

_: out-of-plane curvature

rl dummy variable representing spanwise
distance

7t taper ratio, cl/c o

p air density
cr rotorsolidity, bcetr,.R

twist ratio, Ol/0o

inflow ratio, = 1_i + _¢/0 o

_c climb inflow ratio, Vcfmo/R

x)i induced inflow ratio, _L+_ r

_t. induced inflow ratio from curved lifting-line

induced inflow ratio from trailing vortex
lines

tan-l(Kx)

azimuthal angle; also Digamma function
F circulation ; also Gamma function

normalized circulation, F/R2f20o

f2 angular velocity

A key ingredient in developing reliable and efficient

procedures for design optimization of aerospace structures
is sensitivity analysis. This is especially true for

aerodynamic sensitivity analysis which is of growing im-

portance for aerodynamic shape optimization as well as

the interdisciplinary process of integrating .ae.r_.ynamics
with other disciplines. A recent paper by Sobieski stres-
ses the need for aerodynamic sensitivity analysis and



makes a plea to the aerodynamic community for extend-

ing their present capability to include sensitivity analysis.

The present paper attempts to partially fill this void for

the rotary wings.

In recent years there has been a resurgence of interest

in the idea of reducing the induced drag of an aircraft by

wing design. Some examples of recent work suggest the

use of inplane 24 or out-of-plane 5 curvature. There have

been few attempts to extend this idea to rotary wings. The

present paper is intended to establish sensitivity analysis

for rotor blades in axial flight.
In previous work, Rand and Rosen 6 developed a lift-

ing line model which is capable of calculating the

aerodynamic load along inplane curved-blades of a

helicopter in hovering and axial flight. Their method,
however, should be classified as the Vortex Lattice

Method (VLM) and is an approximate approach to solve

the singular integro-differential equation. The present

paper deals with the same problem by using an analytical

approach to solve the more general governing equation

which can include the analysis of out-of-plane curved

blades. The analytical approach, in the present paper, uses

the Multhopp Interpolation technique which is a special

case of Fourier Series method and widely used in fixed-
wing cases for both lifting-line 7 and lifting-surface 8'9

models. As mentioned in Ref. 6, the difficulty, raised in

the case of inplane curved blades, is the fact that the

velocity which is induced on the lifting line by the bound

vortex itself obtains infinite values. This phenomenon is

due to the singularity of the order l/lxl which occurs in

the development. This singularity may be handled
elegantly by the Hadamard's finite part concept 1° as

described in Ref. 11. In this paper, we apply a similar

technique to eliminate the singularity.

This paper also contains parametric studies which

can quickly assess the effects of several shape variables

on aerodynamic loads. The design variables are taper

ratio, tip length, tip shape, aspect ratio, inplane curvature,

out-of-plane curvature, twist ratio, and twist shape. Most

rotor blades may be described by these shape parameters.

Acrodynamic functions are local circulation, local in-

duced velocity, total lift coefficient, total induced drag

coefficient, lift-drag ratio, and induced power coefficient.

The rotor performance is strongly dependent on these

aerodynamic functions.

Aerodynamic Functions and Shape Design Variables

The present paper deals with a rotor system having b

identical, equally spaced blades. These blades rotate about
the shaft with a constant angular velocity fL. The rotor in

Figs. 1 and 2, has a radius R and no hinge offset. The

steady lifting-line theory, based on the three-dimensional

undistorted wake model, will be applied to cases for

which helicopter rotors or propellers are in axial flight
(including hovering). The shape design variables charac-

terize three essential parameters of a blade: lifting-line

shape, chord distribution, and twist distribution. The

design variables are taper ratio, tip length, tip shape,

aspect ratio, inplane curvature, out-of-plane curvature,

twist ratio, and twist shape. Aerodynamic functions are
local circulation, local induced velocity, total lift coeffi-

cient, total induced drag coefficient, lift-drag ratio, and

induced power coefficient. Further details of the shape

design variables are given next.

