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The design of natural-laminar-flow airfoils is demonstrated by high-fidelity, multipoint,
aerodynamic shape optimization capable of efficiently incorporating and exploiting laminar-
turbulent transition. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS)
flow solver has been extended to incorporate an iterative laminar-turbulent transition pre-
diction methodology. The natural transition locations due to Tollmien-Schlichting instabil-
ities are predicted using the simplified e

N envelope method of Drela and Giles or alterna-
tively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-
layer properties are obtained directly from the Navier-Stokes flow solution, and the tran-
sition to turbulent flow is modeled using an intermittency function in conjunction with
the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in
a gradient-based sequential quadratic programming shape optimization framework. The
laminar-turbulent transition criteria are tightly coupled into the objective and gradient
evaluations. The gradients are obtained using a new augmented discrete-adjoint formula-
tion for non-local transition criteria. The aerodynamic design requirements are cast into a
multipoint design optimization problem. A composite objective is defined using a weighted
integral of the operating points. A Pareto front is also formed to study and quantify
off-design performance. The proposed framework is applied to the single and multipoint
optimization of subsonic and transonic airfoils, leading to robust natural-laminar-flow de-
signs.

I. Introduction and Motivation

T
he current push for environmentally responsible aviation requires serious efforts to mitigate the escalating
effects of such technology on climate change and natural resources. A clear vision for the efficiency

of future transport aircraft – with specific targets for reduced fuel burn, emissions and noise – has been
published in the U.S. National Aeronautics Research and Development Plan.1 As a result, manufacturers
and researchers are investigating both conventional and unconventional aircraft designs to meet these targets.
As part of the effort to reduce fuel burn and emissions, aerodynamicists are assessing the feasibility of natural
laminar flow (NLF) as a key enabler of environmentally responsible commercial aviation.

In the late nineteenth and early twentieth centuries, the breakthrough work of Reynolds and Prandtl
began to shed light on boundary layers and laminar-turbulent transition.2 More than a century has passed,
and designers have become heavily reliant on Computational Fluid Dynamics (CFD), as well as single and
multidisciplinary design optimization tools. Despite this, there remain few NLF applications in the current
commercial fleet, with Honda’s recent HA-420 business jet3 and the nacelles on the recent Boeing 7874 being
among the first, if not the only applications to date. Over the past few decades, the use of CFD under the
assumption of fully-turbulent conditions has allowed for significant advancements in aerodynamic design, but
the conservatism leaves something to be desired. Indeed, design tools capable of incorporating and exploiting
laminar-turbulent transition enable the design of aircraft with significantly reduced drag.

The lack of NLF applications in the fleet points to the sparsity of available design tools for NLF; it also
points to the challenges in reliably realizing extended regions of laminar flow in flight. The transition to
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turbulence is affected by many factors, including: Reynolds number (Re), freestream turbulence intensity
(Tu), pressure gradient, Mach number (M), surface roughness and heating, structural noise, rain, hail, icing,
and insect impacts.2,4, 5, 6

Although the preceding list of factors is quite formidable, so are the economic and environmental incen-
tives to investigate the theoretical, experimental, and computational methods that may actualize NLF in
commercial aviation. Hence, engineers are exploring a variety of techniques that work to promote laminar
flow, including: shaping the aircraft to maintain favourable pressure gradients and with lower sweep angles
to reduce cross-flow instabilities, distributing surface roughness elements to stabilize crossflow instabilities,
slat-less wing configurations, boundary-layer suction and wall heating, plasma and piezoelectric actuators,
non-stick materials and coatings, and new manufacturing and maintenance procedures. Therefore, the de-
velopment of design tools capable of efficiently exploiting any of the available techniques is of immediate
consequence and benefit.

In this work, NLF design is demonstrated through high-fidelity, single and multipoint aerodynamic shape
optimization with transition prediction capable of accounting for the effects of Re, Tu, M , and pressure gra-
dient. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the one-equation Spalart-
Allmaras (SA) turbulence model. The solver is first extended to incorporate an iterative laminar-turbulent
transition prediction methodology and is subsequently employed in a gradient-based Sequential Quadratic
Programming (SQP) shape optimization framework. Practical design requirements are cast into a paral-
lelized multipoint design optimization problem. The proposed framework presents a good compromise be-
tween accuracy, robustness, and efficiency, resulting in a flexible and high-fidelity RANS-based optimization
framework for NLF design in subsonic and transonic flight.

II. Background

II.A. Transition Prediction in RANS Solvers

The challenges in reliably predicting laminar-turbulent transition continue to limit our ability to compute
many aerodynamic flows with accuracy.7 Consequently, the development of transition prediction methods of
varying complexity and fidelity is ongoing. While there are several mechanisms that may lead to transition,
the two dominant mechanisms typically encountered in high-speed external aerodynamic flows are Tollmien-
Schlichting and crossflow instabilities.8

The turbulence models used in RANS solvers do not have the stand-alone capability to predict the
laminar-turbulent transition locations in a flow field; in order to predict transition, one must apply a transi-
tion criterion. In recent years, several approaches for incorporating transition prediction into RANS solvers
have been developed. A review by Arnal et al.9 discusses the various advantages and disadvantages of each
approach in detail. The following list attempts to categorize the available strategies:

1. Coupling of a RANS code with a linear or parabolized stability solver and the eN criterion.10,11,12,13,14

2. Direct implementation of simplified eN methods into the RANS code.6,15,16,17

3. Direct implementation of analytical transition onset functions (criteria typically based on Rex or Reθ)
into the RANS code.18,15,16,19

4. Coupling of a RANS code with a boundary-layer code and transition prediction using the criteria of
methods 1 through 3 applied to the boundary-layer solution.11,20,21

5. Coupling of additional transport equations to the RANS turbulence model, such as the γ−Reθ tran-
sition model developed by Langtry and Menter.22,23,24,25,26 These approaches make use of analytical
transition onset functions built into the transport equations.

In the above strategies, the transition criteria employed by the RANS solvers are based on either the
eN criterion or on transition onset functions. To apply the eN criterion one must first approximate the
N-factor curves, representing the amplification ratios of the unstable frequencies of the disturbances in
the boundary-layer. Transition is assumed to occur when the maximum local N-factor has exceeded some
critical value (Ncrit). Values for Ncrit must be specified a priori based on the freestream turbulence intensity
and/or experimental calibration. In computing the N-factor curves, there are several methods of varying
fidelity and computational cost. The highest fidelity approach (for RANS solvers) is to solve the parabolized
or linearized stability equations at each station to obtain the local N-factors for the unstable frequencies.
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Simplified approaches have been developed to alleviate the demanding computational cost of such methods,
including: the use of database methods generated from linear stability studies, approximating the N-factor
envelope through boundary-layer properties (such as the shape factor), and approximating the N-factor
through the pressure gradient and curve fits based on linear stability theory, without the need for boundary-
layer properties.4

Examples of transition criteria based on a transition onset function are Michel, Granville, H−Rex,
Abu-Ghannam and Shaw, Gleyzes-Habiballah, and Arnal-Habiballah-Delcourt.18,19,22 These methods have
been classified as “simpler” or “analytical” transition criteria.9 Each have their range of applicability and
limitations. These criteria typically compare the boundary-layer properties or related quantities (such as
Reθ) to an empirically calibrated transition onset function (such as Reθtr). The transition onset functions are
typically computed from the integrated boundary-layer properties; the exception being the local transport
equation approach developed by Langtry and Menter.23 The transition point is the first point at which, for
example, Reθ ≥ Reθtr .

