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Abstract

The study presents and compares aerodynamic simulations for an air-
foil section with an adaptive trailing edge flap, which deflects follow-
ing a smooth deformation shape. The simulations are carried out with
three substantially different methods: a Reynolds Averaged Navier-Stokes
solver, a viscous-inviscid interaction method with single and double wake
implementations, and an engineering dynamic-stall model suitable for im-
plementation in aeroelastic codes based on Blade Element Momentum
theory. The aerodynamic integral forces and pitching moment coefficients
are first determined in steady conditions, at angles of attack spanning
from attached flow to separated conditions, and accounting for the effects
of flap deflection. The paper characterizes then the dynamics of the un-
steady forces and moments generated by the airfoil undergoing harmonic
pitching motions, and harmonic flap deflections. The dynamic responses
produce important variations of the aerodynamic coefficients over their
corresponding steady values. The dynamics characteristics of the un-
steady response are predicted with an excellent agreement among the
investigated methods in attached flow conditions, both for airfoil pitching
and flap deflection. For higher degrees of flow separation, the methods
still depict similar overall dynamics, but larger discrepancies are reported,
especially for the simpler engineering method.

1 Introduction

Several research projects have highlighted the potential benefits of a new gen-
eration of wind turbine rotors, which would allow for enhanced active load al-
leviation by including active aerodynamic devices distributed along the blades
[1, 2]. Active aerodynamic devices are able to alter the aerodynamic forces
locally along the blade span by modifying the geometry of the airfoil section;
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they thus allow to vary the aerodynamic loading on the whole blade, without
acting on its pitch angle. Particularly promising results in terms of fatigue load
alleviation have been reported by simulations considering adaptive trailing edge
flap (ATEF) devices [3, 4, 5, 6]. The adaptive trailing edge flap modifies the
geometry of the airfoil by deflecting the aft portion of its camber-line; Troldborg
et al. [7] have shown that deflections following a smooth continuous deformation
shape return better aerodynamic performances compared to a classic rigid flap
rotating around its hinge point.

The presence of the active flaps poses new challenges to the aerodynamic
models used in the design and aeroelastic simulation of the turbine response;
the steady aerodynamic forces and moment on the blade sections as well as their
unsteady dynamics will in fact depend not only on the section angle of attack,
but also on the flap deflection. Previous studies have addressed the problem of
simulating unsteady aerodynamic forces on an airfoil section with flaps by using,
among others, Navier-Stokes solvers [8, 9], panel code methods [10], viscous-
inviscid interaction models [11, 12], and simpler engineering methods, which
considered either quasi-steady approximations [13], or attached flow models
[3, 14], or dynamic-stall type of models [15, 5]. On account of their lower
computational requirements, engineering methods have often been integrated
in Blade Element Momentum (BEM) based aeroelastic codes, allowing thus to
simulate the full response of a turbine with active flaps.

The paper considers three state-of-the-art methods to simulate the inte-
gral aerodynamic forces and moment coefficients of a 2D airfoil section under-
going pitching motion, and trailing edge flap deflections. The methods are,
in decreasing order of computational requirements: EllipSys 2D, a Reynolds
Averaged Navier-Stokes (RANS) solver [9]; NTUA viscous-inviscid interaction
method [16] with a double wake, and a single wake implementation; ATEFlap,
a dynamic-stall engineering model [17].

The aim is to characterize the unsteady aerodynamic response of the airfoil
to changes in the angle of attack or the flap deflection, and to compare the
responses simulated by the three methods. Similarities and differences among
the simulated responses provide an indication of the codes modeling perfor-
mances; in particular, the comparison of the simpler ATEFlap dynamic-stall
model against more complex methods will serve to validate the model capabil-
ities, and to highlight its limitations. The ATEFlap model, thanks to its low
computational requirements, can be conveniently integrated in a BEM-based
aeroelastic simulation tool, and thus employed to design and assess the response
of a wind turbine with active flaps. The paper further develops the code com-
parison task carried out initiated within the frame of the UpWind European
project, work package 2 “Aerodynamics and aero elastics”[18].