Lifting line shape

The reference blade in Figs. 1 and 2 is positioned at

the 90 degree azimuthal angle. The origin or center of

rotation is on the blade root one quarter-chord away from

the leading edge. The inplane position y, and out-of-plane

position z, of the lifting-line are assumed to have the
form:

y =f(x) = e_.x2 ; z = g(x) = v,.x2

where x is the spanwise direction, E is the inplane curva-

ture, and I¢ is the out-of-plane curvature. All quantifies

are normalized with respect to blade radius, R. When e,

and 1<are equal to zero, it is a straight lifting-line. The

rotor blade can have either backward inplane curvature

(e > 0) or forward inplane curvature (e < 0) and have

either upward curvature 0¢< 0) or downward curvature

(_ > 0). Also, we assume that I_1, and I_1 are smaller than

0.3 .so that the lifting-line theory remains valid.

Chord distribution:

The chord length _(x) normalized with respect to root

chord has the following variation along the spanwise
direction :

_(x) = c(x) : [ l + x(Z.- 1)][ ] - xt/f_] p
C O

where _, is the taper ratio and is defined as the ratio of tip

chord c 1 to root chord co, shown in Fig. 2. Note that we

define Z, as the inverse of conventional taper ratio. When

_. is equal to 0, the blade is triangular.

The tip shape parameter is denoted p and is always

positive. The physical meaning of p is to define the tip

shape of a blade as shown in Fig. 3. The tip length

parameter is denoted _ and is also positive.The physical

meaning of 13 is to define the extent of the tip taper as

shown in Fig. 4. In general, all cases of chord distribution
can be defined on the combinations of these three

parameters.
Another important design variable is the solidity or,

(or the aspect ratio AR,) which is defined as:

bce b

(7 = _ - r_(AR)



whereb is the number of blades, AR is the aspect ratio,

and c e is the equivalent chord, which is based on the

equivalent thrust generated by the reference rotor with a

rectangular planform, and has the following form:

f_x'c(x)&

ce = = K(m,X,_o)c o

where m is the weighting factor index and is dependent

on design criteria, such as blade area or area, thrust, or

torque weighted solidity. Once m, [L p andS. _e specified

for a rotor, g can be mmlytically expressed in terms of the
Gamma function as :

K= K 1 + (_.-1)K 2

where

KI = (m+l) 13r(p+l) 1"(13+ m_)
r(p+l+13 + m13)

K2 = (re+l) _ r_l) rL2_
r(p+l+213 + m_)

In order to calculate sensitivity derivatives, it is

necessary to derive 0 K/_ X, _ K/3 p, and 3 K/_ _, which
are analytically expressed in terms of the Gamma and

Digamma functions as F and _ respectively:

a_EK=K2
bX

_K

ap - KI [_(P+I) - _(p+ 1+13 + m[$)]

+ iX - 1) K2[_(p+l ) - _(p+1+213 + rn_)]

Twist distribution:

The normalized twist angle of attack 0(x) with

respect to twist angle at blade root along the spanwise

direction is defined in the following form:

_(x)= O(x)= I+xa (_- I)
Oo

where "c is the twist ratio, defined as the ratio of tip twist

0 i to root twist 0o. $ is the twist shape parameter and is

always positive. The physical meaning of _ is to define

the twist distribution along a blade as shown in Fig. 5.

The reason behind this x definition is that an ideally

twisted blade can be approximately modelled by concave

twist (i.e., 0<x<l). In order to calculate sensitivity
derivatives, it is necessary to derive i) 0/_ x, and i) 0/2 $

whichare expressed as:

a0 x)_ ,?

°a_ = In(x) x a ('c - 1)
b8

Theoretical Derivations

Governing equation for circulation:

To derive the governing equation for circulation, we

assume that the flow field is incompressible. Each blade

is represented by a curved lifting line. The circulation

along each lifting line is F(r). Since F varies along the

blade, vortex filaments must trail behind the rotating

blade by d F/d r. It is further assumed that the trailing

vortex system is an undistorted wake and moves

downward with a climb velocity, Vclimb, which is equal to

the sum of the rotor axial velocity and the averaged in-

duced-velocity around the rotor disk. The derivation fol-

lows similar derivations which have been developed in
Refs. 12-13. However, an additional term of downwash

due to the self-induced velocity from the bound vortex of

lifting line has to be included. A similar study for fixed-

wing cases can he found in Ref. 14. Thegoverning equa-

tion used to solve for local circulation, F, is very similar

to those contained in other references. See for example,

Ref. 6, Eq. (34) or Ref. 15, Eq. (3.17). It is the integro-

differential equation which has the following form:

c_a_ - b (1)-_c(x)[xO(x)- u(x)]= ,,P(x)

where

_)c

u(x) = ui(x) + _; uJx) = uLfx) + urfx);

b bce Kbco _ l-'(r)o ....... P(x)-
1tAR rt.R rLR ' R2f_O o

here, a is the lift slope =2r_ and a)c is the climb inflow

ratios. _)T and _)L are the induced inflow ratios, con-

tributed by the curved lifting-line and trailing vortex lines,

and can be derived by Biot-Savart Laws as:

E

it l]L_(n)d n"OL(x)
4nn-lx- rll[(e+_):(x+ _1)2 +

b

-If_vd_
u._x) = T_0"_

n=-I

J_0_12(1+e2_] 2)-x( 1+e2x2)°Srl( !+e2q 2)°5cos(_==_=_d_dq3
where

IR-]2 =/12(I+£2_I2)+X2(I+E2X 2)

- 2X(1 +_2X2)0"5_( 1+E2_2)0"Scos(_+_--_)+O)c_I/--K'_2+KX2) 2

and

= _ + 2_(n--_l); _ = tan-_(r.x); $ = tan-l(_,q)
U



Note that aJL is the induced velocity due to the bound vor-

tex of an inplane curved blade. We neglect the effect of

the curved lifting-line from other blades. However, the in-

fluence of the trailing vortex lines from other blades has
been included.

Equations__for aerodynamic function:

Once r(xi) and x),(x i) are obtained along the spanwise

position x i, (by solution of governing equation) the total

lift coefficient CL. total induced drag coefficient Co/ and

total induced power coefficient Cpi are:

c_ Co_r(Oa_

Oo p(Rf,Z)2SROo = AR___,xjF(xj)Axj
J

CO, _ _ prflw,,(r)r(r)dr= AR _-wxjr(xj)'°,(xJ)zSJcJ

Oo p(REI)2SROo j

cp, cL co,
Oo = "0c _ + Oo

-_Ryxj?(x)%+ A(Zxf%)_,%)%
J J

where SR is the blade area and is equal to Rc,. (Note that

our definition of S s is different from those normally used

in the helicopter field.) If we divide the equation of total

induced power coefficient Cpi by CO? it gives an index to

judge how good a rotor is by the use of lift-drag ratio,

CL/Co: This design index is slightly different from those

in the fixed-wing field 2-5, which use C2L/CD/

Governing equations for derivatives of circulation:

To obtain aerodynamic derivatives, we use the con-

cept developed by Yates in Ref. 16. Take partial deriva-

tive of Eq. (i) with respect to a typical design variable

denoted Q as:

[z_ j _
Solve Eq. (2) for the derivative of circulation, 3FIbQ. The

governing equations for the derivative of circulation with

respect to each shape design variable can be expressed as:
K AR b-F _J (3)

,4 _+_='
K AR OF i)%) (4)

_ _N ='
K AR O-F 0"o (5)

bp+_pp =

KARat b K AR /I l-

_¢_[l+y(l+_)] b-k (_ ] F

0.5K AR y_lny 0 _(K AR

KARIn0-yv_) _ KAR -

4

KAR bF _o -KF (6)

_2 bAR+0AR - n?

KARbP bu b0 (7)
,¢_ _+_-=_- __ -

KARbP _ bg (8)
_-_+_:x-_

KARbF b_O=O (9)
rcc _+_,

KARbF b9 (10)
a_ +_-=0

where 3 10/b Q, in Eqs. (3)-(8), is expressed as:
b

b u(x) _ -1 [is, d( 3 F/_) Q)C
3Q 4_¢_0_" dq

n=]

_12(l+¢2rlz)-xrlV(_+e_xz)(l+e2_:)c0s(_+8-g)a__ (1_)

However, 3 _/b _¢and 0 aJ/b e have file following forms:
b

01)(x) -1[ 1_--d(b F/b _)_ =
o_¢ = _%""

n--1 2 _

70n:(l+:nb-_d;,:x:)(,+_:n:) _os(_+r,-;),_l__ ,_
b

3 f_VaP
+ _'o'-_ _ :

n=l

f_ (TI2_X.qCOS(_+___))(i] 2_X2)(X)c,q/_K.q2+lOf2) at y] (12)

Jo
b

b.(x)= -_fts, d0 F/Oe)
be 4n'o_-_ dq

n=l

l fix--,dFf _ 1 [2 4

n=!