In this work, for the prediction of the natural transition locations due to Tollmien-Schlichting instabilities,
we employ approaches 2 and 3 from the above list. The boundary-layer properties are computed directly
from the Navier-Stokes solution.27 The framework makes use of Drela’s eN envelope method28 in approach
2, and the relatively new compressible form of the AHD criterion18 in approach 3; these criteria are presented
in Sections III.A and III.B, respectively. Transition prediction is implemented into the RANS solver using
an iterative approach, and transition to turbulence is modelled using an explicit intermittency function in
conjunction with the SA turbulence model – both are discussed in Section III.C.

Unlike the local γ−Reθ transport equation approach,22 the other approaches are non-local in their formu-
lation, which has some disadvantages. However, these issues are being addressed; for example, approaches 1
and 2 have been successfully parallelized and extended to three-dimensional flows by Krimmelbein et al.,10,29

and there is no restriction to their use in an implicit Newton-Krylov type solver, as demonstrated in this
work. There is also no required calibration specific to a particular turbulence model.24 Furthermore, correla-
tions for crossflow instabilities (such as the C1 criterion) have already been successfully combined with these
approaches, with experimental validation demonstrating accurate transition prediction on transonic swept
wings in three dimensions.15,16 Finally, the modular implementation of the proposed transition prediction
framework facilitates the use of higher fidelity methods (such as linear stability theory or the parabolized
stability equations) if so desired.

II.B. RANS-based Aerodynamic Shape Optimization for NLF

Research in the area of high-fidelity aerodynamic shape optimization with laminar-turbulent transition is
sparse. The majority of research in this field employs inviscid-viscous coupling strategies, making use of
boundary-layer codes for the viscous formulation and either a panel method or the Euler equations for the
inviscid formulation.30,31,32,33,34,35,36,37 Although the inviscid/viscous coupling strategies can be computa-
tionally cheaper than the higher-fidelity RANS solvers, the industry’s trend toward the use of RANS solvers
strongly suggests that NLF design tools should follow suit. Recent research making use of RANS solvers to
optimize with transition prediction has shown promising results.

Driver and Zingg21 coupled a RANS optimization framework to the MSES inviscid/viscous solver for
transition prediction. This was a stop-gap approach used to successfully demonstrate the potential for NLF
design using RANS-based optimization. Lee and Jameson38 have successfully coupled a RANS solver to
a boundary-layer code and an eN database method (making use of the Baldwin-Lomax turbulence model)
for NLF design in two and three dimensions. The gradient calculations in their work did not include
the transition prediction, and their optimizations focused on the elimination of shock-waves for reduced
wave drag. Khayatzadeh and Nadarajah39,40 successfully extended the Langtry-Menter transport equation
approach to an adjoint-based optimization framework in two dimensions, and applied the framework to the
design of low Reynolds number NLF airfoils with separation bubbles. Design objectives investigated included
the minimization of turbulent kinetic energy and the maximization of the lift-to-drag ratio. More recently,
several researchers have employed the Langtry-Menter approach in conjunction with finite-difference gradient
approximations or gradient-free methods for the design of NLF airfoils and wind turbine blades.41,42,43,44,45

Previous work by Rashad and Zingg also made use of a finite-difference gradient approximation.27

There are several specific areas that require continued research and development and have significant room
for improvement. The first is the direct use of high-fidelity RANS solvers as opposed to inviscid/viscous
coupling strategies. The second is to optimize at higher Reynolds and Mach numbers (representative of
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subsonic and transonic transport aircraft). A third is to optimize for more realistic and practical designs
through the use of multipoint design optimizations that incorporate the off-design performance during the
optimization cycle.46 In the same vein, design objectives and constraints should aim to reflect the industry’s
aerodynamic design objectives. Often, design objectives are formulated specifically or primarily to delay
transition. Design objectives based on indirect functions – such as N factor curves – run the risk of creating
a gap between the design tool’s capabilities and the actual objectives of manufacturers. Finally, in order
to account for three-dimensional features such as sweep angle, taper ratio, and twist,47 there is a need for
continued development of NLF design tools applicable to full aircraft configurations in three dimensions.
Ultimately, such design tools should include the prediction of transition due to crossflow instabilities, and
they should incorporate the transition criteria into the evaluation of the objective, constraints and gradients
of the design problem.

III. Flow Solver Methodology

The steady RANS equations are solved in two dimensions using a second-order Newton-Krylov finite-
difference flow solver (named Optima2D) originally developed by Nemec and Zingg.48,49 The linear system
that arises at each Newton iteration is solved using the preconditioned Generalized Minimum Residual (GM-
RES) method. Global convergence of the Newton method is made possible by an approximate factorization
start-up algorithm. Numerical dissipation is added by either the scalar dissipation scheme of Jameson et

al.50 or the matrix dissipation scheme of Swanson and Turkel.51 The turbulent eddy viscosity is computed
using the one-equation Spalart-Allmaras (SA) turbulence model.52 As mentioned, the SA model is not itself
capable of predicting transition; the remaining constituents of the proposed transition prediction framework
include: the determination of the boundary-layer edge and properties, the calculation and evaluation of the
transition criteria, and the implementation of a robust iterative procedure for transition prediction in the
RANS solver.

Three boundary-layer edge-finding methods have been implemented, verified and compared in the RANS
flow solver; details may be in Rashad and Zingg.27 The accuracy of the integrated boundary-layer properties
has also been assessed through a detailed grid convergence study and by comparison to numerical boundary-
layer properties obtained from XFOIL.27 It was found that with reasonable grid density, the boundary-layer
properties can be computed directly from the Navier-Stokes solution with sufficient accuracy. The remainder
of this section presents the transition criteria and discusses their implementation in the RANS solver.

