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Results are presented for four optimization benchmark problems posed by the AIAA
Aerodynamic Design Optimization Discussion Group. The benchmarks are intended to
exercise optimization frameworks on representative airfoil and wing design problems. All
problems involve drag minimization subject to geometric and aerodynamic constraints.
Our design approach involves two forms of adaptation. First, the shape parameterization is
gradually and automatically enriched from an initially coarse search space. Second, adjoint
solutions are used to drive adaptive mesh refinement to control discretization error. The
error threshold is tailored so that the finest meshes, with the greatest accuracy, are used
only when nearing the optimum. On the inviscid airfoil design problem, while reducing
the drag by a factor of 10, we show how the combination of progressive parameterization
and tiered discretization error control can dramatically accelerate the optimization. On
the viscous airfoil design problem, we use inviscid analysis-driven optimization to reduce
the total drag by a factor of two. Next, we improve the span efficiency factor of a wing
by performing twist optimization. Finally, we optimize the Common Research Model wing,
managing to hold drag roughly fixed, while targeting an initially-violated pitching moment
constraint. Our approach aims to introduce greater complexity and accuracy only when
necessary to improve the design, and also support a greater degree of automation.

I. Introduction

To encourage systematic evaluation of aerodynamic optimization frameworks, a suite of benchmark opti-
mization problems is being developed by the AIAA Aerodynamic Design Optimization Discussion Group.

The purpose of these benchmarks is to exercise the capabilities of aerodynamic optimization frameworks
on challenging design problems. In this work we solve the benchmark problems using an adaptive shape
optimization approach comprised of two basic elements:

• Progressive shape parameterization: We periodically and automatically refine the search space
as the shape evolves.1

• Discretization error control: We monitor and control the aerodynamic objective and constraint
error throughout the optimization using error-driven mesh adaptation.2

Through periodic enrichment of the search space, our system is able to explore the design space more
thoroughly and more robustly than under a fixed parameterization approach. Discretization error control
helps ensure that accurate flow solutions are driving the optimization. Taken together, these two components
aim for automatic, accurate and thorough exploration of unfamiliar design spaces. Both elements increase
resolution (and thus cost) only when necessary to achieve design improvement. Throughout the work, focus
is placed on automating non-design-related effort, such as meshing and shape parameterization, as much
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as possible. Additionally, our approach strives to ensure that the final optimized shape depends only on
the problem specification (objective and constraints) and is robust with respect to other inputs, such as the
initial design, shape parameterization, flow mesh, etc.

This study employs a adjoint-based design framework3 that uses an embedded-boundary Cartesian
mesh method for inviscid flow solutions.4,5 Adjoint solutions6 are used for three purposes: (1) goal-oriented
discretization error control via adaptive mesh refinement,7,8 (2) aerodynamic objective and constraint gradient
computation,9 and (3) prioritization of candidate refinements of the shape control,1 the latter being a new
use of the adjoint. For this study design changes are driven by the SQP optimizer SNOPT.10

Figure 1 gives the essential details of the four benchmark cases, which have also been described by
previous partipants.11–16 Mach numbers range from 0.5 to 0.85, under inviscid and viscous conditions. For
each case the aerodynamic optimization problem consists of finding a shape S that minimizes an objective
function J (Q(S)), which is evaluated after solving the flow equations for the flow state Q. There may also
be aerodynamic or geometric design constraints of the form a ≤ Ci(Q(S)) ≤ b. All of the benchmark cases
are drag minimization problems (J = CD), while the constraints involve lift, pitching moment and wing
thickness or volume.

Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	 Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	 Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	 Drag minimization for swept wing at 
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)

Figure 1: Overview of four benchmark cases, illustrated with isomach contours.

Throughout this work we optimize shapes by deforming discrete surface triangulations. Shape manip-
ulation is handled with a standalone modeler for discrete geometry, implemented as an extension to an
open-source computer graphics suite called Blender.17 This extension allows Blender to serve as a geometry
engine for optimization. For the benchmarks we use several custom deformation techniques, which are
implemented as plugins to this platform. Shape sensitivities are computed analytically for each deformer.
Geometric functionals (e.g. thickness and volume) are computed by a standalone tool that provides analytic
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derivatives to the functionals. The design framework communicates with these geometry tools via XDDM,
which is an XML protocol for extensible design markup.3

For the benchmark problems, special focus is placed on the correctness and completeness of the results.
The next two sections elaborate on our two-fold approach to accurately and thoroughly explore the design
space, while controlling computational costs and user time. In Sections IV and V we present results for the
four benchmark cases.

