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Reducing weight and increasing lift have been an important goal of using flapping wing micro air vehicles (FWMAVs). However,
FWMAVs with mechanisms to limit the angle of attack (α) artificially by active force cannot meet specific requirements. This study
applies a bioinspired model that passively imitates insects’ pitching wings to resolve this problem. In this bionic passive pitching
model, the wing root is equivalent to a torsional spring. α obtained by solving the coupled dynamic equation is similar to that of
insects and exhibits a unique characteristic with two oscillated peaks during the middle of the upstroke/downstroke under the
interaction of aerodynamic, torsional, and inertial moments. Excess rigidity or flexibility deteriorates the aerodynamic force and
efficiency of the passive pitching wing. With appropriate torsional stiffness, passive pitching can maintain a high efficiency while
enhancing the average lift by 10% than active pitching. This observation corresponds to a clear enhancement in instantaneous
force and a more concentrated leading edge vortex. This phenomenon can be attributed to a vorticity moment whose
component in the lift direction grows at a rapid speed. A novel bionic control strategy of this model is also proposed. Similar to
the rest angle in insects, the rest angle of the model is adjusted to generate a yaw moment around the wing root without losing
lift, which can assist to change the attitude and trajectory of a FWMAV during flight. These findings may guide us to deal with
various conditions and requirements of FWMAV designs and applications.

1. Introduction

The requirements for the design of flapping wing micro air
vehicles (FWMAVs) include excellent aerodynamic perfor-
mance, high efficiency, and satisfactory maneuverability.
However, balancing all these standards is difficult for existing
FWMAVs. Fortunately, flying creatures have been consid-
ered as a basis for proposing new innovations related to fly-
ing. For example, insects can manipulate their wings to
complete a series of complex movements, such as hovering,
climbing, braking, accelerating, and turning. Inspired by
these phenomena, researchers have attempted to adopt the
physiological characteristics of insects and apply a bionic
model to artificial FWMAVs. Researchers have also con-
ducted a series of studies on this topic. For example, Ennos
[1] stated that torsion is necessary to design insect wings
because insects have to twist their wings between wingbeats
to optimize the performance of an aerofoil. Nevertheless,

the kinematic mechanism of insect wings is difficult to fully
understand because of the complex structure of organisms.
On the one hand, this scenario is a typical type of a fluid-
structure coupling problem, and the interaction between
wings and the unsteady flow field generated during their
movement is highly complicated. On the other hand, the
mechanism through which insects control their wings
involves numerous muscle structures and neural activities
but remains poorly understood. Beatus and Cohen [2, 3]
summarized this intractable behavior by applying a
reduced-order approach in which the wing hinge of insects
and fluid-structure interactions are represented by simpli-
fied models. Then, a passive pitching model based on the
torque exerted by insects on their wings was proposed. In
this model, the wing root of an insect is equivalent to a tor-
sional spring [4]. The pitching dynamics of wings are
assumed to be passively determined by combining aerody-
namic, torsional, and inertial moments. Bergou et al. [5]
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also confirmed that pitching is passive by showing that
aerodynamic and inertial forces are sufficient to pitch a
wing without the aid of muscles.

Numerous theories and experiments have shown that a
passive pitching model is generally accepted. Ishihara et al.
[6, 7] applied a novel fluid-structure interaction similarity
law to two- and three-dimensional wings and analyzed the
motion of a passive pitching wing through computational
and experimental methods. They mainly discussed the con-
tributions of a wing’s elastic, aerodynamic, and inertial forces
and tried to find the important control parameters of passive
pitching motion. Chen et al. [8] successfully used this passive
pitching model to estimate aerodynamic forces with quasis-
teady and numerical methods. They found that wings with
stiff hinges achieve a favorable pitching kinematic that leads
to large mean lift forces. This model is applicable not only
to a hovering state but also to a maneuvering state. Beatus
and Cohen [3] explained wing pitch modulation in maneu-
vering fruit flies by an interplay between aerodynamics and
a torsional spring. Zeyghami et al. [9] studied the passive
pitching of a flapping wing in turning flight and concluded
that passive wing kinematic modulations are fast and ener-
getically efficient. Similarly, our study equated the wing’s
flexibility to a torsional spring at the wing root located close
to the leading edge. This study is mainly aimed at determin-
ing whether aerodynamic force and efficiency could be
improved if we used this passive pitching model to design
FWMAVs and identifying whether the maneuverability of
FWMAVs would be compromised.