III.A. AHD Transition Criterion

The natural transition locations (due to Tollmien-Schlichting instabilities) are predicted using the new com-
pressible form of the Arnal-Habiballah-Delcourt (AHD) criterion.18,15,16,53 The AHD criterion is designed
for low to moderate freestream turbulence intensities (Tu ≤ 0.1%), as typically encountered in external
aerodynamic cruise conditions for transport aircraft.18 The method has the advantage of being applicable
to a wide range of pressure gradients, as well as compressible flows.18 It does not predict transition due to
crossflow instabilities; however, it can be combined with other criteria (such as the C1 criterion) for that
purpose.53

Beginning at the stagnation point, we march toward the trailing edge of the airfoil, treating the upper
and lower surfaces independently. Our first task is to find the streamwise location of the neutral stability
point, scr. Upstream of the neutral stability point, it is assumed (from linear stability theory) that all small
disturbances over all frequencies remain stable and damp out. The neutral stability point is found using the
critical Reynolds number, calculated as a function of the incompressible shape factor, Hinc = δ∗inc/θinc, as

Reθcr = exp

[

E

Hinc

− F

]

, (1)

such that scr is the first point at which, locally, Reθ=Reθcr . The incompressible shape factor is used even for
compressible flow, as recommended by Cliquet et al.18 The functions E and F are computed as a function of
the Mach number at the boundary layer-edge, and may be found in the Appendix. Note that Reθcr typically
decreases in the streamwise direction and is greater than Reθ upstream of the critical point.

The next step is to find the streamwise location of the laminar-turbulent transition point, str. The
transition criterion is computed and checked only at points downstream of the neutral stability point. The
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AHD criterion uses the Falkner-Skan self-similar solutions to represent the laminar boundary-layer profiles,
which are characterized by the local Pohlhausen number.18 Following the work of Granville, the necessary
relationships are extended from self-similar boundary-layers to actual flows by replacing Λ2 with its mean
value as follows:18

Λ2 =
θ2

ν

dUe

ds
=⇒ Λ2 =

1

s− scr

∫ s

scr

Λ2ds . (2)

Arnal et al. proposed the following expression for the transitional Reynolds number, Reθtr :

Reθtr = Reθcr +A·exp(B ·Λ2)

[

ln(C ·Tu)−D ·Λ2

]

, (3)

where Tu is the freestream turbulence level, and the functions A, B, C, and D may be found in the Appendix.
The transition point is then taken as the first point at which, locally, Reθ = Reθtr . Note that Reθtr typically
decreases in the streamwise direction and is greater than Reθ upstream of the transition point.

III.B. Simplified eN envelope method

The simplified eN envelope method used in Drela’s XFOIL and MSES codes28 has also been incorporated.
The method makes direct use of the boundary-layer properties to approximate the envelope of the spatial
amplification rates of the disturbances (the N-factors), as opposed to actually solving the linear stability
equations. While the envelope method does not track individual frequencies, it is significantly more effi-
cient.17 The correlations are based on linear stability results for the Falkner-Skan family of velocity profiles.
The envelopes of the growth rates are locally approximated as straight lines with respect to the streamwise
direction, ξ, as follows:28

dN

dξ
= fcn(Hk, θ) =

dN

dReθ
·
m+ 1

2
· l ·

1

θ
, (4)

where dN
dReθ

, m, and l are functions of the so-called kinematic shape factor, Hk, and may be found in the
Appendix. The kinematic shape factor is computed based on the incompressible shape factor, Hinc, and the
Mach number at the boundary-layer edge, Me, as

Hk =
Hinc − 0.290M2

e

1 + 0.113M2
e

. (5)

The N-factor envelope is then obtained by integrating Equation (4) in the streamwise direction, beginning
at the critical point. The critical point is the first point at which, locally, Reθ=Reθcr , where Reθcr is defined
by28

log10Reθcr =

(

1.415

Hk − 1
− 0.489

)

tanh

(

20

Hk − 1
− 12.9

)

+
3.295

Hk − 1
+ 0.44 . (6)

III.C. RANS Implementation

III.C.1. Iterative Transition Prediction Procedure

Automatic transition prediction in the RANS solver is achieved through an iterative process, similar to that
developed by several researchers.6,11,18,17,20,53 This section provides an overview of the present implemen-
tation.

An initial guess of the transition locations (top and bottom surfaces) is required and is typically taken at
25% chord. Transition is then forced to occur at the initial locations using a transition region model (Section
III.C.2). When the magnitude of the flow residual has been reduced to 5×10−6, the transition prediction
module is invoked to process the RANS solution; the tight tolerance was chosen to ensure sufficiently accurate
boundary-layer properties for transition prediction. The forced transition points are then moved upstream
or downstream as required toward the predicted transition points in an under-relaxed fashion,20 such that

Xnew
f = Xold

f − ω
(

Xold
f −Xp

)

, (7)

where ω is the under-relaxation factor, and Xf and Xp represent the normalized chord locations of the forced
and predicted transition points, respectively. When the flow residual returns to a magnitude of 5×10−6, the
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predicted and forced transition points are again updated. The iterative transition prediction procedure is
considered converged when the absolute value of the transition residual, |Rtr|=|Xf−Xp|, has converged to
a tolerance of ǫtp. When the transition prediction procedure has converged, Xf is set equal to Xp, and the
flow solver continues to converge until the magnitude of the flow residual has reduced to a tolerance of ǫr.
For the purposes of gradient-based aerodynamic shape optimization, ǫtp and ǫr are set to 10−8 and 10−12,
respectively, ensuring a sufficiently smooth design space for optimization.

From numerical experimentation, an under-relaxation factor of ω = 0.8 has been selected as a good
compromise between efficiency and robustness. A linear extrapolation of the boundary-layer properties –
from the laminar region into the turbulent region – allows the transition criterion to predict transition
downstream of the forced transition points (when required). If laminar flow separation is detected and a
transitional separation bubble forms, the eN envelope method is able to predict the transition location in
the separation bubble.28 When using the AHD criterion, the laminar separation point is simply taken as
the transition point. A robust logic has been determined through extensive numerical experimentation and
code verification to handle the various outcomes of the transition prediction module. For the various airfoils
and flight conditions investigated, it was found that the iterative transition prediction procedure requires
approximately three to four times the computational cost of a fully-turbulent flow solve, with no significant
addition to the memory requirements.

III.C.2. Modelling of Transitional Flow Regions

The transition to turbulence is enforced in the Navier-Stokes solution by one of two methods. The first
makes use of the trip term and the ft1 and ft2 trip functions in the SA model, as published by Spalart and
Allmaras.52 The second approach makes use of an intermittency function that scales the turbulent eddy
viscosity, such that µt = γµt and 0≤γ≤1, as used by Cliquet et al.18 The intermittency function has been
defined to take the form of an S-type curve with a smooth initial ramp-up, such that

γ(x) = exp(−5 ξ2) , where ξ = 1 +
xbegtr − x

ltr
, (8)

xbegtr represents the beginning of the transitional flow region as predicted by the transition criterion, and ltr is
the transition length. Although there are no physics-based methods for determining the transition length,17

empirically correlated approximations have been developed that make use of the boundary-layer properties
at the transition point. Following the work of Krumbein,54 the transition length can be obtained from

Reltr = 4.6
(

Reδ∗
tr

)1.5
. (9)

For a smooth ramp-up of the eddy viscosity, the transition region must be sufficiently resolved; failure to do
so was observed to cause noise in the design space during optimization. A comparison of the eddy viscosity
ramp-up using the intermittency function as compared to the Spalart-Allmaras trip terms may be found in
Rashad and Zingg.27

IV. Optimization Framework

The goal of the aerodynamic shape optimization framework is to minimize the specified design objective,
J , with respect to the design variables, X, subject to linear and nonlinear constraints. Although the optimizer
can handle several different design objectives, such as the maximization of lift-to-drag ratio or endurance
factor, in this work the focus is on lift-constrained drag minimization. The proposed optimization framework
consists of the following: (i) a two-dimensional RANS flow solver (described in the preceding section),
(ii) a geometry parametrization and mesh movement algorithm, (iii) a sequential quadratic programming
algorithm, and (iv) a discrete-adjoint gradient computation.