(X2+.q2+2E2X2TI2)COS(_+I_)___+.XT I(E2xII- 1)(x-r l)sin(Vg+_-_)]dVdr I

_/(I+e2x2)(I+£2'q2)

b

3 [_ S- di_ f'n2( I+eZTIZ)-x'@/(l'+eZx2)( l+eZn 2) +cos(_+6-_)

+_'o"_'o I__
_Ig=l

[Uq4+E..X 4 --

exq(x2+_i 2+2e2x2)cosC-_+3-;)+xq (e2xq - 1)(x-rl)sin(_+5--;)_,v,,,,_

i =

I

£
e



1 fll+(x+.q)2(e+rl_3)(e+.q)_t,_d _ (13)

_'" °_lx-TIl[(e+K)'(x+ll)'+ 11 '

Once a F (xi)/O Q and O _i (xi)/3 Q are obtained along

the spanwise position x i, (by solution of governing equa-

tion) and the 0 CL/O Q, _ Co/O Q, and OCt,/O Q can be

easily found through the chain rules from equations of

CL,Co, andCe.

Numerical Solutions

Solutions for circulation:

Two numerical methods have been developed to

solve Eq. (1) for circulation. These are (a) the Multhopp

Interpolation technique, which is a Slrecial case of Fourier

Series method and widely used in fixed-wing cases and

(b) the Vortex Lattice Method, which can he easily ex-

tended for lifting-surface theory.

MulthopD lnteroolation Technique: The idea is to

transform the spanwise coordinate by :

x - 1 - cos( cp)
2

and replaces the downwash integral x)T (x) in Eq. (1) with

midpoint trapezoidal rule summation to obtain:
b --

fifO 112(1 +£2112)---x'll_/( l+e2x2)(ll_i3 +£2T12) cos(-_+l_.__i)d_d q"

where
b

Pil = _0

n=|

112(1+e2rlt2)_xirlp/(1 +e2d)(l+e21112 ) cos(_+St_;i)a_ (14-a)

and

Equation (14) represents_.the downwash due to M trailing

vortices of strength (d F/d 9 )l(rCM), which are along

the helical wake and are located at:

(l- 0.5) n 1= I,...,M
q)l= M '

with control points located at:

q)i = _-, i= 1,...,M-I

The Multhopp Interpolation formula suggests that:

M-I M-! (15)2
F(q)) = _ )-". Fj E sin(m_j) sin(mq))

f=l m=l

where Fj represents F(_j) and

= M' j = 1,..,M-1

Equation (15) is based on the following orthogonality
property:

/14-1
2

_ sin(mq)j) sin(mq)i) = _)ij
m=l

here, 8# is the Kronecker-delta. When Eq. (15) is used

in Eq. (14), X)T(Xi) reduces to :
M M-I /14-1

-1

1)'I(xi) = _-_ _ E -(j E msin(mq)j) cos(mq)/) Pil
j=-I m=l

M-| (16)

j=-I

where
M M-1

A T = 2@2 t=_lm=l_m sin(mq)j) cos(mq)/) Pit

here, A_ are the influence coefficients of trailing vortices

and can be solved for by numerical methods without any

difficulty, if x i and 1"11are specified and Pil can be calcu-

lated. However, Pil contains an integral with an infinite

upper limit and no closed-form solution exists. A numeri-

cal solution has been developed by the current authors in

Ref. 17 to calculate Pit semi-analytically. Results are very

accurate with minimal computation time.