In this study, we investigate the aerodynamic perfor-
mance of a FWMAVwith a Reynolds number of 104. A series
of analyses is conducted on the basis of a bionic passive pitch-
ing model through a 3D numerical simulation and a system-
atic comparison among them. To develop a desirable
outcome of a FWMAV design, we discuss the effect of several
dominant parameters, such as torsional stiffness and rest
angle of torsional spring, on aerodynamic performance. We
find that a FWMAV with passive pitching wings more likely
reduces weight, increases lift, and shows great potential for
flight control.

2. Modeling and Method

2.1. Wing Model and Kinematics. Insect wings have a
dynamic geometry. They are made of different materials
and exhibit varying structures to adapt to different flight
environments. In practical applications, artificial wings can-
not achieve the same effect as insect wings. Consequently,
simplifications are frequently adopted. In this study, we use
a rectangle to approximate a planar shape and regard a flap-
ping wing as a thin plate with a uniform density (Figure 1).
The reason why the rectangular model wings are used is as
follows. Luo and Sun [10] have investigated the effect of wing
planform on the aerodynamic force production of model
insect wings in rotating at Reynolds numbers 200 and 3500
at an angle of attack of 40° in 2005 and revealed that the var-
iation in wing shape and aspect ratio (from 2.84 to 5.45) has
minor effects on the lift and drag coefficients. Based on their
conclusions, we neglected the effect of planar shape and

focused on other important parameters such as torsional
stiffness in this paper. Besides, the rectangular model wing
has been extensively used in many numerical simulations
[7, 11], which can be regarded as a typical case to illustrate
a universal conclusion.

To clearly describe the 3D motion of a flapping wing and
accurately analyze its force, we establish two coordinate sys-
tems with the same origin located on the wing root
(Figure 2). The inertial system O‐XYZ is located on the
ground, whereas the OXY plane is parallel to the horizontal
plane. The OX axis is oriented toward the trailing edge, the
OZ axis is opposite to the direction of gravity, and the OY
axis is determined on the basis of the right-hand rule. The
coordinate systemO‐xyz is fixed on the wing.Ox andOy axes
are along the chordwise and spanwise directions, respec-
tively. The Oz axis is determined on the basis of the right-
hand rule.

Insects generally have three degrees of freedom while
hovering. The motion perpendicular to the flapping plane
is relatively small and frequently overlooked during simpli-
fication. Therefore, the motion of a wing can be approxi-
mately decomposed into flapping and pitching, which are
described by the flapping angle φ and the angle of attack
α, respectively. Flapping refers to the rotation around the
OZ axis, whereas pitching corresponds to the rotation
around the Oy axis.
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Figure 1: Geometric parameters of a flapping wing. b is the
unilateral wingspan, c is the mean chord length, crot is the distance
between the leading edge and the rotation axis, R is the radius of
the wing tip, ΔR is the distance between the wing root and the
flapping axis, and R2 is the radius of the second moment of the
wing area.
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Figure 2: Bioinspired passive pitching model and coordinate
system.
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The flapping motion can be described by a trigonometric
function as follows:

_φ =
π

360
Φ sin 2πTð Þ, ð1Þ

where Φ and T are the flapping amplitude and nondimen-
sional time, respectively. Wing kinematic parameters are
nondimensionalized. The mean chord length and the average
velocity at the span location R2 are taken as the reference
length c and the velocity U , respectively. U is defined as 2Φ
f λc/180, where f and λ are the flapping frequency and the
wing aspect ratio, respectively. Reference time is defined as
c/U , and the nondimensional time T is t/ðc/UÞ. These refer-
ence values are used to nondimensionalize wing kinematic
parameters, forces, and moments in this study. Unless other-
wise specified, the physical quantities in the following sec-
tions are in a dimensionless form.

In previous studies, the wing is thought to pitch in
accordance with a preset form (e.g., sinusoidal curve and
trapezoidal curve). In general, α takes a constant value
except at the beginning or near the end of a half-stroke
[12]. _α is given by

_α = 0:5ωr 1 − cos
2π t − trð Þ

Δτr

� �� �

, tr ≤ t ≤ tr + Δτr , ð2Þ

where ωr is the mean angular velocity, tr is the time at
which the pitching motion starts, and Δτr is the nondi-
mensional time interval over which the rotation lasts.
The constant α in the upstroke and downstroke are
defined as αu and αd , respectively. In the time interval of
Δτr , the wing α changes from αu to αd .

