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Abstract

Tests were performed in the Ames 40- by 80-Foot Wind Tunnel on a large-

scale, tilt-nacelle V/STOL propulsion system to determine its aerodynamic

characteristics. Results are presented in terms of unpowered nacelle aero-

dynamics and power-lnduced effects over an angle-of-attack range from 0 to 105 °.
It is shown that (i) the characteristics of the unpowered nacelle can be

estimated with annular airfoil data, (2) the power-induced effects on the

nacelle aerodynamics are significant, and (3) pitching moment can be correlated
with llft and thrust.

i *Presented at Workshop of V/STOL Aerodynamics, Naval Postgraduate School, /"
Nonterey, California, May 1979.
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Introduction

A tilt-nacelle propulsion system, such as might be used on a V/STOL air-
plane, can be subjected to angles of attack greater than 90° during takeoff

and landing maneuvers. These nacelles, which are large relative to the air-
craft, have a significant effect on the aerodynamic characteristics of the

aJrcraft. It is necessary, therefore, to be able to predict the aerodynamic
characteristics of the nacelle so that the aerodynamics of the aircraft can

be accurately represented.

Tests were performed in the Ames 40- by 80-Foot Wind Tunnel on a large-

scale, tilt-nacelle V/STOL propulsion system, with the objective of determining

its aerodynamic characteristics. Force and moment data were acquired from the

wind tunnel balance system for various combinations of thrust and velocity at

angles of attack from 0° to i05 °. Results are separated into terms of unpowered

nacelle aerodynamics and power-induced effects on nacelle aerodynamics. The

unpowered nacelle characteristics are compared with those of an annular airfoil,

the power-induced aerodynamics are discussed, and finally, in an attempt to
establish a method for estimating the pitching moment produced by such a pro-

p_ision system, a relationship is determined between total lift and total

pitching moment.

Nomenclature

fan area, 1.206 m2 (12.98 ft2)

D

CD wind axis drag coefficient,

CDAER0 aerodynamic drag coefficient, CD
DR - CDT

CDR ram-drag coefflcient,_

CDT drag coefficient due to thrust and ram drag, CDR - Cj cos
T

Cj thrust coefficient,
L

CL wind axis lift coefficient,

CLAER0 aerodynamic llft coefficient, CL - CLT

;_ ' llft coefficient due _o thrust, Cj sin

M

, pltching-_om-nt coefficient about the nacelle pivot axis, qA_d

d fan diameter, 1.397 m (4.583 it)

D total measured w_ud axis drag, N
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DR ram drag, N

L total measured wind axis lift, N

M total measured pitching moment about the nacelle pivot axis, m - N

q free-stream dynamic pressure, N/m 2

T total gross thrus_, N

nacelle angle of attack, deg

Pro_ul sion System Description

Figure I shows the propulsion system in the Ames 40- by 80-Foot Wind

Tunnel. The system consisted of a 1.4-m (55-in.), 13-b!aded, variable-

pitch fan driven by a Lycoming T55-L-IIA, 2800 kW (3750 hp) gas turbine core

engine. The fan was driven through a 4.75:1 gear reduction to a maxim_ speed

of 3365 rpm; it had a bypass ratio of 17:1. Additional information on the fan

and core engine is available in reference I. The asy=_etric inlet, designed
for a tilt-nacelle lift/cruise fan propulsion system, had a higher contraction

ratio on the windward side than on the leeward side; as a result, testing was

possible at high angles of attack without stalling the fan. The cowlin_ was

designed to provide a nacelle suitable for wind-tunnel testing. The compo-

nents of the propulsion system and its major dimensions are shown in figure 2.

A more detailed description is available in reference 2. The nacelle was
mounted about 4 m above the wind-tunnel floor on a single strut which was

shielded from the wind by a fairing. The nacelle was rotated in a horizontal

plane about the strut centerline for angle-of-attack variation.

Test Procedure and Data Reduction

Most of the data were acquired by vazying thrust at constant nacelle

angles of attack and at constant tunnel velocities. The operating limits of

the propulsion system were determlned and are discussed in reference 3. Tunnel

velocity varied from 0-82 m/set (0-160 knots) and angle of attack varied from
0°-120 °. Thrust coefficients were computed from gross thrust, which was

determined from total and static pres.ure and total temperature measurements
in the inlet, fan duct, and core engine inlet. Gross thrust was varied up to
a maxim,_ of 30,700 N (6900 lb) by changing engine speed and fan blade angle.
Ram drag was computed from inlet airflow, determined from static and total
pressure measurements in the inlet, and from free-stream velocity. The
unpowered-nacelle data were obtained with the fan blades feathered to minimize
drag through the nacelle.