II. Progressive Search Space Refinement

The discrete surface being designed has potentially millions of degrees of freedom (one per vertex). To
reduce the search to a manageable number of dimensions, the surface modifications are parameterized, yielding
a smaller “search space” (a subspace of the full design space) consisting of design variables (DV) with values
X and a deformation function D(X). The local linearization of D provides the shape derivatives ∂S

∂X , which
describe the deformation modes of each parameter. Typically, a designer chooses a static set of shape
deformation parameters, which may be more or less effective at improving the objective function. This search
space is only a subset of the entire design space, and so it cannot generate all feasible shapes. In this paper we
instead use a “progressive” parameterization approach. This approach is discussed in detail in a companion
research paper.1 Here we give a brief overview.

Auto: Partition Feature/Constraint

Parameter

Auto: Parameterize

Binary 
Refinement

Auto: Refine

User: Mark Features and Constraints

Bound

A B C

D E F

Figure 2: Progressive parameterization of an airfoil with
discrete, hierarchical shape control refinement

In a progressive approach, a sequence of search
spaces is generated, with a progressively increasing
number of design variables, as illustrated in Figure
2. After optimizing within an initial low-dimensional
search space, the shape control is refined, opening
up new avenues for improvement, and the optimiza-
tion continues in the higher-dimensional space. The
basic idea is to first optimize in low-dimensional
search spaces, allowing rapid design improvementa,
and then to introduce more dimensions to drive to-
wards the optimal shape.b

To set up the problem, the designer specifies the
objective function and constraints as usual. But
instead of generating a static set of design variables,
important design features are marked, e.g. leading
edge, trailing edge, spar locations. Using these features as dividers, the surface is partitioned into regions,
which are automatically parameterized. When parameterizing a curve such as an airfoil, initially a single
design variable is placed at the midpoint of each region. Finer control is then gradually introduced as
necessary. We adopt a hierarchical search space refinement technique, which implies a discrete approach to
adding design variables, akin to h-refinement in mesh adaptation. This allows the shape control to be encoded
as a binary tree, as depicted in Figure 2. This defines a clear sequence of search spaces that maintains strong
regularity in the spacing of parameters.

!2
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Figure 3: Optimization loop with
concurrent search space refinement.
The standalone geometry modeler is
invoked via the XDDM protocol.3

As shown in Figure 3, the optimization process is now decomposed into
a series of subproblems with fixed shape control, each of which is solved
by a standard aerodynamic design framework. Once the current search
space is sufficiently exploited, a search space refinement request is sent to
the geometry modeler. Conceptually, both the static shape optimization
framework and the geometry modeler can be viewed as standalone servers,
although in practice there is a fair amount of interplay among them.

To address questions of when and where to refine the shape control, a
refinement strategy must be developed. In a companion research paper,
we provide a more in-depth treatment of these components.1 In the next
sections we briefly cover the essential features of our shape control system.

aBFGS methods theoretically converge in O (NDV ) search directions, meaning that having fewer degrees of freedom generally
leads to (initially) faster design improvement.

bAnother approach, which we have not yet tested, would be to redistribute existing parameters.
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A. Triggering Search Space Refinement

To determine when to transition to a finer search space, we use a “trigger”, or stopping criterion, that
terminates the optimization in the current search space and initiates a parameter refinement. A timely and
robust trigger is critical for efficiency. Over-optimization on early parameterizations leads to sluggish design
improvement and is a poor investment of resources, an observation also made by other authors.2,18

One obvious and robust trigger is based on satisfying a tolerance on reduction of a norm of the objective
gradients,c which indicates that optimality is being approached in the current search space. However, the
cutoff value is problem-dependent (especially with poorly scaled search spaces) making it difficult to set.
For relatively smooth problems, we adopt a more aggressive approach. We monitor the rate of design
improvement, as measured by the slope of the objective history with respect to search directions (see,
e.g. Figure 8), and trigger a parameter refinement when this slope tapers to below a certain fraction of
the maximum slope achieved under the current parameterization.d From an engineering perspective, this
makes sense: improvement in the objective function vs. cost is typically the figure of merit. However, for
more difficult optimization problems, we observe that less aggressive triggers can be more effective, as the
slope-based trigger can too hastily invoke a transition.

B. Uniform vs. Adaptive Refinement

The simplest and most robust approach to generate a sequence of parameterizations is to uniformly refine
the search space, e.g. by binary subdivision of each tree, as shown in Figure 2. However, the distribution
of parameters is then likely to be suboptimal, which can hurt efficiency. Alternatively, adaptive refinement
aims to select the most effective parameterization, maximizing design improvement for a fixed number of
design variables. This often reduces the total number of design variables required to find the optimum.
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Figure 4: Optimization loop with adaptive
search space refinement. The API to the ge-
ometry modeler is critical, as communication
with it is required at every phase.

The adaptive optimization loop is depicted in Figure 4. To
predict the relative effectiveness of the myriad possible shape
control refinements, we extract gradient information the final
adjoint solution(s) in the previous search space. Specifically, we
compare norms of the local linearization of the objective and
constraints to candidate design variables, which provide some
of the best information readily available on the parameters’
relative effectiveness. Naturally, this prediction is only local,
because of the nonlinear design space. Furthermore, it is only as
accurate as the PDE solutions. Nevertheless, our experiments
show that larger gradients are strongly correlated with short
term design improvements.