Similarly, if we replace the downwash integral x)L (x)

in Eq. (1) with the Multhopp Interpolation formula at

control points x i, then _)L(xi) becomes:

1
fro _ F(_I) drl

_)L(Xi) = _ Ixi_ l]l[(E+lC.)2(Xi + l.i) 2 + 1] 1"5

_. r_l 1 --

M-I M-! r_

2M----__ FJ '_' sin(mq)j) f sin(mq)) sin(_p) d _p
j=l m=l 0 I COS(_i) - COS(q)) I

n-t (17)

= EALFj

#--1



where
M-I ;x

a L _ £ sin(mtpj) I sin(_
- 2Mn _(q)i) - cos((p) I

m=l 0

here, A/_ are the influence coefficients of bound vortices

and contains an integral with a Log singularity. This in-

tegral diverges when _i is equal tO q). It should be inter-

preted in other than the usual sense. The answer is given

by the concept of the "finite part" established by
Hadamard l° and has been applied to fixed-wing cases in

Ref. 11. In Appendix A of this paper, we show that A/L/

can be obtained analytically if F is expressed as the

Fourier sine series. In Eq. (IT), we apply the assumption

of small (r+ e)2. Cases for large (r+ e) 2 can also be cal-

culated elegantly and are described in Appendix A.

Finally, substitution of Eqs. (16) and (17) for the

downwash in Eq. (1) and application of resulting equation

at spanwise location q)i gives a (M-1)×(M-1) matrix

equation for M-I values of F's as:

U-_ (18)

_., Aii Fj = xi "Oi- Dc/Oo • i= I,...,M-1
j=l

where
T

aij-- A L + aij + 8ijKAR/(_F. i)

Once Ffs are obtained, C/, CDi, Ct. / CD? and Cp, can

be calculated as described before. The local induced

velocity _ai (xi) is found as:
M-I

lJ,(Xi) = DT(Xi)+ DL(Xi)= £ (a L + A T) -Fj

j=-I

Vortex Lattice Method (VLM): The conventional

VLM discretizes the rotor span into a number of panels,

M. The trailing point is located at the boundary of each

panel, and the control point is placed at the midpoint of

each panel, However, there is a controversy as how to
choose collocation points. Several papers 7'15'18'19 have

shown that this conventional VLM converges slowly and

does not appear to approach the correct limit for fixed-

wing cases. A similar phenomenon has been found for

rotary-wing cases in Re£ i 5. AlFthc._ papers suggest that
the semi-circle collocation points, which are defined in

the Multhopp Interpolation technique, are essentially re-

quired for VLM when the fastest rate of convergence is

desired. Most researchers have selected collocation points

arbitrarily or equally-spacedly. Such selection may be

adequate for aerodynamic analysis. But, it is not suitable

for aerodynamic sensitivity analysis.
The VLM in this paper uses the semi-circle colloca-

tion points to solve Eq. (1). For the trailing downwash

integral Ur (x) in Eq. (1), we apply the first order finite

difference on F with midpoint trapezoidal rule summation

to obtain A_i as:

1 (19)T

a_j = _ ( Pij - P//+! )

where PO is defined by the Eq. (14-a). A common way tO

calculate A L is described in Ref. 6. The straight vortex

filament with unit circulation is stretched from each trail-

ing point. Then, the sum of this vortex fdament and Eq.

(19) is equivalent to the influence of a horseshoe vortex

at panel j at control point xi_ However, this approach is

not completely rigorous, since the curved lifting-line has

been approximated by several straight vortex filaments.

Another way (used in this paper) to solve the problem is

to apply Eqs. (17) and (19) for downwash calculation in

Eq. (18), since both equations have the same control

points.

Solutions for derivatives of circulation:

Two numerical approaches can be used to solve Eq.

(2) for derivatives of circulation and result in same
numerical solutions. The fh'st one is to diseretize Eq. (2)

by following the path of discretizations used for solutions

of circulation. The second approach simply differentiates

a set of equations (expressed in equation number (18))

with respect to a particular design variable Q. Then, we

solve a matrix equation for M-1 values of derivatives of

circulation, which can be expressed as:
M-i -- M-I (20)

_ I-'. _ ( Xi-Oi ) _ Ai. -

£ A ij -_-SQ: 3 Q - _ -ff-_ Fj , i : l ,. ,M-1
j=l j=-I
where

3Q aO + 0O OQ

Equation (20) is a set of linear equations and can be

solved if the right hand side of Eq. (20) is known. How-

ever, not all terms exist for all cases. For example, the

term 0 AL/o Q exists for nonzero inplane curvature e; the

term 0 ( x i 0 i )/a Q is valid for parameters of twist dis-

tribution; and the term 3 [ KAR/( rc_ i ) ]/0 Q exists only

for parameters of chord distribution. The procedures are

systematically analogous to analyses for circulation which

are described in the previous section.