An active pitching model artificially decouples φ from
α, which considerably simplifies the analysis and calcula-
tion processes. This model is also widely used in quasis-
teady estimations. However, this model also exhibits
unavoidable drawbacks in the design and application of
FWMAVs. It creates additional burdens to mechanisms
and does not reflect actual pitching motion. Under this
circumstance, a passive pitching model based on bionics
becomes widely recognized. This model was first proposed
because deformations play an important role on the aero-
dynamic performance of flapping wings, but it is difficult
to directly simulate the deformation process as a result
of the interaction between flexible wing with the surround-
ing flow and the complex structure of the insect wing. In
this paper, we considered the effect of deformation with
a reduced-order approach [3]. For most dipteran insects,
the narrow root region of wings is flexible, thereby allow-
ing them to rotate around the axis in the leading edge [6].
On the basis of this structural feature, we compress the
torsional flexibility of a flapping wing to the wing root
and simulate it with a torsional spring [5]. The variation
in α can be obtained as follows.

In a passive pitching model, α is determined in accor-
dance with the coupled dynamic equations of aerodynamic
and elastic forces. A flapping wing is considered as a rigid

plate, and the moment generated by the torsional spring at
a rotating axis can be expressed as

Mtorsion = −k α − α0ð Þ, ð3Þ

where k and α0 are the elastic coefficient and rest angle of the
torsional spring, respectively.

The initial state of a flapping wing can be artificially spec-
ified. In our study, it is set perpendicular to the OXY plane
(α0 = 90°). When the wing begins to flap, the aerodynamic
force is substantially perpendicular to the wing surface,
thereby generating a moment around the wing leading edge
and causing the wing to rotate. At this time, the torsional
spring applies a moment opposite to the aerodynamic
moment. Thus, the two moments interact with the inertial
moment and reach equilibrium. In comparison with the
aerodynamic force, the weight of the wing is essentially neg-
ligible because it is typically less than 0.5% of the entire
weight [13]. The aerodynamic and torsional spring moments
increase as the average flapping speed increases, resulting in a
large pitch angle.

The coordinate system fixed on the wing rotates at an
angular velocity _φ during motion. Thus, the transformation
relationship between coordinates O‐XYZ and O‐xyz must
be considered when the equation of α is derived:

〠τ =
dLw
dt

� �

OXYZ

=
dLw
dt

� �

oxyz

+ ω × Lw, ð4Þ

where ∑τ is the external moment, Lw is the momentum
moment of the wing relative to the origin of the coordinate
system, and ω is the angular velocity of the wing.

In the coordinate O‐xyz, the projection of angular veloc-
ity in three directions can be expressed as
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The component form of the dynamic equation can be
expressed as follows:

Ixx
dp

dt
+ Iyy − Izz
� 	

qr − Ixy pr +
dq

dt

� �

= τx,

Iyy
dq

dt
+ Izz − Ixxð Þpr + Ixy qr −

dp

dt

� �

= τy,

Izz
dr

dt
+ Ixx − Iyy
� 	

pq + Ixy p2 − q2
� 	

= τz ,
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where τx, τy , and τz are the components of the external

moment in the directions ox, oy, and oz, respectively. The
moment of the inertia of the wing to different axes and the
inertial product can be expressed as

Ixx =

ð

y2 + z2
� 	

dm,

Iyy =

ð

x2 + z2
� 	

dm,

Izz =

ð

x2 + y2
� 	

dm,

Ixy =

ð

xydm,

Iyz =

ð

yzdm,

Ixz =

ð

xzdm:

ð7Þ

When the wing is regarded as a flat plate and placed on
the Oxy plane, the wing is thin and can be disregarded. Thus,
z = 0. The preceding equation can be simplified as

Ixz = Iyz = 0,

Izz = Ixx + Iyy:
ð8Þ

An elastic restoring torque, which acts on the rotating
axis of the wing, is generated when the torsional spring is
deformed by an external force. Therefore, only the spanwise
direction should be considered:

Maero − k α − α0ð Þ = Iyy €α + prð Þ − Ixy _p − qrð Þ: ð9Þ

Finally, the equation of α can be written as

€α =
Maero − k α − α0ð Þ

Iyy
+
Ixy
Iyy

€φ sin α − _φ2
sin α cos α, ð10Þ

whereMaero is the aerodynamic moment acting on the wing.
This equation is solved using the improved Euler scheme,
and α is computed from the time integration.