Choosing the best ensemble of N out of Ncand candidate
parameters is a difficult combinatorial problem. We use a greedy
strategy, adding one parameter at a time from a priority queue ranked by the gradient norms. Much greater
detail is given in the companion paper,1 where we found this strategy to perform substantially better than
random sampling and other simple methods.

The final consideration for adaptive refinement is the rate of parameter growth, which also has a critical
impact on efficiency. Excessively high growth rates introduce large numbers of design variables, leading
to a search space that is slow to navigate. However, slow parameter growth rates effectively “starve” the
optimizer of degrees of freedom, stunting design improvement. We observe that the appropriate growth rate
is problem-dependent. Simple problems, such as benchmark Case I, favor rapid growth rates, while more
complex problems favor slower growth rates.

III. Discretization Error Control Strategy

Controlling discretization error is an essential component of our system, because it enables a trade
between cost and accuracy that dramatically accelerates the early phases of optimization. Our approach here
is somewhat atypical. As shown in Figure 5, each design iteration is automatically meshed using output-based

cOr on satisfaction of the KKT conditions when constraints are present
dThis normalization by the maximum slope handles the widely differing scales that can be present in different objective

functions. For example, a drag functional is normally O
(
10−2

)
while a functional based on operating range may be O

(
105

)
.

4 of 18

American Institute of Aeronautics and Astronautics



Design 5 Final

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

104

Cells

0.047

0.048

0.049

0.05

0.051

0.052

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:43:47 2014

10
3

10
4

C
ells

0.05 0.1

Functional (JH)

10
3

C
ells

10
-5

10
-4

10
-3

10
-2

Error

Error-Indicator |
2 | J
∆J

0
500

1000
1500

2000
M

G
 C

ycles

0
0.05 0.1
0.15
0.2

Functional

/nobackupp8/ganders1/benchm
arks/naca0012/prog3/param

00/design000/M
0.85A0B0_D

P1

Iterative C
onvergence

Thu N
ov 20 14:42:07 2014

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

NACA0012

±E

Design 5 Design 59 

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

104

Cells

0.047

0.048

0.049

0.05

0.051

0.052

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:43:47 2014

10
3

10
4

C
ells

0.05 0.1

Functional (JH)

10
3

C
ells

10
-5

10
-4

10
-3

10
-2

Error

Error-Indicator |
2 | J
∆J

0
500

1000
1500

2000
M

G
 C

ycles

0
0.05 0.1
0.15
0.2

Functional

/nobackupp8/ganders1/benchm
arks/naca0012/prog3/param

00/design000/M
0.85A0B0_D

P1

Iterative C
onvergence

Thu N
ov 20 14:42:07 2014

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

NACA0012

Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization

!7
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Target generators
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2.4
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F
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e
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Control stations

Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoils encountered during
optimization for Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement for
the baseline design. Bars indicate uncertainty in drag and asymptotically bound the actual changes in the functional
value.

adaptive refinement that seeks to reduce error in the objective and constraint functionals.2 Thus we obtain
mesh convergence information for each design. Naturally,an indiscriminate application of tight error control
would greatly increase the computational expense. However, by tracking the output error and comparing it
to the evolution of the objective function, we can selectively reduce solution the accuracy during the early
stages of optimization, when large design improvements are possible even with coarse simulations. The
resolution can then be automatically sharpened as the design approaches optimality. From an engineering
perspective, this approach has the added benefit of providing an estimate of the error on the functionals of
interest throughout design.

To estimate the discretization error in an aerodynamic functional (e.g. lift or drag), we use an adjoint-
weighted residual approach.19 An example of convergence of this error estimate with mesh refinement is shown
in the right frame of Figure 5. For most practical studies involving multiple design functionals, we construct
a combined mesh adaptation functional that seeks to adequately resolve all the outputs. For example, in
Case III (twist optimization) we adapt the mesh to resolve the span efficiency factor, which leads to a mesh
that is well-balanced to compute both lift and drag.

One tremendous advantage of output-based meshing at each design iteration is that it removes the burden
of having to hand-craft flow meshes for optimization. In contrast, in the typical approach, one tries to
construct a fixed mesh that anticipates how critical flow features will move as the design progresses. As the
shape deviates more and more from the baseline, the fixed mesh becomes less appropriate, often leading
to higher solution error as the design evolves. In our approach, accuracy is selectively increased while
approaching the optimum. This reduces up-front costs (in both user and computational time) and also gives
more credibility to the optimality of the final design.