Results

Test problems

Equations (1) and (2) have been normalized with

respect to some reference quantities. The following

parametric values will be used in this paper for the refer-

ence-blade: 0o=l, _,=1, p=13=0.5, a)c=0.06,

8=0.6, I¢=e=t=m=0, AR=10 (ora=0.0637);

6



b = 2. In some cases, we compare results with different
chord distributions which are defined as:

(1) elliptic blades: _,= !,p = 0.5, 13= 0.5

(2) rectangular blades: _.= 1, p = O, 13= 0

(3) triangular blades: ;L= O,p = O, _ = 0

(4) tapered blades: _ = I/_, p = 0, 13= 0

(5) parabolic blades: k = 1, p = 0.5, 13= 0.5

where all blades have the same solidity based on the same

blade area (i.e., m= 0). Figure 6 shows the normalized

quarter chord distribution along the spanwise direction for
these blades.

Effect of number of panels or terms, M

Table 1 is the convergence results of circulation (1"3

and derivative (igF/0_c) with respect to out-of-plane curva-

ture (_c) for an elliptic blade at midspan x = 0.5. This table
implies that aerodynamic functions and derivatives are

equally accurate from both Multhopp Interpolation for-
mula and VLM but are sensitive to the number of dis-

cretization panels and terms M. Also, the analytical

methods are confirmed by the finite difference method

which solves Eq. (1) twice with _ = 0 and n = 0.001. The

similar accuracy is also obtained for CL, Co/Ct, _ and its

derivatives. For a reasonable number of terms or panels

(M=20), the methods provide approximately 4 digits of

accuracy for aerodynamic functions and 2 digits of ac-

curacy for aerodynamic derivatives. The following results

for this paper are based on M=20 by the Multhopp Inter-
polation formula.

Effect of curvatures of the the lifting line

Figures 7-9 are results of C L, CDI and CL/CDi as

functions as out-of-plane curvature I¢ for various blade

shapes. Figure 7 shows that CL is nearly proportional to

_. However, CDi is nearly constant for each blade shape

shown in Fig. 8. Results of CL/CD " in Fig. 9 have the

similar trend as those for CL. Therefore, by curving the

blades in the opposite direction of thrust (i. e., K > 0), the
rotor would be more efficienL The reason is because the

trailing vortex lines move away from the blades when i¢ is

increased. Consequently, the induced velocity along the
span is decreased and the thrust is increased. This

phenomenon is clearly shown in Figs. 10 and 11. Figure

10 presents the variation of circulation along the span.

Figure 11 presents the variation of induced velocity. It is

interesting to note that the inboard region (x = 0 -) 0.8) is

improved when !¢ is increased. Unfortunately, such a

blade is physically unrealizable due to the fact that the

helicopter blades have to cone up (i. e., _¢<0) to compen-

ate the centrifugal forces for structural considerations.
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For effects of inptane curvature e, similar trends of

results have been found as shown in Fig. 12 for CI./CDi.

The rotor lift-drag ratio will improve when e is increased.

Therefore, by sweeping the blades backward (i. e., e > 0),

the rotor would be more efficient Figure 13 presents the

variation of circulation along the span. Figure 14 presents

the variation of induced velocity. Note from Figs. 13 and
14 that the outboard region (x _- 0.4 --->1.0) has been im-
proved when e is increased.