The following section briefly describes the investigated methods, and their
prominent characteristics, thorough descriptions are provided in the biblio-
graphic references. Section 3 lists the specification of the test case considered in
the simulations, and describes the airfoil and trailing edge flap set-up. Aerody-
namic forces for different angles of attack and flap deflections are first computed
with EllipSys and the NTUA codes in steady conditions; the results, presented in
section 4, serve as input to the ATEFlap model. Simulations are then performed
for the airfoil undergoing prescribed harmonic pitching motion, and harmonic
flap deflection; the aerodynamic response is simulated at different mean angles
of attack, covering attached flow conditions, separation onset, and stalled flow,
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section 5.

2 Computational methods

2.1 EllipSys

EllipSys 2D is a CFD (Computational Fluid Dynamic) code originally developed
by Michelsen [19, 20], and Sørensen [21]. The code solves the incompressible
Reynolds Averaged Navier-Stokes (RANS) equations in general curvilinear co-
ordinates, using a multiblock finite volume discretization. The computations
shown in this work are all carried out under the assumption of fully turbu-
lent flow, and applying the k-ω Shear Stress Transport (SST) eddy-viscosity
turbulence model from Menter [22].

The motion of the airfoil is simulated by moving the computational grid, and
accounting for the additional fluxes that are generated as the grid cells vertices
are displaced. The flap deflection is modeled through a grid morphing routine
[9], where the position of the grid points for an arbitrary flap deflection are
determined by linear interpolation of the two meshes generated with the flap at
maximum upwards and downwards deflection (±5◦ in this study); the additional
fluxes caused by the displacement of the cell vertices are also accounted for.

Among the investigated methods, the EllipSys RANS solver is the one with
the highest computational requirements: simulations of a 10 seconds time series
of the aerodynamic forces on a typical 2D airfoil section, as the one presented
here, require approximately 3 minutes when parallelized on 4 CPUs.

2.2 NTUA 1W and NTUA 2W

NTUA 1W and NTUA 2W are viscous-inviscid interaction codes that have
been developed at NTUA [23, 12, 16]. In both codes the potential flow part is
simulated by singularity distributions along the airfoil geometry and along the
wake (sources and vortices). The wake is represented by vortex particles (point
vortices), which are allowed to freely move with the local flow velocity (free
wake approach). The viscous flow solution is obtained by solving the unsteady
integral boundary layer equations. The coupling of the two sets of equations
is achieved through a transpiration velocity distribution along the airfoil sur-
face that represents the mass flow difference over the boundary layer height
between the real viscous flow and the equivalent inviscid flow. The boundary
layer equations are discretized using finite differences, and the final set of non-
linear equations (potential and boundary layer) is solved simultaneously using
Newton-Rapshon algorithm. The boundary layer solution is supplemented by
a transition prediction model based on the eN spatial amplification theory, and
by a dissipation closure equation for the maximum shear stress coefficient Ct
over the turbulent part.

The main difference between the NTUA 1W and NTUA 2W codes is that in
NTUA 1W the boundary layer equations are integrated over the whole airfoil
surface and the trailing edge wake, while in NTUA 2W they are only solved up
to the position where flow separation takes place. Thereafter, a second vortex
sheet is shed from the separation location and interacts with the trailing edge
vortex sheet; together they form the separation bubble. By introducing this
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second vortex sheet, convergence of the solution can be achieved even in deep
stall conditions. This is the main advantage of the double wake approach against
conventional boundary layer methodologies.

Among the different methods tested in the paper, NTUA 1W and NTUA
2W models are intermediate in terms of computational cost. A 10 seconds
simulation of a 2D airfoil is resolved in about two minutes on a single CPU.
Although the simulation gets slower, as the number of particles in the wake
increases, hybrid wake acceleration techniques have been developed with the
aim to keep computational effort constant [24].

2.3 ATEFlap

The ATEFlap is an engineering model, which couples a potential flow solution
with a Beddoes-Leishmann-type dynamic stall model. The model develops,
and partially amends the shortcomings of the dynamic-stall model presented in
Andersen et al. [15]; a more detailed description is reported in Bergami and
Gaunaa [17].