IV. Inviscid Benchmarks

The two inviscid problems (Cases I and III) are presented first. Case I involves drag minimization for a
symmetric non-lifting airfoil that must contain the baseline shape. Case III is a twist optimization problem for
induced drag minimization subject to a lift constraint. Throughout each optimization we monitor objective
convergence with shape control refinement, constraint satisfaction, and error in the outputs. A few ancillary
details, such as optimizer settings, are given in the Appendix.
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A. Case I. Symmetric Transonic Airfoil Design

The first test case is a geometrically-constrained drag minimization problem (J = CD). The starting airfoil
is a modified NACA 0012 (henceforth “N0012m”), where the trailing edge is made sharp.e The design Mach
number is 0.85, while the angle of attack is fixed at α = 0◦. Additionally, the final airfoil shape must contain
the original airfoil. This constraint is satisfied when y ≥ yN0012m everywhere on the upper surface, and
inversely on the lower surface. Because the solution must be symmetric, we work only in the upper half of
the domain with a symmetry boundary condition at y = 0. The farfield boundaries are placed 96 chords
away in each coordinate direction.

1. Shape Parameterization
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Figure 6: Case I: Initial parameterization with
7 design variables, generated by twice uniformly
refining a 1-DV parameterization (lower half
generated by symmetry)

To deform the airfoil we use a “direct manipulation” approach,
where we explicitly specify the deformation of certain “pilot
points” along the airfoil, as shown in Figure 6. These points
serve as the design variables, while deformation of the remain-
der of the curve is smoothly interpolated using radial basis
functions.f

For this problem, initially a single pilot point is placed on
the top surface, as shown in Figure 6 (black dot). Practically
speaking, we observe that it is more efficient to start with several design variables, rather than a truly minimal
set, so we immediately perform two uniform refinements before beginning optimization. The shape control is
clustered towards the leading edge by transforming the arc-length parametric spaceg. During shape control
refinement, new pilot points are placed at the midpoints between existing ones. The midpoint is measured
in the transformed space, so in physical space, they are also biased towards the leading edge.
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Figure 7: Case I: Final airfoil shape and pressure profile. Black
dots indicate the location of the final 31 shape control parameters.

To handle the containment constraint,
we set the lower bound of each shape pa-
rameter to the corresponding local thick-
ness of the N0012m. The direct manipu-
lation approach guarantees that the airfoil
will exactly interpolate these pilot points.
Regions between the shape control parame-
ters may temporarily violate the contain-
ment constraint, but these violations get
squeezed out as more parameters are added.
In keeping with our adaptive approach, the
containment constraint becomes more pre-
cise as the search space is refined.

2. Optimization Results

Figure 7 shows the final optimized airfoil
and its pressure profile. Two features are
most noticeable. First, the leading edge has
become extremely blunt. In fact, after every
successive parameter refinement, the nose
became blunter, limited only by the first
shape parameter’s proximity to the leading
edge. This is the expected optimal result for
this problem, though naturally this shape would have poor off-design performance and poor viscous perfor-
mance. By the final design, the containment constraint is satisfied everywhere (not just at the interpolation
points).

eVia modification of the x4 coefficient: y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
fWe choose the basis function φ = r3 here, primarily because it requires no local tuning parameters, making it more amenable

to automation.20–23
gTransformation function is s∗ = s− 0.15sin(2πs)
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Figure 8: Case I: Objective convergence

Figure 8 shows the convergence of the objective function
over 60 search directions, and over 3 parameterization levels.
The parameterization was automatically refined (i.e. with
no user intervention) when the objective slope tapered to
20% of its maximum slope. The final level contained 31 de-
sign variables. The drag was reduced from the baseline 471
counts to 41.3 counts. An additional refinement to 63-DVs
proved unable to further improve the design. The final de-
sign is probably close to optimal, as demonstrated by the
diminishing return on each additional parameter refinement
visible in Figure 8. Some further improvement is likely pos-
sible, but even the small amount of remaining discretization
error combined with the very high-dimensional design space
makes further improvement extremely difficult.

Figure 9 compares the initial and final meshes, which
were automatically adapted to reduce error in drag. Interme-
diate designs generated radically different mesh refinement
patterns (see Figure 5 for the final design of the 7-DV param-
eterization level). The refinement patterns reflect movement
of the shock and changes in the width of the supersonic re-
gion. For the final design, the adjoint-based mesh adaptation
process provided an estimate of the remaining error in drag
of about 0.3 counts (< 3 · 10−5 in CD). The output-based
mesh adaptation performed a mesh refinement study at each
design iteration, yielding convergence similar to that shown in the right frame of Figure 5. This level of
error was roughly constant throughout the optimization (see Table 1), giving high credibility to the final
design. The cell count required to meet the error tolerance gradually increased throughout optimization.
This indicates that the optimization drove the design to become more sensitive to the mesh discretization,
as the shock weakened and numerical dissipation became more noticeable.