The airfoil geometry is parametrized using B-splines, the details of which may be found in Nemec and
Zingg.48 The design variables, X, are defined as the y-coordinates of the B-spline control points; the control
points are free to move in the vertical direction to facilitate shape changes during the optimization cycle.
The angle of attack of the airfoil is an additional design variable. The algebraic grid-perturbation strategy
described in Nemec and Zingg48 is used to ensure that the computational grid is smoothly adjusted to
conform to the changing geometric configurations.
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The SNOPT general purpose Sequential Quadratic Programming (SQP) algorithm – developed by Gill et
al.55 – is employed as the optimizer in this work. SQP methods are among the most effective gradient-based
approaches for treating smooth, nonlinearly constrained optimization problems.56 SNOPT solves problems
that are locally optimal by minimizing quadratic models of the augmented Lagrangian.55 A backtracking
line-search strategy is used to determine the step-size and update the design variables in a manner that
ensures a sufficient decrease in the augmented Lagrangian merit function. The Hessian of the Lagrangian is
approximated using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS). SNOPT
requires the gradients of the objective function and constraints; ensuring sufficiently accurate gradients is
of paramount importance to the success of the SQP algorithm. Two methods for computing accurate
gradients (that incorporate the sensitivities of the transition criterion) have been implemented; a parallel
finite-difference gradient evaluation,27 along with a new augmented discrete-adjoint gradient evaluation,
presented in the next section.

IV.A. Discrete-Adjoint Gradient Evaluation

The principal advantage of the adjoint method is that its cost does not scale with the number of design
variables, but rather with the number of objectives and nonlinear constraints. Hence, the objective function
gradient evaluation only requires one flow solve and one adjoint solve; for lift-constrained drag minimizations,
an additional adjoint solve is required for the gradient of the lift-constraint. A detailed description and
derivation of the discrete-adjoint formulation in the context of aerodynamic shape optimization may be
found in Nemec and Zingg.48

In the discrete-adjoint approach, the gradient is evaluated using the following expression:48

G =
dJ

dX
=

∂J

∂X
− ψT ∂R

∂X
, (10)

where R = R[X,Q(X)] represents the discretized RANS residual vector. The vector of adjoint variables, ψ,
is obtained by solving the linear system of equations given by

∂R

∂Q

T

ψ =
∂J

∂Q

T

, (11)

where Q is the vector of conserved flow variables.

IV.A.1. Adjoint Formulation for Transition Prediction

The AHD and eN transition criteria (described in Sections III.A and III.B, respectively) are non-local in
their formulation. As such, special consideration must be taken when evaluating and deriving an adjoint
formulation capable of incorporating their sensitivities. The proposed approach is to append a new adjoint
vector, ψtr, to the original adjoint vector, such that ψ ⇒ [ψ ; ψtr]. Henceforth, the overbar shall be used
to indicate an augmented vector. The length of ψtr corresponds to the number of transition points, Ntr,
which is equal to two for a single-element airfoil. For 3D wing configurations, the transition lines may be
defined by a spanwise distribution of transition points;11 the total number of spanwise transition points on
all surfaces gives Ntr.

To compute the new adjoint variables, we specify a corresponding number of new residual equations, such
that R ⇒ [R ; Rtr]. The new transition residual equations represent the distance between the forced and
predicted transition locations, Rtr=Xf−Xp, as described in Section III.C.1. The transition residual vector
is satisfied (Rtr = 0) when the forced transition points are in locations consistent with the given transition
criterion (Xf =Xp).

In addition, the vector of conserved flow variables must be augmented to include the forced transition
locations, such that Q ⇒ [Q;Xf ]. Finally, the entire adjoint vector, ψ , is computed by solving the augmented
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linear system of equations given by

∂R

∂Q

T

ψ =
∂J

∂Q

T

7−→

























∂R
∂Q

∂R
∂Xf

∂Rtr

∂Q
∂Rtr

∂Xf

























T 























ψ

ψtr

























=

























∂J
∂Q

∂J
∂Xf

























T

. (12)

The ∂R
∂Xf

matrix represents the sensitivity of the flow residual to the forced transition points. It is computed
efficiently using a centered difference approximation requiring only two evaluations of the flow residual
for each transition point. The matrix ∂Rtr

∂Xf
represents the sensitivity of the transition residual to the forced

transition points, which by the definition of Rtr=Xf−Xp, is simply the Ntr×Ntr identity matrix. Furthermore,
the vector ∂J

∂Xf
is simply the null vector for typical objectives and constraints such as lift and drag, since

these objectives do not depend explicitly (but rather implicitly) on the transition points. The matrix ∂Rtr

∂Q
is

by far the most complex of the new matrices in the augmented formulation as it represents the sensitivity of
the transition residual (including the evaluation of the boundary-layer edge, the boundary-layer properties,
and the given transition criterion) to the conserved flow variables. This matrix is computed accurately using
a complex-step approximation57,58 discussed further below.

The proposed approach has several advantages. First and foremost, the sensitivities of the given transition
criterion with respect to the design variables are explicitly incorporated into the adjoint gradient, in turn
allowing the optimizer to exploit that information. Second, the non-locality in the given transition criterion

is confined to the last Ntr rows of the new Jacobian matrix, ∂R

∂Q
. Note that the new adjoint system is only

slightly larger than the original system, since the number of additional rows in the new Jacobian is only
Ntr. Thus, the use of the complex-step approximation in the calculation of ∂Rtr

∂Q
does not incur significant

additional expense. Furthermore, the specific nodes involved in satisfying the transition criteria (i.e. from
the critical point to the transition point, and from the airfoil surface to the boundary-layer edge) are known;
thus, only that subset of nodes is perturbed when using the complex-step approximation to evaluate ∂Rtr

∂Q
.

Third, no extra work is needed to incorporate the sensitivities of a new or different user-specified transition
criterion. Fourth, the iterative procedure used to determine the final forced transition locations, as described
in Section III.C, need not be explicitly included, since the converged RANS solution satisfies the transition
criterion, Rtr =0, and the sensitivities of the given transition criterion are included by the addition of the
new adjoint variables. Fifth, the sensitivities of R and J with respect to Xf (that is,

∂J
∂Xf

and ∂R
∂Xf

) need not

contain any information about the transition criterion. Finally, the linear system of equations given by (12)
may be solved using the same preconditioned GMRES approach used for the original adjoint formulation.