The potential flow part of the model is based on Gaunaa’s [25] model for
a thin airfoil undergoing arbitrary motion and camber-line deformation; the
dynamics effects on the circulatory forces are described through a superposition
of indicial response functions of the Wagner type. The indicial response function
is formulated in exponential terms to allow for an efficient time integration
scheme, and the function coefficients are tuned to fit the indicial response of
the investigated airfoil, table 1, as it differs from Jones’s standard flat-plate
response [26].

Flow separation dynamics are represented by a Beddoes-Leishmann type dy-
namic stall model, as described in Hansen et al. [27], where the total circulatory
lift force is computed as a weighted sum of a fully attached contribution, and
a fully separated one. The separation dynamics are enclosed in the weight fac-
tor of the sum, which result from a sequence of two first-order low-pass filters,
whose time constants depend on two non-dimensional parameters τP and τB
[27, 17]. The values used in the computations are reported in table 1.

Ai 0.1784 0.07549 0.3933 τP 1.5
bi 0.8000 0.01815 0.1390 τB 6.0

Table 1: Computation set-up for the ATEFlap dynamic-stall model. Indicial lift response
function coefficients for NACA 64-418 airfoil, and dynamic stall non-dimensional time
parameters.

The model requires as input the airfoil steady integral forces and moment
coefficients at various angles of attack, as well as the coefficient variations caused
by steady flap deflections. In the study, three set of steady input referring to the
same airfoil and flap configuration are considered: one generated from steady
computations with EllipSys 2D, and two sets retrieved from steady simulations
with the NTUA code, using either the single or the double wake configuration.

Simulations with the ATEFlap model have very low computational require-
ments, rendering the model particularly attractive for implementation in time
marching aeroelastic simulation codes [17]; as an indication, a 10 seconds sim-
ulation of unsteady forces on a 2D airfoil section is resolved in less than one
second on a single CPU.
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3 Test case

The airfoil considered in the study has a NACA 64-418 profile, and is fitted
with an adaptive trailing edge flap, which extends for the last 10% of the chord.
At null flap deflections, the airfoil has the standard NACA 64-418 profile, while
positive flap angles corresponds to a downwards deflection of the trailing edge
(increased lift), and vice-versa for negative flap angles, figure 1.
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Figure 1: Camber-line deformation corresponding to flap deflections of ±5◦ on the investi-
gated NACA 64-418 airfoil profile.

The deflection of the flap is modeled as a deformation of the camber-line,
leaving the airfoil thickness unchanged. The camber-line points are displaced
normally to the chord-line by a distance Δycamb = β · yfl, where β is the flap
deflection (in degrees), and the function yfl describes the flap deflection shape,
i.e. the camber-line variation for a unitary flap deflection. The deflection shape
for a unit chord length airfoil is defined as a circular arc starting at 90 % of the
chord length; the radius of the circle is set so that the line connecting the point
on the arc at the trailing edge with the flap starting point forms an angle of 1
degree with the undeformed chord-line, figure 1:

yfl/c

{
yfl/c = 0.0 for x/c < 0.9

yfl/c =

√
R2

c − (x/c− 0.9)2 −R2
c for x/c ≥ 0.9

(1)

where the radius of the circular arc is given by

Rc =
0.12 + δ2y

2δy
, (2)

δy = 0.1 tan (1 · π/180) . (3)

Simulations are carried out for the airfoil undergoing harmonic variations
of the angle of attack (aoa), obtained by prescribed pitch motion with respect
to a rotation axis located at the quarter-chord of the airfoil. A combination of
different amplitudes and mean angles of attack is considered, table 2, spacing
from fully attached to stalled flow conditions. Additional simulations evaluate
the response to prescribed harmonic flap deflections of various amplitudes, table
2, and with the airfoil fixed at the same mean angles of attack as specified before;
note that, in this study, the airfoil angle of attack is always defined with respect
to the chord-line corresponding to the undeflected flap.