Baseline Final

Mach

0.85 1 1.15

Figure 9: Case I: Comparison of baseline and final meshes. The mesh refines the regions most important for
computing drag, primarily focusing on the leading edge expansion and shock. Meshing requirements to achieve the
same error tolerance generally increased with optimization: the baseline mesh has 26K cells (upper half only), while
the final design has 61K cells.
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Table 1: Case I drag reduction with optimization. All drag measured in counts (CD · 104)

Baseline 7 DV 15 DV 31 DV

CD 471.3 273.8 133.0 41.3

Error estimate ±0.1 ±0.1 ±0.1 ±0.35

Cells 26 K 49 K 50 K 61 K

3. Sensitivity to Farfield

The optimization process radically increased the sensitivity of the flow to the farfield boundary distance.
The initial N0012m, with its relatively confined regions of supersonic flow, is quite lenient with respect to
the farfield boundary location.h An initial domain size study indicated that a farfield distance of 24 chords
was sufficient to resolve drag to within 2 counts of the value obtained using 96-chord distances. However,
the final design’s carefully tuned shock structure (see Figure 7) could not be reliably resolved with farfields
nearer than about 96 chords. We observed that near the final design, an inadequate farfield distance or
mesh resolution can lead to an alternate solution with stronger shocks that roughly double the amount of
drag! In our approach, we adapt the mesh to suit each design iteration, but always within a fixed domain
size. To combat this changing sensitivity, a more comprehensive approach might periodically re-evaluate the
sensitivity to farfield boundary distance, expanding the domain as necessary.

B. Assessment of the Approach
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Figure 10: Case I: Effectiveness of different parameteriza-
tion schemes, showing design improvement vs. wall-clock
time. ×-marks indicate search space refinements on the
progressive and adaptive methods. (All cases used identical
error control settings.)

A progressive, automated approach has clear ad-
vantages in terms of user time and thoroughness.
However, a naive implementation can also be very
costly.Before proceeding to the remaining bench-
marks, it is worth pausing to evaluate the computa-
tional performance of our approach. To solve Case I,
we used a constant error target throughout the opti-
mization to satisfy the benchmark discussion group
requirements of having an accurate flow solutions
throughout design. Now, however, we show that
the bulk of the design improvement can be obtained
using quite coarse meshes, with substantial error con-
trol only being applied near the end to resolve the
design landscape near the optimum.

1. Adaptive vs. Fixed Search Spaces

We observe that progressive parameterization
strongly outperforms any of the fixed search spaces
on Case I. To give a rough sense of performance, Fig-
ure 10 plots design improvement versus wall-clock
time for solving Case I with various parameteriza-
tions on four cores of a laptopi. The uniform refine-
ment scheme (labeled “progressive”) and the adap-
tive approach (which resulted in fewer design vari-
ables) both achieved faster and deeper overall design
improvement than any coarse or fine fixed param-
eterization. As expected, low-dimensional search
spaces support limited design improvement, while
high-dimensional spaces take much longer to navi-
gate. On the finest (63-DV) fixed parameterization,

hThe farfield boundary state is enforced weakly via 1-D Riemann invariants without using circulation correction.
i2013 MacBook Pro with a 2.6GHz Intel Core i7 and 16GB of memory
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Figure 11: Case I: Comparison of fixed error control vs. progressive error control. Both cases were performed with
identical parameterization strategies and on identical hardware (2013 MacBook Pro with a 2.6GHz Intel Core i7 and
16GB of memory).

which stalled quite early, the optimizer may simply be unable to navigate the design space, as also reported
by Carrier et al. on this problem.12 Starting in a coarse design space appears to smooth the navigation early
on, leading to a more robust search process, an observation we also expand upon in the companion paper.1

On this problem, the adaptive approach (which results in fewer design variables) is slightly faster than
the progressive approach for most of the process. This speedup is largely due to the smaller number of
shape derivative calls to the geometry modeler and gradient projections, and perhaps partly due to the
lower dimensional design space. For slow geometry modelers, this advantage could be even more significant.
However, factors such as the trigger, rate of variable introduction, indicator, scaling, and path-dependence
make it difficult to draw firm conclusions about the computational advantage of adaptive refinement vs.
uniform refinement from such a cursory study.

2. Error Control Strategy

The adjoint-based mesh refinement technique used here provides a mesh refinement study and discretization
error estimate along with every functional evaluation. While using tight error control throughout the opti-
mization can lend credence to the process, blind application can result in unnecessary expense. Consulting
Figure 11a, we see that a progressive error-targeting scheme has a significant cost advantage over the static
error approach that we used for the Case I benchmark. Early in design, large improvements can be guided
even with fairly coarse meshes. By adopting very loose tolerances early on (Figure ??), the early stages of
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optimization are greatly accelerated, without sacrificing accuracy near the optimum.
Our automatic adaptive meshing approach is especially advantageous for problems like Case I, which

exhibit substantial, unpredictable differences between the initial and final designs. However, near the optimum
successive design iterations are often quite similar. Warm-starting the meshing and flow solutions for nearby
designs is an obvious avenue for further acceleration.