IV.A.2. Solving the Augmented Adjoint System

An iterative approach that makes use of the Generalized Minimum Residual (GMRES) Krylov subspace
solver is proposed to solve the augmented adjoint system. The solution procedure requires an initial guess
for the transition adjoint variables, taken as ψn=1

tr = 0, and is summarized as follows:

1. Use preconditioned GMRES to solve the following linear system of equations for ψn+1, where n is the
iteration counter:

∂R

∂Q

T

ψn+1 =
∂J

∂Q

T

−
∂Rtr

∂Q

T

ψn
tr . (13)

2. Update the ψtr vector by solving the following linear system of equations (directly):

∂Rtr

∂Xf

T

ψn+1
tr =

∂J

∂Xf

T

−
∂R

∂Xf

T

ψn+1 . (14)

Note that since ∂Rtr

∂Xf
is the identity matrix and ∂J

∂Xf
is the null vector, (14) simplifies to

ψn+1
tr = −

∂R

∂Xf

T

ψn+1 . (15)
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3. Increment the iteration counter, n← n+ 1, and return to step 1.

4. Stop when a given convergence criterion is satisfied. The convergence criterion selected for the iterative
procedure makes use of the L2-norm of the augmented adjoint system, such that

∣

∣

∣

∣

∣

∣

∣

∣

∂R

∂Q

T

ψ −
∂J

∂Q

T
∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ǫadj . (16)

A value of ǫadj = 10−8 has been selected to ensure that the final solution vector, ψ , satisfies the
augmented system of equations sufficiently well.

One of the main advantages of the proposed iterative approach is that, in step 1, the same first-order
preconditioner used to precondition GMRES during the flow solution (and the original adjoint solution) can
also be used here to precondition the system given by (13). Furthermore, in the above algorithm GMRES
makes use of the same left-hand side during each iteration, with only the right-hand side being modified. It
follows that the robustness of GMRES that has been observed in fully-turbulent and fixed transition flow
solutions is preserved here. Another advantage is that the method is easy to implement since it uses the
same matrix-vector products in step 1 as the fully-turbulent and fixed transition solutions, and it requires
no modifications within the GMRES solver itself. A principal disadvantage of the iterative approach is the
time required to solve (13) multiple times. However, with the appropriate selection of an initial guess and by
the under-relaxation of the updates, the method is relatively quick to converge, typically requiring between
5 and 10 iterations. For example, it has been observed that the time required to compute the gradients for
a lift-constrained drag minimization (both ∂Cd/∂X and ∂Cl/∂X) using the proposed algorithm is equal to
or less than the time required to compute a single flow solution with free transition.

IV.B. Multipoint Optimization

We use multipoint optimization to ensure that our aerodynamic designs perform reasonably well over a given
flight envelope. This is particularly important in the design of NLF airfoils, which, in order to maximize the
extent of laminar flow, tend to take the boundary-layer very close to the point of separation prior to pressure
recovery. As such, the off-design performance of NLF airfoils must be considered during the design process
to ensure practical and robust designs. We use the methodology of Buckley and Zingg59,46 to perform
multipoint optimization capable of handling a comprehensive set of aerodynamic design requirements. In
particular, we are interested in considering a range of Reynolds numbers, Mach numbers, and aircraft weights
(W ). We keep the cruise altitude constant in this work (however it can also be included) and by specifying
a range of Mach numbers and aircraft weights, we can obtain the corresponding range of Reynolds numbers
and lift requirements. The optimizer then minimizes the weighted integral of the objective (in our case, the
drag coefficient) subject to the lift constraints (one for each design point). Also note that each operating
point has an associated angle of attack, all of which are included as additional design variables. The weighted
integral is defined as46

W2
∫

W1

M2
∫

M1

Cd (M,W )Z (M,W ) dMdW (17)

where Z is a weighting function to be specified by the designer. This weighting function allows the designer
to specify the importance of each design point according to their own priorities. The objective function, J ,
is an approximation to (17) given by

J =

NW
∑

i=1

NM
∑

j=1

Ti,j Cd (Mi,Wj)Z (Mi,Wj)∆M∆W , (18)

where NM and NW are the numbers of quadrature points, and ∆M and ∆W are the corresponding spacings
between quadrature points. The Ti,j are the associated quadrature weights used to approximate the integral.
In this work, the trapezoidal quadrature rule is employed.

The above multipoint formulation requires one flow solution and two adjoint solutions for each operat-
ing point. Buckley and Zingg46 have parallelized the multipoint framework such that multiple processors
compute the necessary objective, constraint, and gradient information. This approach has been shown to be
an effective technique for robust and efficient aerodynamic design over a range of operating conditions.59,46

Full details of the various operating conditions and their associated weights are presented in Section V.G.
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(a) Upper surface transition prediction results (b) Lower surface transition prediction results

Figure 1. NLF-0416 transition prediction validation

Figure 2. NLF-0416 drag polar comparison

V. Results

V.A. Transition Prediction

The transition prediction capabilities of the flow solver are validated by comparison to experimental transition
data for the NLF-0416 airfoil developed by Somers.60 The experimental results for NLF-0416 were obtained
in the Langley Low Turbulence Pressure Tunnel (LTPT) using microphoned pressure taps.60 The resolution
of the experiments corresponds to the physical spacing of the microphoned taps along the chord of the airfoil.

The test case results are for a 449×385 C-grid around the NLF-0416 airfoil at Re= 4×106, M = 0.2,
and Tu=0.1% (and N =8 for XFOIL). The transition points predicted by both Optima2D and XFOIL are
presented in Figure 1, along with the wind tunnel experimental data. The results of this test case show
that the predictive capabilities of Optima2D match closely with the published experimental results over a
range of lift coefficients. Figure 2 presents the drag polar for the NLF-0416 airfoil using both Optima2D and
XFOIL. Good agreement is observed between the experimental results and the predicted transition locations
and drag polar computed using Optima2D. In Somers’ report,60 the freestream turbulence intensity, Tu, was
unfortunately not published for the NLF-0416 experiments. It is possible that the wind tunnel may have
had lower or higher Tu than the 0.1% used for the computations. Further verification and validation results
may be found in Rashad and Zingg.27
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Table 1. Optimization cases

Case Aircraft Reynolds Number (Re) Mach Number (M) Lift Coefficient (C∗

l )

A Cessna 172R 5.6×106 0.19 0.30

B Dash-8 Q400 15.7×106 0.60 0.42

C Boeing 737-8 20.3×106 0.71 0.50

Figure 3. RAE-2822 B-spline parameterization

V.B. Optimization Results - Problem Definitions

To demonstrate the NLF design capabilities of the optimization framework, single and multipoint optimiza-
tions are performed at conditions associated with subsonic and transonic commercial aircraft. The objective
is to minimize the total drag of the airfoil constrained by a user-specified lift target, C∗

l . For structural
considerations, additional inequality constraints are included. An area constraint ensures that the final area
of the airfoil is greater than or equal to the initial area, and a thickness constraint near the leading edge
ensures a minimum thickness of 2.5% chord located at 2.7% chord.