The simulations are replicated for harmonic variations with three reduced-
frequencies k, also listed in table 2. The reduced-frequency is a dimensionless
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quantity, which gives an indication of the degree of ‘unsteadiness’ of the aero-
dynamic problem; it is defined as

k =
ωbhc
U∞

, (4)

where ω is the frequency of the harmonic variations, bhc is the half-chord length,
and U∞ the free-stream flow speed. The investigation comprises reduced fre-
quencies that fall within the intervals of what are typically defined as quasi-
steady (k = 0.02), unsteady (k = 0.1), and highly-unsteady (k = 0.5) con-
ditions; the first two values corresponds to the reduced frequencies typically
encountered on wind turbine blades in relation to the rotational frequency. All
the simulations are carried out with a Reynolds number of six millions based
on the airfoil chord.

Mean Aoa [deg] 0, 8, 12, 16, 18
Aoa ampl. [deg] 0.5, 1.0, 2.5
Flap ampl. [deg] 1.0, 2.0, 5.0
Red.frq. k [-] 0.02, 0.1, 0.5

Table 2: Test matrix for the code comparison unsteady simulations. Each combination of
mean angle of attack and oscillation amplitude (for either the angle of attack or the flap)
is replicated for each of the three reduced frequencies.

4 Steady aerodynamic response comparison

The steady aerodynamic responses of the airfoil and flap are simulated with
EllipSys, and the NTUA codes, with single (1W), and double wake (2W) config-
urations; the double wake implementation is considered exclusively in separated
flow conditions, for angles of attack from 11 to 22 degrees. The steady data
provide a baseline indication of the unsteady loops mean values; as the three
methods return different steady responses, each method will provide a separate
set of steady input data for the ATEFlap model.

The steady responses are presented first for the airfoil with the flap fixed
in neutral position, thus corresponding to a standard NACA 64-418 profile;
the steady effects of flap deflection are then reported as variations around the
baseline values for the integral aerodynamic forces and moment at different
angles of attack.

4.1 Baseline airfoil

The steady lift coefficients returned by EllipSys and NTUA 1W are in very good
agreement in the attached flow linear region, figure 2(a); the curves have nearly
the same slope, and only a small offset on the angle of attack corresponding to
zero lift. The agreement deteriorates at higher angles of attack, where, due to
more pronounced flow separation, the thin wake assumption made in the single
wake method is no longer valid, and the NTUA 1W code returns higher lift
values. The double wake method returns slightly lower lift coefficients, with a
marked dip around 18◦ not seen in the EllipSys results.
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(b) Drag Coefficient. The steady drag computations based on mo-
mentum theory for the NTUA 1W result are included for compari-
son (1W Cd MT).
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Figure 2: Steady aerodynamic response for the NACA 64-418 and flap in neutral position.

The prediction of drag forces, figure 2(b), is more problematic for the bound-
ary layer methods, as the drag force returned by direct pressure integration is
biased by the suppression of the streamline curvature effects [12]. The bias is
particularly marked in the NTUA 1W response, which predicts very low drag
coefficients, initially decreasing with the angle of attack. The drag coefficients
returned by the momentum equation applied to a control volume around the
airfoil are in better agreement with the CFD results, although the drag increase
at higher angles of attack is more marked, as shown by the dashed blue line in
figure 2(b); a steep drag increase at high angles of attack is also reported in the
NTUA 2W results, red line in figure 2(b).

The three codes agree in predicting negative (‘nose-down’) aerodynamic mo-
ments, figure 2(c) and display similar trends of the moment coefficient versus
angle of attack, although, especially at higher angles, the coefficient values pre-
dicted by the codes are rather different.
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Figure 3: Steady aerodynamic response for flap deflection. The steady effects are expressed
in terms of variations from the aerodynamic coefficients of the airfoil with undeflected
flap.

4.2 Trailing edge flap variations

The steady aerodynamic responses to trailing edge flap deflection are presented
as variations of the steady coefficients from the baseline airfoil with undeflected
flap.

The maximum lift increase predicted by EllipSys for +5◦ flap deflection is
approximately equivalent to an increase of angle of attack of 1.8◦, figure 3(a).
NTUA 1W predicts higher maximum lift variations (equivalent to a 2.3◦ increase
in angle of attack), and a marked decline of the flap effects with increasing angle
of attack, especially for positive flap deflections: at 10◦ angle of attack the lift
variation is already half the maximum one. The decline predicted by EllipSys
is smoother, the flap effects are halved above 17◦ aoa, and nearly symmetric for
positive and negative flap deflections. For higher angles of attack, NTUA 2W
returns steady lift variations that are on average closer to EllipSys results, but

8



displays a marked dip around 18◦ aoa, which has no correspondence in EllipSys,
figure 3(a).