C. Case III. Subsonic Wing Twist Optimization

We defer Case II momentarily to first consider the other inviscid problem, Case III. This is a wing twist
optimization problem, where the airfoil section and planform remain unmodified. The objective is to reduce
drag (J = CD), subject to a lift constraint (CL = 0.375). The flight condition is Mach 0.5. Since the
flow is shock-free, this is strictly an induced drag reduction problem. Assuming the span efficiency factor
cannot exceed 1.0, as non-planar deformations are minimal with the twist applied about the trailing edge,
the minimum possible drag is about

CDmin
=

C2
L

πe0ÆR
=

0.3752

6.0π
= 74.6 counts (1)

However, as the wing is untapered, and twist is about the trailing edge, we do not expect that the optimal
design will recover a precisely elliptical lift distribution. Additionally, we observed a very small shock on
the wing tip near the trailing edge, where the flow accelerates around the tip to the top surface, which may
further reduce the possible drag gains.

The baseline design has only about 77 counts of drag. Unlike Case I, where the objective was reduced by
a factor of ten, here the possible improvements are very small, which places high demands on the accuracy of
the flow solution.24 We compute adjoint solutions for the drag and lift functionals to compute their gradients,
allowing the nonlinear lift constraint to be treated exactly by SNOPT.

1. Shape Parameterization

The baseline geometry is a straight, unswept, untwisted wing, generated by extruding the N0012m section
three chord lengths and capping the tip by a simple revolution. For this problem we use a deformer that
interpolates twist between arbitrary spanwise stations. The twist is in the streamwise plane about the
trailing edge and is linearly interpolated between successive stations. Control stations can be arbitrarily
spaced along the span, but for this problem we maintain strict regularity by refining only at the midpoints
between consecutive stations. We allow the global angle of attack to vary and therefore hold the twist fixed
at the wing root. The first parameterization (“P0”) has two twist stations, located at the tip and mid-span.
To generate the second level (“P1”), new twist stations are added at the midpoints between existing ones.
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Figure 12: Case III: Twist optimization results. Left : Sectional lift distribution profiles. Top right : Deviation from
elliptic distribution. Bottom right : Twist distribution
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2. Mesh and Error Control

The error control scheduling was set to coincide with the parameterization refinements, and the farfield
boundaries were placed at 48 chords away. In the first design space, the resulting adapted meshes contained
about 5 million cells, but for the second design space, the meshes contained 10-15 million cells to meet the
tighter error tolerance.

3. Optimization Results
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Figure 13: Case III: Top: Convergence of drag. Middle: Convergence
of lift. Bottom: Cell count history

Figure 12 shows the main results of the op-
timization. The lift distribution rapidly
approaches an elliptical shape, with only
very small discrepancies at the tip, due
to the untapered section, and at the root,
which compensates to exactly match lift.

Figure 13 shows the convergence of
the lift and drag functionals. Because a
coarser mesh was used in the initial de-
sign space, there is a jump in functional
values when transitioning to the finer de-
sign space. By the end lift is satisfied
and drag is reduced. To accurately de-
termine the total improvement, we per-
formed an additional high resolution anal-
ysis on the initial and final designs. Fig-
ure 14 shows the convergence of span effi-
ciency factor with mesh refinement for the
initial and final designs. In terms of drag,
the initial design had CD = 77.2 counts
at CL = 0.3762, or in terms of span ef-
ficiency e = 0.972 ± 0.003. By the final
design this was improved to CD = 76.1 at
CL = 0.3762 (e = 0.987± 0.003).
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Figure 14: Case III: Convergence of span efficiency factor with mesh refinement
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Table 2: Case III results.

Distance from Root 0c 0.6c 1.2c 1.8c 2.4c 2.7c 2.85c 2.97c 3.0c

Twist (o) 4.2 4.8 4.5 4.1 3.5 3.2 3.0 2.9 2.9

Sectional Lift (2cl/b) 0.156 0.156 0.146 0.126 0.094 0.069 0.050 0.030 0.0

V. Viscous Benchmarks

We now turn to the two RANS optimization benchmarks. As our design framework uses an inviscid solver,
the results will not be directly comparable to other viscous results. For Case II, we modify the design problem
slightly to achieve better viscous performance with an inviscid optimization approach. The modification was
guided by viscous analysis from a recently developed 2D Cartesian RANS approach by Berger and Aftosmis.25

A. Case II. Transonic Airfoil Design
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Figure 15: Case II: Initial 6-DV parameteri-
zation and uniform refinement.