Single-point optimization results are presented for all of the cases outlined in Table 1. Cases A, B, and
C were selected to approximate the cruise flight conditions of the Cessna 172R, the Bombardier Dash-8
Q400, and the Boeing 737-800, respectively. Multipoint optimization is performed on the Dash-8 Q400 and
is presented in section V.G.

The initial geometry for all cases is the RAE-2822 airfoil parametrized by seventeen B-spline control
points, as shown in Figure 3. The control point located at the leading edge of the airfoil, as well as the two
coincident control points at the trailing edge, are kept fixed throughout the optimization. The y-coordinates
of the remaining 14 control points are used as the geometric design variables (shaded in blue). The angle of
attack is also included as an additional design variable. The computational grid consists of a 575×224 C-grid,
resulting from grid convergence studies on the boundary-layer properties, with flow solutions computed using
the scalar dissipation scheme of Jameson et al.50 All results were obtained using the compressible Bernoulli
edge-finding method, the intermittency function transition region model, the discrete-adjoint based gradient
evaluation, and the eN transition criterion. The full paper will present a comparison to optimizations
performed with the AHD transition criterion. Prior to discussing the optimization results, the next section
presents an accuracy assessment of the discrete-adjoint gradient evaluation.

V.C. Verification of Discrete-Adjoint Gradient

In order to verify the accuracy of the augmented adjoint formulation, we compare the resulting gradient
vector to a finite-difference gradient vector. If the correct step size is selected, then each component of the
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Table 2. Comparison of finite-difference (FD) and discrete-adjoint (AD) gradient components

Component FD AD Diff. (AD−FD) % Diff.

1 0.0679450100 0.0679451512 1.4123964E-07 0.0002078735

2 0.0219869160 0.0219869646 4.8564238E-08 0.0002208779

3 0.0097466881 0.0097466700 -1.8115582E-08 -0.0001858640

4 0.0175834070 0.0175834517 4.4744770E-08 0.0002544716

5 -0.0193916140 -0.0193916634 -4.9418155E-08 0.0002548429

6 -0.0299716320 -0.0299718445 -2.1254895E-07 0.0007091671

7 -0.0047241138 -0.0047240276 8.6154773E-08 -0.0018237235

8 0.2247156100 0.2247165247 9.1469697E-07 0.0004070465

9 -0.0356937590 -0.0356938516 -9.2638314E-08 0.0002595364

10 -0.0754516680 -0.0754518118 -1.4383642E-07 0.0001906339

11 0.0093773201 0.0093772871 -3.2993728E-08 -0.0003518460

12 0.0212247700 0.0212248201 5.0099786E-08 0.0002360440

13 0.0298430110 0.0298430441 3.3118203E-08 0.0001109747

14 0.0423508340 0.0423509102 7.6172428E-08 0.0001798605

AoA 0.0010081208 0.0010081334 1.2597056E-08 0.0012495582

gradient vectors should be equal to within a small tolerance. For this accuracy assessment we perform a
single iteration of the optimization to obtain the discrete-adjoint gradient (that is, the sensitivity of the drag
coefficient to the design variables) for the initial geometry and parameterization described in Section V.B,
under the flight conditions of Case B. We also perform a centered-difference approximation by perturbing
each design variable individually using a step-size of 1×10−6. Table 2 compares the resulting adjoint (AD)
and finite-difference (FD) gradient vectors for all design variables; the first 14 components are the geometric
design variables, the last is the angle of attack. The results demonstrate excellent agreement between the two
methods for computing the gradient, with the finite-difference gradient requiring 30 flow solutions, compared
to a single flow solution (and a single adjoint solution) required for the adjoint gradient. The gradients of the
nonlinear lift constraint show slightly better agreement and are omitted for brevity. Further gradient accuracy
verifications have been carried out at different flight conditions and geometries, with similar results. Having
verified the feasibility of the augmented adjoint formulation for transition prediction and the accuracy of its
resulting gradient, the remainder of this paper is devoted to the presentation of the single and multipoint
optimization results obtained using the discrete-adjoint gradient.

V.D. Case A Results: Re = 5.6×106, M = 0.19, C∗

l = 0.3

The Cessna 172R is assumed to be cruising at 6000 ft, a speed of 120 knots and a weight of 2200 lbs. The
results were obtained using the eN envelope transition criterion with Ncrit=9. In Table 3, a summary of
the results comparing the initial and optimized airfoils is presented. Figure 4(a) compares the initial and
optimized geometries, and Figure 4(b) compares the pressure profiles. The transition locations are indicated
by the solid circles. The angle of attack increased from an initial value of 0.69◦ to 0.83◦, the lift constraint is
satisfied, and the total drag is reduced by 22.3 drag counts, or 46%. The ability of the optimizer to exploit
the laminar-turbulent transition prediction is made evident by the aft movement of the transition points
from 49% to 81% chord on the upper surface and 54% to 85% chord on the lower surface. The leading
edge radius has decreased, and the point of maximum thickness has been pushed significantly aft in order
to extend the region of favourable pressure gradient.

V.E. Case B Results: Re = 15.7×106, M = 0.60, C∗

l = 0.42

The design point for the Dash-8 Q400 is taken as point 6 from the multipoint optimization case (discussed
in Section V.G). The results are obtained using the eN envelope transition criterion with Ncrit=9. Table
4 provides a summary of the results comparing the initial and optimized airfoils. In this case, the angle of
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Table 3. Case A summary of optimization results: Re = 5.6×106, M = 0.19, C∗

l = 0.3

Cd Cdp
Cdv

Cl Cm Tup(x/c) Tlo(x/c) AoA

Initial 0.00482 0.00083 0.00399 0.3000 -0.06797 0.4918 0.5371 0.6858◦

Optimized 0.00259 0.00062 0.00196 0.3004 -0.05472 0.8085 0.8500 0.8312◦

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−0.4

−0.2

0.0

0.2

0.4

0.6

�/�

RAE 2822

Optima2D

(a) Initial and optimized airfoils

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−1.2

−0.8

−0.4

0.0

0.4

0.8

� �
(b) Initial and optimized pressure distributions

Figure 4. Case A optimization results: Re = 5.6×106, M = 0.19, C∗

l = 0.3; symbols indicate transition point locations

attack is decreased from an initial value of 1.14◦ to 0.30◦, the lift constraint is again satisfied, and the total
drag is reduced by 31.2 drag counts, or 53%. The transition point on the upper surface has been moved aft
by over 50% chord, while the lower surface transition point has moved aft approximately 20% chord.