The drag predictions from direct pressure integrations of the boundary layer
methods are affected by the same bias discussed in the previous section, and the
single wake code returns a decrease in drag for positive flap deflections, figure
3(b). The results based on the momentum theory are closer to EllipSys, and
both methods indicate that for lower angles of attack the flap deflection does
not involve significant drag variations. As the angle of attack is increased and
the flow starts to separate, the steady drag variation produced by the flap is
increased, rather mildly according to EllipSys, whereas a steeper increase of the
drag penalty is predicted by the NTUA 1W momentum theory and NTUA 2W
results, dashed blue and red lines in figure 3(b).

The variation in the aerodynamic moment, figure 3(c), resemble the varia-
tions in the lift coefficient, with NTUA 1W predicting larger variations at low
angles of attack, but also a steeper decrease. Note that a positive flap deflection,
which would displace the trailing edge downwards, results in an increase in lift
and drag, and in a negative (i.e. ‘nose-down’) aerodynamic moment.

5 Unsteady response comparison

5.1 Harmonic pitching motions

The simulation capabilities of the codes are evaluated in dynamic conditions by
first comparing the unsteady aerodynamic responses in the ordinary case of an
airfoil undergoing harmonic pitch variations, while the flap is fixed to its neutral
position. The responses from the ATEFlap model consider three sets of input
data, which are generated from the steady responses computed by, respectively,
EllipSys, NTUA 1W, and NTUA 2W. As the drag based on momentum theory
is not available in dynamic conditions, the NTUA 1W drag data refer to the
pressure integration results, and will reflect the biases already observed in the
steady responses.

The codes show an excellent agreement when simulating the dynamics of
the unsteady lift force in attached flow conditions, figure 4. All the methods
characterize the unsteady lift with counter-clockwise loops (the loop direction
is marked in the plots by the sequence of a larger and a smaller mark), with
an effective slope slightly below the steady curve one; the differences in lift
coefficients observed in the steady simulations, fig. 2(a), is reflected in the
offset between the loops. The ATEFlap engineering model performs very well,
and returns unsteady lift responses that overlie the corresponding curves. Both
EllipSys and NTUA 1W predicts similar dynamics on the drag force, figure 4,
while the responses from ATEFlap display loops with similar slopes, but slightly
wider openings, and thus larger drag variations. The moment coefficient loops
have small differences in slopes, as also observed in the steady data; as in the
drag case, the ATEFlap code overestimates the dynamic effects and returns
wider loops. The curve from NTUA 1W is corrupted by some wiggles, which
originate from numerical instabilities in the boundary layer solution close to the
transition point, and from the transition point traveling along the airfoil surface
and switching to a different panel along the suction side.

By further increasing the reduced frequency to k = 0.5, figure 5, the unsteady
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Figure 4: Attached flow conditions. Unsteady aerodynamic response for harmonic pitching
motion around 0◦ aoa, reduced frequency k = 0.1. The markers show the direction of
the dynamic loops, unfolding from larger to smaller markers. Unless otherwise specified,
the ATEFlap loops have the same direction as the corresponding loops from EllipSys or
NTUA codes.

lift responses trace loops with lower slopes, wider opening, and direction changed
to clockwise; all the methods return similar changes in the dynamics, and the
agreement with the ATEFlap is only slightly worse than in the previous case.
The unsteady drag response displays a ‘knot’ in the loops, captured both by
EllipSys and NTUA 1W; ATEFlap fails to predict this feature, and returns
loops with wider openings in the drag and moment coefficients.