Case II revisits transonic airfoil design (Mach 0.734), but this
time with more realistic design constraints. The objective is
again to reduce the drag (J = CD), while constraints are
imposed on lift, pitching moment (which is initially violated)
and the area A:

CL = 0.824

CM ≥ −0.092

A ≥ ARAE ≈ 0.07787c2

We compute adjoint solutions for the drag, lift and pitching moment functionals to compute their gradients.
The area is computed on the discrete surface, and the constraint gradients are differentiated analytically.

The baseline shape is the RAE 2822 airfoil. We parameterize the deformation with the same curve
deformer as in Case I. In addition to angle of attack, there are initially six shape parameters, as shown in
Figure 15. Shape control refinement is uniform. For discretization error control, we set a lower tolerance in
the first search space, and then tighten it to target ±0.5 counts of drag on the second level.

1. Inviscid Optimization: Trial 1 (Pure Inviscid Design)

Figure 16 shows the results of driving the optimization with inviscid flow solutions at the specified flight
conditions. SNOPT rapidly drove down the drag, but after several search directions without noticeably
improving the aerodynamic constraints, it increased its internal constraint weights, rapidly driving the
pitching moment and lift to be satisfied. The shock is nearly eliminated even under the first parameterization.
After refining to 14-DVs (and simultaneously tightening the discretization error tolerance), the shock is
completely eliminated. An additional refinement to 30-DV’s did not yield any further improvent for reducing
the negligible remaining inviscid drag.

2. Viscous Analysis

To check the viscous performance of this design, we computed the flow using the Cartesian RANS solver
mentioned above,25 with a Spalart-Allmaras turbulence model at Rec = 6.5 million. The RANS solution is
shown in Figure 17. The inviscidly-designed airfoil does have superior viscous performance to the original
RAE. Consulting Table 3, the viscous CD is reduced by 90 counts. However, the presence of the boundary
layer increased the angle of attack necessary to achieve CL = 0.824, resulting in higher Mach numbers over
the top surface and thus the presence of a moderately strong shock.

3. Optimization: Trial 2 (TE Deflection)
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Figure 16: Case II: Trial 1 (inviscid) results across two parameterization levels

Figure 17: Case II: Reynolds-averaged Navier-Stokes anal-
ysis of the inviscid design, showing pressure contours and
colored by Mach number. (CL = 0.824, M0.734, Re = 6.5
million)

At these flight conditions under the assumption of
inviscid flow, a wide range of shapes eliminate the
shock while satisfying the constraints. However,
most of these designs have poor viscous performance.
To encourage the optimizer to prefer shapes with bet-
ter viscous performance, we follow the approach used
by Smith et al.26 and earlier by Campbell.27 Briefly,
we mimic the shallower effective trailing edge slope
present in the RANS analysis, by applying a small
upward cubic deflection to the last 20% of the airfoil
at every design iteration during inviscid design:

y = y +

(
x− 0.8

0.2

)3

sin(θ) (2)

where we used θ = 0.3◦. This forces the optimizer
and inviscid solver to compensate for a shallower
effective trailing edge camber line. Naturally, the
fictitious deflection is then removed when analyzing
the final design under viscous conditions. To help
exclude irrelevant designs with little inviscid penalty
but poor viscous performance, for this trial we also
added three thickness preservation constraints by
removing three design variables in the initial search
space.
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Figure 18: Case II: Trial 2. Inviscid optimization using ficitious trailing edge deflection
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Table 3: Case II drag reduction with optimization.

Solver Baseline Trial 1 Trial 2

Inviscid CD 0.0068 0.0007 0.0007

Error ±0.0001 ±0.00005 ±0.00006

Cells 21K 12K 27 K

αtrim 1.73◦ 2.28◦ 2.72◦

Viscous CD 0.0252 0.0162 0.0124

αtrim 3.45◦ 3.60◦ 2.61◦

Figure 18 shows the results of this
second optimization. Although the new
inviscid design (top left frame) is not
fully shock-free, the viscous performance
(other frames) is substantially better,
leading to about 124 counts of drag, or
38 counts lower than the purely inviscid
design. As show in Table 3, the primary
difference is that this design has a much
better match between the trimmed α for
the inviscid analysis and for the viscous
analysis, leading to similar behavior over
the front region, and importantly, similar shock placement.

B. Case IV. Transonic Wing Design

Case IV is a wing design optimization problem at Mach 0.85. The objective is to reduce drag (J = CD),
subject to a lift constraint and a pitching moment constraintj, which is initially violated. The baseline
geometry is the Common Research Model wing (henceforth “CRM”), scaled so that the mean aerodynamic
chord has unit length. The planform is fixed, while variation in the vertical direction is permitted, including
airfoil design and sectional twist. The twist is about the trailing edge and is fixed at the root, while the angle
of attack is permitted to vary. The wing is required to maintain its initial volume V0 and also to maintain at
least 25% of its original local thickness t0 everywhere. To approximate this continuous thickness constraint,
we used a 10× 10 grid of constraints distributed evenly across the planform.
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Figure 19: Case IV: First two shape control levels (8-DV
and 26-DV)

The full optimization problem is

minCD

CL = 0.5

CM ≥ −0.17

V ≥ V0 ≈ 0.26291

ti ≥ 0.25ti0∀i

We solve this problem unmodified, but at invis-
cid conditions to demonstrate our design approach.
Thus results will not be directly comparable to vis-
cous design results.