Figure 5(a) compares the initial and optimized geometries; Figure 5(b) compares the pressure profiles. It
can be observed that the optimizer was again successful in designing an airfoil with an extended favourable
pressure gradient on both the upper and lower surfaces. As in the previous case, the optimized geometry
has a smaller leading edge radius, and the location of maximum thickness has been moved aft. These
results demonstrate the ability of the optimizer to design new NLF airfoils which would typically require
considerable aerodynamic experience to design.

V.F. Case C Results: Re = 20.3×106, M = 0.71, C∗

l = 0.50

The Boeing 737-800 has a wing sweep angle of 25◦and is assumed to be cruising at 35000 ft and a Mach
number of 0.785, which corresponds to an effective Mach number of 0.71. The target lift coefficient is 0.5.
Results are obtained using the eN envelope transition criterion with Ncrit=9. Due to the transonic flight
conditions, the optimization in this case is less robust. The flow solver may fail to converge if the transition
locations are moved aft of a shockwave during the transition prediction procedure, in turn causing unsteady
flow separation. Modification to the transition prediction algorithm includes a more gradual movement of
the transition locations, restricted to a maximum of 5% chord at each update. It is also recommended to
start with initial transition locations that are well upstream of any potential shock waves; an initial guess of
25% chord is used here for both the upper and lower surfaces.

Table 5 provides a summary of the results comparing the initial and optimized airfoils. The angle of
attack in this case is decreased from an initial value of 1.13◦ to 0.15◦, the lift constraint is satisfied, and the
total drag is reduced by 29 drag counts, or 47%. The transition points are moved from 20% to 70% chord
on the upper surface, and from 47% to 71% chord on the lower surface. Figure 6(a) compares the initial and
optimized geometries; Figure 6(b) compares the pressure profiles. In this case, the optimizer is successful in
designing a shock-free, natural-laminar-flow airfoil, in turn, significantly reducing the total drag.
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Table 4. Case B summary of optimization results: Re = 15.7×106, M = 0.60, C∗

l = 0.42

Cd Cdp
Cdv

Cl Cm Tup(x/c) Tlo(x/c) AoA

Initial 0.00598 0.00194 0.00405 0.4200 -0.08129 0.1480 0.4912 1.1424◦

Optimized 0.00279 0.00089 0.00189 0.4197 -0.09629 0.7171 0.7243 0.3013◦

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−0.4

−0.2

0.0

0.2

0.4

0.6

�/�

RAE 2822

Optima2D

(a) Initial and optimized airfoils

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−1.2

−0.8

−0.4

0.0

0.4

0.8

� �
(b) Initial and optimized pressure distributions

Figure 5. Case B optimization results; Re = 15.7×106, M = 0.60, C∗

l = 0.42; symbols indicate transition point locations

Table 5. Case C summary of optimization results: Re = 20.3×106, M = 0.71, C∗

l = 0.50

Cd Cdp
Cdv

Cl Cm Tup(x/c) Tlo(x/c) AoA

Initial 0.00617 0.00259 0.00358 0.5000 -0.09427 0.2088 0.4740 1.1292◦

Optimized 0.00327 0.00144 0.00182 0.5001 -0.12827 0.7018 0.7095 0.1545◦

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

�/�

RAE 2822
Optima2D

(a) Initial and optimized airfoils

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

� �

(b) Initial and optimized pressure distributions

Figure 6. Case C optimization results; Re = 20.3×106, M = 0.71, C∗

l = 0.50; symbols indicate transition point locations
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V.G. Case B: Multipoint Optimization

Here we consider a multipoint optimization at a range of cruise conditions associated with the Dash-8 Q400
aircraft. A nine-point stencil, presented in Table 6, is defined by varying the aircraft weight and Mach
number. This is done to reduce the sensitivity of the final optimized shape to variations in the flight
conditions encountered during cruise and to enable efficient operation within this envelope. The aircraft
is assumed to have a take-off weight equal to the Q400’s maximum take-off weight of 64500 lbs. Given a
typical payload, the usable fuel on board (at take-off) is approximated to be 7500 lbs. The three aircraft
weights considered in the multipoint stencil are calculated from a 10%, 50% and 90% fuel burn, which loosely
approximates the beginning, middle, and end of cruise. The three Mach numbers considered are 0.6, 0.54,
and 0.48, which roughly correspond to high-speed, intermediate, and long-range design speeds of the Q400,
respectively. Given the range of weights and Mach numbers, and assuming a constant cruising altitude of
23000 ft, we can then compute the corresponding range of Reynolds numbers and lift constraints presented
in Table 6.

Recall from Section IV.B that the design objective given by (18) is an approximation to the weighted
integral given by (17). Although any design priority weighting may be selected as desired, here we make the
assumption that all design points are of equal importance, that is, Z(Wi,Mj)=1 for all i and j. Table 6 also
presents the quadrature weights T used to approximate (17) using the trapezoidal quadrature rule.

Table 7 provides a summary of the results comparing the initial and optimized airfoils, along with the
various angles of attack. Note that the lift constraint has been satisfied and the drag reduced at each
operating point. Note that the flight conditions and lift constraint of design point 6 correspond to the Case
B single-point optimization presented in Section V.E. Figure 7(a) compares the single-point and multipoint
optimized geometries for design point 6, and Fig 7(b) compares the pressure distributions. Comparing the
optimized designs, it is clear that the single and multipoint results differ. The multipoint optimization
has a transition point on the upper surface that is approximately 5% further upstream when compared
to the single-point optimization of Case B. Furthermore, while the total drag was reduced by 53% in the
single-point optimization, it was reduced by 50% in the multipoint optimization. This illustrates that the
added robustness in the design (now optimized over a range of conditions) incurs a penalty in the on-design
performance. It also exemplifies the importance of the designer’s role in carefully selecting and weighting
the design points appropriately. For example, if the Q400 normally cruises at the high-speed Mach number
of 0.60, then the designer might choose to place more importance on those operating points.

Table 6. Design points and weighting for multipoint optimization

Design Pt. Quadrature Aircraft Weight Mach No. Reynolds No. Lift Coefficient

Weight (T ) (W) [lbs] (M) (Re) (C∗

l )

1 1 63757 0.48 12.5×106 0.68

2 2 63757 0.54 14.1×106 0.54

3 1 63757 0.60 15.7×106 0.44

4 2 60754 0.48 12.5×106 0.65

5 4 60754 0.54 14.1×106 0.51

6 2 60754 0.60 15.7×106 0.42

7 1 57751 0.48 12.5×106 0.62

8 2 57751 0.54 14.1×106 0.49

9 1 57751 0.60 15.7×106 0.40
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Table 7. Summary of multipoint optimization results