One might wonder how much additional improve-
ment might be made by the combinations of r and e. One

answer is shown in Fig. 15 where contour lines of CL/CDi

are plotted for different values of Jc and e. It clearly

shows that positive _: and e can always improve the lift-

drag ratio, Ct/CD_ , of a straight blade (i.e., _: = e = 0). For

example, numerical results indicate that making

_= e = 0.3 can increase CL/CDi by 16 percent as com-

pared to the straight blade. However, making !¢= 8 = -0.3

can decrease this ratio by 10.4 percent. Also, Fig. 15 indi-

cates that the effect of r is slightly stronger than the ef-
fect of e. Figure 16 presents the contour lines of

3 (CL/CD)/_ e which represent the slope of Fig. 15 with

respect to e. The peak value occurs around e= 0 and

K--0.05. It is observed, from Figs. 10 and 13, that dual

peak circulations appear. This is very common for rotors

which do not have an ideal twist. Unlike the conventional

blade element theory, the three dimensional undistorted

wake model in this paper can catch this "dual peak"
phenomenon. Cases for different twist distributions and

inflow ratios have also been investigated. All results indi-

cate that positive K and e are very promising parameters

to increase lift in the inboard and outboard regions

respectively without introducing an additional induced
drag.

Effect of chord distribution

Figures 7,8,9, and 12 indicate that elliptic and

parabolic blades are better than rectangular blades. For
example, parabolic blades always provide more lift with

the same induced drag than rectangular blades. Elliptic

blades can provide the maximum CL and Co/ For all

blade shapes, a case with larger Ct. is always accom-

panied with larger CD_ and vice versa. Although triangular

blades provide the maximum CL/CD, they are not

desirable. The reason is because CL and CD_ are also very

small and this design is unrealistic due to the need for

larger Ct. to provide sufficient lift. A compromise design

is by the use of tapered blades, as shown in Figs. 7 and 9.



Suchbladescanprovide the minimum desired lift with

reasonable lift-drag ratio.

The results for effect of aspect ratio are shown in Fig.

17-20. Figure 17 indicates that CL grows with increased

aspect ratios for all blades. However, CDi, shown in Fig.

18, increases when aspect ratio is smaller than 9. Then, it

decreases with a larger aspect ratio where the flow field

is approaching the two-dimensional case and the induced

velocity tends to decrease along the span. Figure 19

shows the results of CL/CDi and indicates that CL/CD_ is

neatly proportional to aspect ratio. Figure 20 is the result

for the derivative of CL/CDi. Increasing the aspect ratio is

increasing the lift-drag ratio. However, the resulting in-

crease in blade weight would tend to limit the increase in

aspect ratio. Results for variations of p, [3, and _. and its

derivatives have also obtained and will be presented for

CL/CD_ only. Figure 21 indicates that variation of CL/CD_

with tip length parameter, 13, for an elliptic blade has the

minimum value around _ = 0.25. This minimum value is

around p = 0.20 with tip shape parameter, p, as shown in

Fig. 22. Figure 23 shows that variation of CL/CDi with

taper ratio, Z., for an elliptic blade has the maximum value

at k = 0.0 which represents the triangular shape.

Effect of twist distribution

The results for effect of x are shown in Figs. 24-26.

Figure 24 indicates that CL is nearly proportional to x.

This is due to the fact that a large value of x provides

large angles of twist along the span. It is interesting to

note that, from Fig. 25, CD_ decreases when x is negative.

Consequently, An optimum design of a rotor can be

specified around -0.05 < x < 0.05, which are shown in

Fig. 26 with maximum values of CL/CD/The results for

the effect of 8 are shown in Fig. 27 which presents the

variation of CL/CDi. It seems to imply that an optimum

design is around 0.35 < _5< 0.40. However, This is only

partially true due to the fact that a small value of x always

provides small values of Ct. and Co�

Conclusions

In summary, this paper offers analytical capability for

aerodynamic parametric studies and sensitivity analysis of

rotary wings in axial flight by using a 3-dimensional un-

distorted wake model in curved lifting-line theory.

Analytical expressions are developed for aerodynamic

functions and sensitivity derivatives with respect to shape

design variables including taper ratio, tip length, tip

shape, aspect ratio, inplane curvature, out-of-plane curva-

ture, twist ratio, and twist shape. The governing equations

of aerodynamic functions and derivatives are solved by
using both Multhopp Interpolation Technique and Vortex

Lattice Method. Numerical results s_ow that aerodynamic
functions and derivatives are insensitive to discretization

methods but are sensitive to the number of discretization

panels. For example, for a reasonable number of terms or

panels (M=20), the methods provide 4 digits of accuracy

for aerodynamic functions and 2 digits of accuracy for

aerodynamic derivatives.
Also, it is found that a rotor blade with out-of-plane

and inplane curvature can theoretically increase lift in the

inboard and outboard regions respectively without intro-

ducing an additional induced drag. However, positive out-

of-plane curvature is physically undesirable due to struc-

tural considerations, while positive inplane curvature e is
easier to obtain.