1. Shape Parameterization

For this problem, we use a deformer similar to that
used in Case III, but here it interpolates both twist
and airfoil section deformation independently. At
each station a curve deformer (identical to the setup
used for Cases I and II) deforms the airfoil shape,
after which the twist is applied. Each airfoil param-
eter has a bump-shaped deformation mode (based
on RBF interpolation) that is mostly confined to the
region between its neighboring points, while main-
taining smoothness. As before, the twist is in the
streamwise plane about the trailing edge and is linearly interpolated. Control over airfoil sections and twist
can happen at different stations, allowing for “anisotropic” shape control. For example, the twist control
may have a higher spanwise resolution than the airfoil control. Similarly, each airfoil control station can offer
different shape control resolution.

jMeasured about the point (1.2077, 0, 0.007669) with the origin at the leading edge of the wing root.
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Figure 20: Case IV: Convergence of aerodynamic func-
tionals (only plotted at successful search directions).

Figure 19 shows the first two search spaces (“P0”
and “P1”). The initial parameterization allows twist
at the tip and break (fixed at the root) and very
rough camber and thickness control (two control
points each on the root, break and tip sections).
There are initially eight shape design variables, plus
the angle of attack. To refine the parameterization,
we add new control stations at the spanwise mid-
points between the existing stations, and simultane-
ously add new airfoil control points at the midpoints
between existing control points. Two additional pa-
rameterization levels (“P1” and “P2”) are generated
by uniform refinement, resulting in 26 and 70 geo-
metric design variables, respectively.

2. Optimization Results

Figure 20 shows the convergence of the aerodynamic
functionals over the three parameterization levels.
Under “P0”, the initially violated pitching constraint
is driven to satisfaction. To do this, large airfoil de-
formations are enacted, as shown in Figure 21 (blue
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Figure 21: Case IV: Airfoil cuts and inviscid solution pressure profiles.
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lines), with a resulting sharp increase in drag. After adding more shape control resolution, the drag is rapidly
driven down nearly to the initial value, while nearly satisfying the constraints. The airfoil sections (Figure
21, orange lines) relax to more subtle changes from the baseline shape. The thickness and volume constraints
are met at every design iteration. Overall, all of the constraints are nearly satisfied by the end, with only a
slight drag penalty associated with having to meet the initially violated pitching moment constraint. We did
not yet analyze the performance of the inviscidly optimized wing with a viscous flow solver. It is possible
that a modification of the trailing edge (as in Case II) would improve the viscous performance.

VI. Summary

We presented results for four optimization benchmark problems. On the two inviscid design problems,
expected results were recovered. For Case I, our final shape is nearly identical to shapes seen by previous
participants,11–15 with similar or superior drag performance (reduction of 10× from the baseline). For Case
III, although potential improvements were quite small, by optimizing the wing twist, we drove the lift
distribution closer to elliptic. On Case II, we showed how an inviscid design approach with slight problem
modifications was able to reduce the RANS-analyzed drag by a factor of two (128 counts). On Case IV,
we showed how our progressive parameterization and discretization error control systems work together to
solve a typical 3D design problem, holding drag roughly constant while meeting an initially violated pitching
moment constraint.

Our approach combines progressively refined shape spaces with progressive discretization error control.
We showed how progressive parameterizations susbtantially reduced the optimization cost compared to using
fine fixed parameterizations. By using a tiered approach to discretization error control, we achieved rapid early
design progress on coarser meshes, while automatically transitioning to higher resolution when approaching
the optimum. In the future we hope to demonstrate this system on larger scale problems, such as low-boom
design or wing-body-nacelle integration.
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Appendix A. Optimization Details

Table 4 shows some of the optimizer settings used for each case. For progressive parameterization, the
KKT condition is reported for the final search space. On all prior search spaces, a trigger is used to avoid
over-optimizing on early design spaces.

Table 4: Optimization Settings

Case 1 Case 2 Case 3 Case 4

Trigger Slope< 0.2 Optimality Optimality Optimality

SNOPT Major Step Limit 1.0 1.0 1.0 1.0

Table 5: Flow Solver Details

Case 1 Case 2 Case 3 Case 4

Farfield distance (x,y,z) (±96, ∅,+96) (±96, ∅,±96) (±48,+48,±48) (±113,+113,±113)

Limiter None None van Leer van Leer
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