2.2. Governing Equations and Solution Method. The govern-
ing equations of the flow are 3D incompressible unsteady
Navier-Stokes equations, which are written in the coordinate
system O‐XYZ in the following dimensionless form [14]:

∇ ⋅ u = 0,

∂u

∂t
+ u ⋅ ∇ð Þu+∇p −

1

Re
∇2

u = 0,

8

<

:

ð11Þ

where u is the velocity vector and p is the static pressure. Re is
defined as Uc/υ, where υ is the kinematic viscosity of the
fluid. The governing equations are solved using a pseudo-
compressibility method based on the upwind scheme [15,
16]. We introduce a partial derivative term of pressure versus

pseudotime in the continuous equation and transform the
elliptic continuous equation into a hyperbolic continuous
equation. Thus, the dimensionless flow control equation is
transformed into a hyperbolic equation, which considerably
improves the efficiency of the solution. We verified the
numerical solution method in our past relevant research,
and our previous conclusions are directly used in the present
work [12, 14, 17–19].

Once the Navier-Stokes equations are numerically
solved, the fluid velocity components and pressure at discre-
tized grid points for each time step are available. The aerody-
namic forces acting on the wing are calculated from the
pressure and the viscous stress on the wing surface [14].
The force and moment coefficients are computed by

CF =
F

1/2ρU2S
,

CM =
M

1/2ρU2Sc
,

ð12Þ

where ρ is the fluid density and S is the wing area. The com-
ponent of CF in theOZ direction is the lift coefficient CL. The
aerodynamic power coefficient CP is given as Cp = CM ⋅ ω,

where ω is the angular velocity vector in the coordinate sys-

tem O‐XYZ. The average lift coefficient CL and the aerody-

namic power coefficient CP are computed by averaging CL

and CP in a flapping period, respectively. Aerodynamic effi-
ciency η, which measures the wing aerodynamic power con-
sumption to produce a certain amount of lift, is defined as

η =
CL

3/2

CP

: ð13Þ

As a result of interaction between flapping wing and its
own steady flow, the equation of α (equation (10)) and the
Navier-Stokes equations (equation (11)) are coupled in the
solution process. In order to solve this coupled dynamic
problem, we refer to the Euler predictor-corrector method.
Supposing that α of the wing is known at a certain time step,
the boundary condition of the Navier-Stokes equations can
be known and the flow equations can be solved to provide
the aerodynamic forces and moments at this time step. Then,
the value of α would be updated and the equations of motion
would be marched to the next time step. This process is
repeated in the following time steps. In theory, the iteration
needs to be continued at a certain time step until the aerody-
namic moments and α of the wing no longer change. But Wu
et al. confirmed that the Euler predictor-corrector method
has sufficient accuracy in practical application [20].

2.3. Validation. The velocity and the pressure in the flow field
around the wing are obtained using an O-H grid (Figure 3). A
typical case is selected and tested in which the domain
parameters are as follows: Re = 16100, λ = 3, Φ = 120°, and
T = 7:255.

The Reynolds number of most insects and flapping crea-
tures generally lies within the range of 102~103 because of
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their small size and weight. For example, the Reynolds num-
ber of Drosophila is approximately 160, its total weight is less
than 20mg, and its wing length is only approximately
2.5mm. For a bumblebee, these parameters are 1100,
175mg, and 13mm, respectively. In this study, we aim to
design FWMAVs with a good load capacity in which the
Reynolds number is slightly larger and reaches 104. However,
a laminar flow transition problem may occur under this sce-
nario. Isogai et al. [21] compared the calculation results of
laminar and turbulent flows to investigate issues related to
flapping thrust and propulsion efficiency. They determined
that the difference between the results is small when the
reduced frequency is large. Moreover, no evident flow sepa-
ration is observed, and the flow structure is similar to laminar

and turbulent flows with only slight differences in several
details. On the basis of the results of Isogai et al., we use lam-
inar flow without introducing a turbulence model under a
Reynolds number of 104 in our calculation because the
reduced frequency of our aircraft is within their conclusions.