For harmonic oscillations of reduced frequency k = 0.1 around 12◦ aoa, fig-
ure 6, the influence of dynamic stall effects on the aerodynamic responses is
evident, as the unsteady lift coefficients reach higher values than their steady
counterparts; the effect is well captured by all models. ATEFlap returns loops
with similar slope and openings for both steady input sets, and it is in fairly
good agreement with EllipSys; NTUA 1W predicts larger lift variations. Apart
from the offset observed in the steady data, the dynamics on the drag coefficient
predicted by EllipSys and NTUA 1W are in good agreement, whereas ATEFlap
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Figure 5: Attached flow, highly unsteady conditions. Unsteady aerodynamic response for
harmonic pitching motion around 0◦ aoa (attached flow), reduced frequency k = 0.5. The
ATEFlap results trace clockwise loops for the lift and drag, and counterclockwise loops
for the moment coefficients.

overestimates the opening and slopes of the loops and, as for lower angles of
attack, returns larger drag variations, figure 6. The wiggles in the drag and mo-
ment responses from NTUA 1W are again related to numerical instabilities from
the transition point travelling and the boundary layer solution in its proximities.

As the angle of attack is increased, flow separation along the airfoil becomes
more marked, and the thin-wake assumption is no longer valid; the NTUA
2W double-wake implementation is thus necessary to avoid significant biases
in the response predicted by the viscous-inviscid interaction method. Figure
7 displays the responses simulated in the challenging case of well developed
stalled conditions, harmonic pitch motion occurring around 18◦ aoa, with a
reduced frequency k = 0.1, and an amplitude of±2.5◦. Besides the offset already
observed in the steady data, the numerical methods EllipSys and NTUA 2W
return similar dynamic responses: the unsteady lift loops have steeper slopes
than the corresponding steady curves, and displays a total lift variation much
higher than the corresponding steady one, due to stall hysteresis effects; on
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Figure 6: Separation onset. Unsteady aerodynamic response for harmonic pitching motion
around 12◦ aoa, reduced frequency k = 0.1. The ATEFlap loops have the same direction
of revolution as the corresponding loops from EllipSys or NTUA 1W.

the contrary, the drag coefficient loops have less steep slopes and smaller drag
variations than given by the steady curves, figure 7.

EllipSys and NTUA 2W display similar high frequencies oscillations in the
down stroke response, which are caused by unsteady vortex shedding in the
wake of the airfoil, resembling the classic von Karman vortex street behind a
cylinder. The agreement with ATEFlap is deteriorated in such highly separated
flow conditions. The engineering model predicts correctly the direction of the
loops, but has a tendency to under-predict the variations in the lift force, and to
over-predict the drag dynamics in comparison to the results of the more complex
models. The moment variations predicted by ATEFlap have a similar range as
in EllipSys and NTUA 2W, but a different phase, thus yielding to different
slopes in the dynamic loops.
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Figure 7: Airfoil in stalled conditions. Unsteady aerodynamic response for harmonic pitch-
ing motion around 18◦ aoa, reduced frequency k = 0.1. The ATEFlap loops have the
same direction of revolution as the corresponding loops from EllipSys or NTUA 2W.

5.2 Harmonic flap deflections

The ability of the codes to describe the dynamic effects of the flap motion
is determined by comparing the unsteady responses for the airfoil undergoing
harmonic flap deflections, while the angle of attack is maintained unchanged; a
few representative cases are discussed in the following paragraphs.

The flap deflection generates unsteady aerodynamic forces with dynamics
similar to the ones caused by variations in angle of attack. In attached flow,
figure 8, the lift force delineates dynamic loops with an effective slope slightly
below the steady one; as the deflection frequency increases, the effective slope
is further reduced. The ATEFlap engineering model shows excellent agreement
with the unsteady lift simulated by the numerical models, figure 8, while the
dynamics on the drag force are slightly over-estimated; a good agreement on
the lift force prediction is also maintained at higher reduced frequencies, not
shown here. All models agree in predicting moment coefficient responses where
the steady variation caused by the flap deflection is by far dominant over the
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Figure 8: Attached flow conditions. Unsteady aerodynamic response for harmonic flap de-
flections, angle of attack fixed at 0◦ aoa, reduced frequency k = 0.1. The markers show the
direction of the dynamic loops, unfolding from larger to smaller markers. The ATEFlap
loops have the same direction of revolution as the corresponding loops from EllipSys or
NTUA 1W.

dynamic effects; the loops outlined by the dynamic responses remain very close
to their steady curve values, as also predicted by thin-airfoil theory. The offsets
between the mean values of the dynamic response loops reflect the difference in
the airfoil steady coefficients (see fig. 2), whereas the differences in the slopes
are related to the steady coefficient variations given by the flap deflection (see
fig. 3).