= lim

+ i!
TI+_

where

e = 2 smq)

In Eq. (17), the finite part (FP) for the following in-

tegral which contains a 1/Ixl type singularity is defined in

Ref. 11, Appen. A, as follows:

I= Fp_I f(_) dTI = lim [_-_: f(_) dr I
olxi - 'rll r._ o o Ixi - 1"11

[! _f(rl) d r ! 2f(xi) lne ] (A-l)
+ _n__lxi - 111 +

If the variable in Eq. (A-I) is transformed from 11 to q)

according to the semi-circle points, An equivalent equa-
tion can be obtained as follows:

1:peI 
o Icos(q)i) - cos(q)) I

f'_-_,__A_0)s_n(_0)_q) _[ Jo c0s(q)i)- cos( )!

f(q>) sin(_0) d q) + 2f(q)i) lne ] (A-2)
i cos(q)i) - cos(q)) I

Equation (A-2) can be solved analytically iff(rl) can

be expressed as the Fourier sine series. For example, let

f(rl) be equal to sin (mq)). Thcn,

_in_9_L_q,)sin(q)) d___
t = Fe J

0 ICOS(_i)- COS(q)) I

1 (A-3)
- 2 [ G(q_ ,m-l)- G(q)__n+]) ]

where

f cos (mq_) d
G(q),- ,m) FP

.I I Cos(q)/) - COS(q)) I
0



TheintegralGis obtained from the recurrence relation:

4 sin(mtPi)
G(tPi ,re+l) - 2 cos (¢Pi) G(tPi ,m) + G(tpi ,m--l)

m

where the initial integrals are:
4

G(tp i ,0 ) - sin In (sin (tpi))( tPi)

G(tpi ,I ) = 29 i , _+ 4 cot (s/n_!_9/)! !n (stln (tpi!) "
Substituting Eq. (A-3) in Eq. (17) we obtain

M-I

A/Lj = 2Mg _ sin(m_pj) .[ sin(mq_) sin(q_) d ¢p
m=l 0 I COS(_i) - COS(q_) I

M-t (A-4)e
- 4Mrc E sin(mq)/) [ G(fPi ,m-l) - G(q_i ,re+l) 1

m=i

Equation (A-4) is only good for small 0¢ + 0 2. For cases

for large_0¢ + 0 2, we use Multhopp interpolation formula

for h(rl) Fifo as :
M-I M-I

-- 2

h r= _ _'. ( hr')j _'. sin(mtpj)sin(mtp)
j=l m=l

where

1
h(_) =

[(E+I_)2(Xi + 0) 2 + 1 ]1.5

1 (A-5)

[(e+l¢) 2 (1 - 0.5cos(tpi) - 0.5cos(tp)) 2 + 111.5

Substituting Eq. (A-5) in Eq. (17) we obtain

A L =

4 M n [(e+_) 2 (1 - 0.5cos(tPi) - 0.5cos(q_j)) 2 + 1115
M-I

sin(mtpj) [ G(q_i ,m-l) - G(tPi ,m+l) ]
m=l
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Table1 Convergenceofcirculationandderivatives
withrespectto _:foranellipticbladeatmidspan.

Number circulation at circulation derivatives at midspan, _ F/_

of terms/ midspan, F (0.5) Analytical Methods Finite Difference Method

panels, M Multhopp VLM Multhopp VLM Muithopp VLM

8 0.01950 0.01970 0.00468 0.00470 0.00468 0.00470

16 0.01951 0.01957 0.00468 0.00468 0.00467 0.00469

24 0.01951 0.01953 0.00470 0.00470 0.00470 0.00470

32 0.01951 0.01952 0.00471 0.00471 0.00471 0.00471

40 0.01951 0.01951 0.00472 0.00472 0.00472 0.00472

48 0.01951 0.01951 0.00473 0.00473 0.00473 0.00473

56 0.01,9,51 ,1 0.01951 0.00474 0.00474 0.00474 0.00474

10
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