In numerical solutions, results and efficiency are affected
by grid quality. As such, an appropriate grid density, a com-
putational domain size, and a step value should be deter-
mined to ensure the accuracy and speed of calculation.
Three sets of grids are evaluated to select the appropriate grid
density: (a) 51 × 57 × 63 (around the wing section, in the nor-
mal direction of the wing surface, and in the spanwise direc-
tion of the wing), (b) 64 × 73 × 79, and (c) 80 × 93 × 99.
These sets differ in density but have the same domain size

(a) (b)

Figure 3: (a) Complete grid and (b) surface mesh.
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Figure 4: Comparison of three grids with different (a) densities and (b) time steps.
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of 40 times the chord length and a nondimensional time step
value of 0.02. The time course of the aerodynamic force coef-
ficients (CL and CD) in one cycle is shown in Figure 4, indi-
cating that the relatively coarse grid exhibits a remarkable
deviation at the peak. The other parts of the three grids pres-
ent good agreement.

Similarly, grids with different time step values are veri-
fied. A grid with a density of 64 × 73 × 79, a domain size of
40c, and a step value of 0.01 is selected to balance the calcu-
lation accuracy and the time cost.

3. Results and Discussions

The cases under typical conditions are chosen first to ensure
comparability of the active and passive pitching wings: Re
= 16100, λ = 3, Φ = 120°, and T = 7:255. α is an important
parameter that influences the wing aerodynamic perfor-
mance, so it is set to be changeable in this study. For the
active pitching wing, αu and αd increase or decrease by 1.5
times on the basis of 45°. For the passive pitching wing, k
increases or decreases by 8 times on the basis of 1.2, indirectly
leading to the change in α.

3.1. Instantaneous α of the Passive Pitching Flapping Wing.
Studies on the mechanism of insect motion have shown that
passive pitching is common during flight. A typical charac-
teristic of α is “double peak oscillation” [11]. In particular,
α∗ continues to increase during the first quarter of a wingbeat
cycle and then gradually reaches the maximum value, where
the first peak occurs. Subsequently, α∗ starts to decrease and
rebounds slightly near the end of upstroke/downstroke,
where the second peak occurs. Lastly, α∗ continues to decline
and returns to its initial value. In Figure 5, the solution for the
coupled dynamic equation corresponding to the simplified
passive pitching model is similar to experimental results
[22, 23] and computational results [9] listed in the previous
literature, which exhibits a tendency quite different from
the active pitching.

To investigate the reason why the curve of α has two
peaks, we analyze the variations in aerodynamic, torsional,
and inertial moments within a wingbeat cycle to determine
their interaction. Given that α changes continuously during
flapping, a flapping wing has a positive pitching angular
velocity, although it is in equilibrium at the beginning of
upstroke (Figure 6). Initially, the effect of the inertial moment
is stronger than those of aerodynamic and torsional
moments. This condition causes the wing to move farther
from the initial position, and α∗ increases continuously until
it reaches the peak. Then, the effect of the inertial moment
declines, whereas the effect of the torsional moment becomes
considerable. As such, the flapping wing slowly returns to its
initial position, which causes α∗ to decline. However, an
exception occurs when the magnitude of the aerodynamic
moment is the largest. The tendency of the wing to restore
equilibrium is hindered, and α∗ increases slightly. Thus,
another small peak can be observed in the curve. Subse-
quently, inertial moment prevails, thereby causing α∗ to
decrease rapidly to the initial value. The situation in down-
stroke is similar.

3.2. Effect of Torsional Stiffness on the Aerodynamic
Performance of the Passive Pitching Model. In the passive
pitching model, k is an important parameter that consider-
ably affects aerodynamic force and power consumption.
Excess rigidity or flexibility deteriorates the performance.
From Table 1, we can see that the torsional spring generates
considerable elastic recovery moments when k is excessively
large; i.e., the flapping wing is too rigid. Torsional moment
offsets the effect of the aerodynamic moment within a short
period each time the flapping wing rotates. Thus, the wing
can only oscillate near the initial α. Although this condition
can produce a certain amount of lift, it can also lead to a
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distinct increase in drag, thereby causing aerodynamic power
consumption to become extremely high. Consequently, the
overall aerodynamic efficiency is low. If k is excessively small,
i.e., the flapping wing is too flexible, then the aerodynamic
moment is clearly dominant. Once the wing starts to flap, α
rapidly increases, and the wing becomes parallel to the inflow
direction. The effect of torsional moment is weak and unable
to maintain a stable periodic motion. Although drag and
aerodynamic power are small, lift is considerably lower than
the required value.