At higher angles of attack, figure 9, the reduction of the flap effects on the
lift force returns both steady curves and dynamic lift loops with less steep slopes
than reported in the attached flow case; the reduction is particularly evident on
the NTUA 1W simulations. All the models, including ATEFlap, display good
agreement on the drag response simulations, which maintain similar dynamics
to the ones observed at lower angles of attack.

The ATEFlap model, while correctly reproducing the lift dynamics predicted
by EllipSys, shows an interesting mismatch in the lift response based on the
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Figure 9: Separation onset. Unsteady aerodynamic response for harmonic flap deflections,
angle of attack fixed at 12◦ aoa, reduced frequency k = 0.1. The ATEFlap loops have the
same direction of revolution as the corresponding loops from EllipSys; the ATEFlap loop
based on NTUA 1W data are clockwise both for drag, and lift coefficients.

NTUA 1W steady data: the loop simulated by ATEFlap is much closer to the
steady curve and rotates clockwise, figure 9. The cause of the mismatch roots
in the steady input data, where, for higher angles of attack, NTUA 1W predicts
a more marked reduction of the steady lift variation achieved by the flap than
EllipSys does, see fig. 3(a); the reduction in the flap lift effectiveness is reckoned
by the ATEFlap model as caused by flow separation, consequently, the model
assumes the degree of flow separation to vary considerably as the flap deflection
changes. The lift response predicted by ATEFlap based on the NTUA 1W
data at 12◦ aoa is thus largely affected by flow separation dynamics, which are
not present to such an extent in the corresponding unsteady simulations by
NTUA 1W. As the flow separation dynamics are much slower than the attached
flow ones, the lift response from ATEFlap and the corresponding NTUA 1W
loop display a considerable mismatch. A comparison with experimental data
reproducing this particular condition would be of greatest interest.

At an angle of attack of 16◦, which is above the maximum lift one, the lift
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Figure 10: Stalled flow conditions. Harmonic flap deflections, angle of attack fixed at 16◦
aoa, reduced frequency k = 0.1. The ATEFlap loops have the same direction of revolution
as the corresponding loops from EllipSys or NTUA 2W.

response loops get closer to the steady curves, figure 10; the behavior is captured
by all models, although ATEFlap returns loops with slightly lower slopes, and
thus smaller lift variations. EllipSys and NTUA 2W return unsteady drag loops
with similar shapes, and larger openings than at lower angles of attack; the
loops are fairly well predicted by the ATEFlap model, which returns similar
drag variations, although with less open loops. The moment coefficients still
maintain very close to their steady values.

Due to highly stalled conditions, the simulation of the response at 18◦ angle
of attack and for flap deflections of ±5◦ poses the greatest challenges, figure 11.
Both EllipSys and NTUA 2W display high frequency oscillations, again related
to the unsteady vortex street shed in the wake of the airfoil. The unsteady
response from EllipSys develops around a mean value different from the steady
one; offset aside, ATEFlap is able to capture the characteristics of the Ellip-
Sys response, and returns loops with similar opening, and the same direction:
counter-clockwise for the lift coefficient, and clockwise for the drag. The lift
response simulated with NTUA 2W outlines instead a clockwise loop, with a
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Figure 11: Highly stalled conditions. Harmonic flap deflections, angle of attack fixed at 18◦
aoa, flap variations ±5◦, reduced frequency k = 0.1. The ATEFlap loops have the same
direction of revolution as the corresponding loops from EllipSys (counter-clockwise Cl,
clockwise Cd) or NTUA 2W (clockwise loops).

similar opening for negative flap deflection, but a marked decrease in lift and
an increase in drag as the flap starts to move upwards; the behavior is driven
by the local deep in the steady Cl curve around 18◦ aoa noted in NTUA 2W
results, which suggests local stall conditions and gives rise to higher dynamic
stall hysteresis effects. ATEFlap returns loops with the same direction, but fails
to capture the lift drop, and instead returns a figure-eight loop. The moment
coefficients are also affected by high frequency oscillations, but the response is
still largely dominated by the steady moment variations.