Design Pt. Cd Cdp
Cdv

Cl Cm Tup(x/c) Tlo(x/c) AoA

1 Initial 0.00803 0.00345 0.00458 0.6795 -0.07315 0.0172 0.5393 3.5050◦

Optimized 0.00453 0.00211 0.00241 0.6799 -0.08278 0.5509 0.7767 2.5651◦

2 Initial 0.00692 0.00253 0.00439 0.5400 -0.07691 0.0620 0.5134 2.2177◦

Optimized 0.00328 0.00128 0.00200 0.5399 -0.08434 0.6656 0.7583 1.2498◦

3 Initial 0.00613 0.00205 0.00408 0.4400 -0.08123 0.1328 0.4932 1.2852◦

Optimized 0.00304 0.00105 0.00199 0.4400 -0.08730 0.6664 0.7297 0.3184◦

4 Initial 0.00778 0.00322 0.00458 0.6502 -0.07331 0.0199 0.5357 3.2765◦

Optimized 0.00393 0.00174 0.00219 0.6502 -0.08252 0.6194 0.7741 2.3059◦

5 Initial 0.00670 0.00234 0.00436 0.5100 -0.07704 0.0763 0.5103 1.9920◦

Optimized 0.00318 0.00117 0.00200 0.5100 -0.08347 0.6685 0.7558 1.0383◦

6 Initial 0.00598 0.00194 0.00405 0.4201 -0.08129 0.1479 0.4912 1.1430◦

Optimized 0.00300 0.00100 0.00200 0.4202 -0.08662 0.6683 0.7226 0.1875◦

7 Initial 0.00761 0.00298 0.00463 0.6200 -0.07355 0.0232 0.5321 3.0357◦

Optimized 0.00368 0.00155 0.00213 0.6201 -0.08191 0.6421 0.7717 2.0713◦

8 Initial 0.00656 0.00222 0.00434 0.4900 -0.07710 0.0860 0.5082 1.8419◦

Optimized 0.00311 0.00111 0.00200 0.4899 -0.08287 0.6705 0.7543 0.8963◦

9 Initial 0.00584 0.00183 0.00401 0.4000 -0.08133 0.1634 0.4889 1.0000◦

Optimized 0.00301 0.00095 0.00206 0.4001 -0.08590 0.6701 0.6977 0.0527◦
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�/�

−0.4

−0.2

0.0

0.2

0.4

0.6

�/�

Single-point (Optima2D)

Multipoint (Optima2D)

(a) Initial and optimized airfoils

0.0 0.2 0.4 0.6 0.8 1.0
�/�

−1.2

−0.8

−0.4

0.0

0.4

0.8

� �

(b) Point 6: Initial and optimized pressure distributions

Figure 7. Comparison of single-point and multipoint optimization results (design point 6)
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Figure 8. Pareto front study, Case B: Re = 15.7×106, M = 0.60, C∗

l = 0.42

V.H. Case B: Pareto Front Study

A Pareto front can provide useful insight into the trade-offs involved in the design of NLF airfoils. While
the multipoint optimization case (presented in Section V.G) is useful for designing an airfoil that performs
well under perturbations about the cruise flight condition, here we consider the aerodynamic performance
of NLF airfoils when or if transition occurs inadvertently at the leading edge of the airfoil.

Following the work of Driver and Zingg,21 a Pareto front may be formed by minimizing a weighted sum
objective, J , defined as

J = ωftJft + (1− ωft)Jlt , (19)

where Jft and Jlt represent the drag coefficients under fully-turbulent and laminar-turbulent (i.e. free
transition) conditions, respectively. Each point on the Pareto front represents a two-point design problem
in which we minimize J for a given weighting factor, ωft, where 0 ≤ ωft ≤ 1. The calculation of the two
operating conditions (Jft and Jlt) in turn requires two flow solutions, each at their respective angle of attack.
Furthermore, both operating conditions are constrained to meet the same lift-target (set to C∗

l =0.42 for
Case B) to ensure sufficient lift generation at both operating conditions for every optimal point.

The computed Pareto front is shown in Figure 8 and clearly captures the advantages of favouring one
operating condition over the other. As expected, the drag count values under laminar-turbulent conditions
are significantly less than the fully-turbulent operating conditions. The Pareto front demonstrates that when
an airfoil designed strictly for laminar-turbulent conditions (that is, ωft=0) is operating under fully-turbulent
conditions, it has a drag count of approximately 84, as compared to 79 counts for an airfoil designed and
operated under fully-turbulent conditions (ωft=1); a relative drag penalty of approximately 6%. On the other
hand, when an airfoil designed strictly for fully-turbulent conditions is operating under laminar-turbulent
conditions it has a drag count of approximately 39, as compared to 27 counts for an airfoil designed and
operated under laminar-turbulent conditions; a relative drag penalty of approximately 44%. The remaining
points on the Pareto front allow the designer to select an appropriate optimal geometry depending on their
needs and conservatism. Airfoils optimized using ωft values in the range of 0.3≤ωft≤ 0.7 represent a good
compromise in performance between the two operating conditions.
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VI. Conclusions

A two-dimensional RANS solver making use of the Spalart-Allmaras turbulence model has been extended
to incorporate an iterative laminar-turbulent transition prediction methodology. With reasonable grid den-
sity, the boundary-layer properties can be computed directly from the Navier-Stokes solution with sufficient
accuracy. The compressible form of the AHD criterion and the simplified eN envelope method have been
implemented, verified, and validated by comparison to numerical and experimental data.

The RANS solver was subsequently employed in a gradient-based sequential quadratic programming
shape optimization framework using the SNOPT optimization suite. The gradients are evaluated using a
new augmented discrete-adjoint formulation for transition prediction in a RANS solver, the accuracy of which
has been verified. The resulting optimization framework has been applied to the design of natural-laminar-
flow airfoils using single and multipoint optimizations, as well as a Pareto front study. Such applications
demonstrate the efficacy and practicality of using high-fidelity aerodynamic shape optimization as an NLF
design tool in the subsonic and transonic flight regime. Future work will consider the extension of the current
methodology to three dimensions, incorporating a crossflow transition criterion.
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Appendix: Details of Transition Criteria

In the compressible form of the AHD criterion, outlined in Section III.A, the functions A through F are
computed as a function of the Mach number at the boundary-layer edge, Me, as follows:

53

A = 98.64M3
e − 356.44M2

e + 117.13Me − 236.69

B = −13.04M4
e + 38.5M3

e − 30.07M2
e + 10.89Me + 22.7

C = 0.21M3
e + 4.79M2

e − 1.76Me + 22.56

D = −3.48M4
e + 6.26M3

e − 3.45M2
e + 0.23Me + 12

E = 0.6711M3
e − 0.7379M2

e + 0.167Me + 51.904

F = 0.3016M5
e − 0.7061M4

e + 0.3232M3
e − 0.0083M2

e − 0.1745Me + 14.6

In the simplified eN envelope method, outlined in Section III.B, the functions dN
dReθ

, m, and l are given

as follows:28

dN

dReθ
= 0.01

√

[2.4Hk − 3.7 + 2.5 tanh(1.5Hk − 4.65)]2 + 0.25

m(Hk) =

(

0.058
(Hk − 4)2

Hk − 1
− 0.068

)

1

l(Hk)

l(Hk) =
6.54Hk − 14.07

H2
k
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