Figure 7(a) shows the time history of α for cases with dif-
ferent k. These curves have similar trends with that reported
previously by Kolomenskiy et al. [24]. They changed the tor-
sional stiffness to obtain the one that coincides best with the
experiment measurement, proving that this kind of simpli-
fied passive pitching model successfully reproduces the main
dynamical features of some insects.

The preceding analysis shows that a suitable k should be
selected to design a FWMAV with good load capacity and
high efficiency. Different values are taken at approximately
equal intervals within the limitation of 0:15 ≤ k ≤ 6:4 to fur-
ther explore the effect of this parameter on aerodynamic per-
formance. For comparison, the related results of the active

pitching wing are also plotted. The points of CL, CP , and η

are fitted by the curves. The maximum CL of the active pitch-
ing model is chosen as the baseline. The dashed line defines
the lift constraint, and the points of the red curve above it
represent the target lift that can be satisfied. Similarly, the
dash dot line defines the aerodynamic efficiency constraint,
and the points of the green curve above it indicate a higher
aerodynamic efficiency. In Figure 8, the ideal range of k
may be in the intersection of the two regions with an approx-
imate value of 1–2.

3.3. Comparison of the Passive and Active Pitching Wing
Aerodynamic Performance. Based on the previous analysis,
a conclusion can be drawn that the passive pitching wing
can maintain a high aerodynamic efficiency while generating
more lift, which is beneficial to FWMAVs to enhance the
payload and implement the maneuver flight. Although a
small loss of lift is observed at the beginning and the end of
the upstroke/downstroke, the instantaneous lift at the middle
stage significantly increases by nearly 30% (Figure 9) and the
average lift in one cycle improves by 10%, with the coefficient
changes from 1.519 to 1.671. For instantaneous power, the
passive pitching wing consumes much more power in the ini-
tial phase of the upstroke/downstroke but greatly saves
power in the phase of rotation. Overall, the average aerody-
namic power consumption slightly differs between the active
and passive pitching wings in one cycle; their coefficients are
2.287 and 2.291, respectively.

Several differences can be observed in the flow field
around the wings in the two models. The periodic motion
causes LEV to develop and then decline. Subsequently, the
LEV in the opposite direction begins to expand. During the
entire process, the LEV attached to the wing surface ensures
the distribution of aerodynamic forces. Figure 9 shows that
no evident vorticity is observed around the flapping wing
during the initial stage of the upstroke, and the generated lift
is small. The LEV of the twomodels becomes increasingly sig-
nificant as time progresses. However, the intensity of the
active pitching model rapidly increases, and the lift is larger
than that of the passive pitching model during the initial
period. Subsequently, the LEV of the passive pitching model
develops rapidly. A clear enhancement in lift is observed
because vorticity is concentrated, attached to the surface,
and continuous. This condition can also be explained by pres-
sure distribution. Figure 10 shows that the pressure difference
between the upper and lower surfaces of the passive pitching
wing is more considerable than that of the active pitching
wing. LEV gradually sheds at the end of upstroke, and the lift
declines. During this process, the vorticity of the passive
pitching model remains relatively concentrated, whereas the
vorticity of the active pitching model becomes dispersed.

We associate the aerodynamic force with vorticity in the
flow field and attempt to explain the aforementioned phe-
nomenon from another perspective. In an incompressible
viscous flow, the relationship between aerodynamic force
and vorticity is defined as [25]

γ
∗
f,b
=

ð

V f +Vb

r
∗
× ω

∗dV , ð14Þ

where ω∗ is vorticity; r∗ is the position vector; V f and Vb are

the volumes of fluid and solid, respectively; and γ∗
f,b
is the first

moment of vorticity.
The aerodynamic force vector F∗ can be written as

F
∗
= −

1

2
ρ
dγ∗

f,b

dt∗
+ ρ

d

dt∗

ð

Vb

v
∗dV , ð15Þ

where v
∗ represents the speed of a certain point in Vb. Its

dimensionless form is expressed as

F= −
dγ

f,b

dτ
+

2

ρc

d

dτ

ð

Vb

vdV , ð16Þ

where F= 2F∗/ρU2S, γ
f,b
= γ

∗
f,b
/UcS, and v = v

∗/U .