6 Conclusion

The aerodynamic response of an airfoil section with a trailing edge flap has
been characterized in steady and unsteady conditions, simulating the effects
of changes in angle of attack, and flap deflection. Simulations were carried out
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with three different codes: EllipSys Navier-Stokes solver, NTUA viscous-inviscid
interaction method, and the ATEFlap engineering model.

In steady conditions, simulations of the flap effects with EllipSys and the
NTUA viscous-inviscid codes outline the same trends: a downward deflection
yields an increase in lift, and a downward pitching moment; as the angle of
attack is increased, the lift and moment variations brought by the flap deflection
decrease, whereas the drag increment increases. Although they describe similar
trends, the codes return steady coefficients with different values, a discrepancy
which is then reflected throughout the dynamic response simulations.

The unsteady response is characterized by significant differences of the inte-
gral aerodynamic forces and moment coefficients from their steady counterparts.
In attached flow conditions, harmonic pitching motion returns smaller lift varia-
tions, and larger drag and moment variations than returned by a simple look-up
of the steady values. The response to harmonic flap deflections is characterized
by similar dynamics on the unsteady lift and drag forces, whereas the variations
in moment are dominated by the steady component. As flow separation devel-
ops along the airfoil, stall dynamics modify the response, and harmonic pitch
motions result in unsteady lift variations larger than the steady ones. The effect
is not observed in the unsteady lift response from flap deflections, which instead
get closer to the steady curves.

A comparison of the characteristics of the unsteady responses simulated by
EllipSys and the NTUA 1W code highlights an excellent agreement of the dy-
namics of integral forces and moments predicted by the two methods in attached
flow conditions, both for harmonic pitching motion, and flap deflection. The
agreement deteriorates at higher angles of attack, as more complex stalled flow
dynamics affect the unsteady response. Nonetheless, the unsteady responses
from the two methods still display similar characteristics, and the differences
in the dynamic responses produce anyway smaller variations than the ones ob-
served in the steady data.

Similar considerations hold for the ATEFlap engineering model. In attached
flow conditions, the model reproduces very well the dynamics of the unsteady
lift force, both for pitch and flap deflection variations; at higher angles of attack,
the responses simulated by ATEFlap start to diverge from the ones returned by
more computationally expensive methods. No effort is made in this study to
reduce the differences by re-tuning the parameters τP and τB , which regulate the
dynamics of the Beddoes-Leishmann type dynamic-stall model. Concerning the
drag force and the aerodynamic moment, ATEFlap seems to slightly over-predict
the dynamic effects from changes in the angle of attack, while a closer match is
achieved on the unsteady drag and moment responses from flap deflection.

The ATEFlap engineering model has much lower computational require-
ments than the investigated numerical methods, a quality highly appreciated
in aeroelastic simulation tools: the requirements are indicatively 500-800 times
lower than EllipSys and 10-15 times lower than the viscous-inviscid interaction
methods. Yet, in spite few differences from the response returned by the more
complex methods, the ATEFlap model proved able to describe with sufficient
accuracy the relevant dynamics of the unsteady forces and moments, originated
both from airfoil motion and flap deflection. Considering also that the outer part
of the blades on a pitch regulated turbine operates most of the time in attached
flow conditions, the ATEFlap model is judged suitable for implementation in a
BEM-based aeroelastic simulation tool. The aerodynamic response for an airfoil
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in highly stalled conditions computed by the ATEFlap model -as probably by
any other engineering dynamic stall model- should be instead considered with
greater circumspection.

The ATEFlap model, as many of the models used in aeroelastic simulations,
relies on steady input data, which are generated by other methods. The sim-
ulations have shown that discrepancies in the steady input data might affect
the aerodynamic response to a much higher degree than differences in the un-
steady force modeling. In this sense, future work should consider a comparison
between the steady aerodynamic responses predicted by the numerical methods
and experimental data, including the effects of trailing edge flap deflections.
Experimental data for the unsteady aerodynamic responses originated by flap
deflection would certainly also be of great interest.
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