If the wing rotates at a constant speed, then the first term

at the right of equation (16) can be written as −4 _φ2ðVb/ScÞ
ðrm/cÞ, where rm is the position of the wing centroid, and the
second term at the right of equation (16) can be written

as −2 _φ2ðVb/ScÞðrm/cÞ. Vb/Sc is small when the wing is
thin. Thus, the two terms are small. Equation (16) can
be approximated as

F= −
dγ

dτ
, ð17Þ

Table 1: α, CL, CP , and η corresponding to different k.

k Max/min α CL CP η

6.4 105°/74° 1.196 7.394 0.177

1.2 132°/48° 2.109 4.476 0.684

0.15 165°/9° 0.481 1.033 0.323
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where γ is the sum of the first moments of vorticity in the
fluid. The lift and drag coefficients can be written as

CL =

d −γy


 �

dτ
,

CD =
dγx
dτ

cos φ +
dγz
dτ

sin φ,

ð18Þ

where γx, γy, and γz are the components of γ in the x, y,

and z directions, respectively.

Equation (18) indicates that aerodynamic force is pro-
portional to the time rate of change in the first moment of
vorticity. Since the γy curve of passive pitching has a

larger slope in the middle of the upstroke/downstroke
(T ≈ 0:2–0.4/T ≈ 0:7–0.9) than that of active pitching
(Figure 11), the lift of the passive pitching wing is greater
than that of the active pitching wing during this period. In
combination with the characteristic of α (Figure 5), we
assume that the rapid change in vorticity may be attrib-
uted to the second small peak, indicating the occurrence
of a sudden reverse pitch motion.

3.4. Control Strategies in the Passive Pitching Model. Despite
of a higher lift compared to active pitching wing, the passive
wing kinematic modulations are energetically efficient [9].
Early studies on fruit flies have drawn conclusions from var-
ious observations and experiments that fruit flies asymmetri-
cally change the twist angle of their left and right wings and
drive their body to complete a lateral movement [22]. Given
that the passive pitching model is based on the characteristic
of insects, we infer that a similar effect can be achieved in the
design of FWMAV [3].

In our calculation, the flapping wing is in an equilibrium
position when α = 90°. At this time, the torsional spring
exhibits no angular displacement and the recovery moment
is 0. In the previous analysis, α0 = 90° and the initial position
of the wing is the equilibrium position. However, the initial
position of the wing deviates from the equilibrium position
when α0 ≠ 90°. The symmetry of α during the upstroke and
downstroke is broken, thereby increasing horizontal and ver-
tical forces and resulting in a moment around the wing root.
Almost no lift loss is observed when a moment is produced.

Figure 12 shows that relative speed and drag increase
during the upstroke as α0 decreases, thereby causing a posi-
tive variation in horizontal force. During downstroke, rela-
tive speed and drag decrease, thereby causing a positive
variation in horizontal force. Thus, a large yaw moment is
generated around the wing root. Simultaneously, the lift
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increases during upstroke, thereby increasing the vertical
force. Then, the lift decreases during downstroke, conse-
quently decreasing the vertical force. As such, the variations
in vertical forces during the upstroke and downstroke cancel
each other. However, their distribution contributes to the
pitch moment around the wing root.

In Figure 13, the average aerodynamic power almost
remains the same when α0 changes from 70° to 110°. The rest
angle of the torsional spring can be used as a control variable
in applying the passive pitching model. The adjustment of α0
on the left and right wings controls the attitude and trajectory

of the aircraft during flight. This process requires neither
complex auxiliary mechanisms nor additional power input,
and this characteristic is an advantage that is not exhibited
by the active pitching model.

4. Conclusions

We investigate the aerodynamic performance of the passive
pitching model on FWMAVs via 3D numerical simulation
and demonstrate that the angle of attack exhibits the charac-
teristic of “double peak oscillation” under the combination of
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aerodynamic, spring, and inertial moments in the simplified
passive pitching model, which simulates the motion of insect
wings well. Torsional stiffness considerably affects aerody-
namic force and efficiency in the passive pitching model.
Excess rigidity or flexibility deteriorates the performance.
According to the comparison between active and passive
pitching wings, with appropriate torsional stiffness, the aver-
age lift can be enhanced by 10% at the same aerodynamic effi-
ciency when the wing pitches passively. Simultaneously, the
yaw moment around the wing root can be obtained to assist
the control system without losing lift by setting different rest
angles for the left and right wings. These results show that the
passive pitching model positively contributes to the improve-
ment of the hovering and maneuverability of FWMAVs. In
the future, we will conduct a series of studies about the effect
on the stability caused by passive pitching wing to further
investigate this bionic model.
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