Force and moment data, obtained from the wlnd-tunnel balance syete_, were
used to compute coefficients for the total nacelle forces and momenta in the
wind axis system. The fan area, 1.206 m=, and the fan diameter, 1.397 m, were
used for the reference area and length, respectively. The mement center was

located on the engine centerline, at the axis of rotation, 1.928 m aft of the
: inlet hilite.
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Results

Basic Aerodynamics

Figure 3 shows the llft and drag chars terlstics of the propulsion system
for thrust coefficient of O, 10, and 20. The dashed lines represent the thrust

and ram drag forces resolved into the lift and drag directions. Most of the
resultant force on the nacelle is due to the thrust and ram drag forces; how-

ever, significant aerodynamic forces also are present, as shown by the differ-

ence between the solid and dashed lines in figure 3, At an angle of attack of
80° and a thrust coefficient of I0, 25% of the total llft is due to the nacelle

aerodynamics.

Induced Aerodynamics

In order to determine what part of the aerodynamic forces was induced by

power, the aerodynamic llft and drag coefficients were plotted versus angle of

attack (fig. 4_. The coefficients were obtained by subtracting the thrust and

cam drag components from the total llft and drag coefficients. There is a
substantial difference between the powered and uppowered curves which represents

the power-induced effect on the aezodynamic coefficients. The maximum aero-

dynamic lift in the powered case is about the same magnitude as the unpowered
maximum llft, but it occurs at a much higher angle of attack. Thls indicates

that, in the powered case, flow separation on the nacelle is delayed until the

angle of attack is about 80°. The power-lnduced effect on the aerodynamic

drag is very small at angles of attack less than 55°. The difference shown is

probably due to the greater drag resulting from the fan blades and cor_ engine

in the unpowered case. At angles of attack greater than 55°, however_ there
is a large power-induced effect on the aerodynamic drag, which Increases as

power is increased. The maxim,,, aerodynamic drag occurs at an angle of attack
of 60° for the unpowered case, and at 75° to 90° for the powered case. Als0

shown in figure 4 are data for an annular airfoil wlth an aspect ratio of I/3
(see ref. 4). The coefficients for the annular airfoil were converted to the

same basis as those for the propulsion system, that is, inside area and diam-

eter. Considering the difference in configurations, the annular airfoil por-

trays the nacelle quite accurately. The greater lift for _e propulsion system
may be due to the large fairing around the support strut, and the greater drag

at low angles of attack may be a result of _he fan blades and core engine. It

Is reasonable, therefore, to use annular airfoil data to estimate unpowered
nacelle characteristics.

The aerodynamic lift to drag ratio is shown in figure 5. A comparison
between the powered and unpowered data indicates a very small power-Induced
effect on this ratio. The data indicate a maximt_ lift-to-drag ratio of about
1.8, which occurs at an angle of attack of about 20". Not enough data were
acquired to define these curves at low angles of attack; however, it appears
that there is a maxim_ lift-to-drag ratio at some low angle of attack that
should be considered. The annular airfoil data, also shown in figure 5, are
greater at low angles of attack because of the lower drag of the annular air-
foil. The accuracy of the lift-to-drag ratio is questionable at low angles of
attack, since the aerodynamic forces are small.
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Pitching-Moment Characteristics

The total pitching moment produced by the propulsion system is very large;

it is shown as a function of angle of attack in figure 6. The maximum pitching
moment occurs at angles of attack between 75° and 90° in the powered case,

which is the same as the angle at which the maximum aerodynamic lift and drag

occur. The total pitching moment consists of three parts: (I) aerodynamic

pitching moment resulting from the aerodynamic forces on the nacelle, includ-

ing power-indtmed effects; (2) moment produced by the flow turning into the

inlet, which can be represented by the ram drag acting at an effective moment
arm, and (3) moment caused by asymmetric fan thrust. Some asymmetry in the

fan exhaust was present at high angles of attack, but the pitching moment

resulting from it is a small percentage of the total and can be neglected.

Therefore, the total pitching moment is primarily a result of both the ram

drag and the nacelle aerodynamics. To assist in predicting pitching moments,

it would be desirable to determine an effective ram drag moment arm. This

requlres separating the aerodynamic pitching moment from the pitching moment

due to ram drag, however, because both contribute significantly. But

this cannot be done quantitatively because the aerodynamic pitching moment is

not known. Although the unpowered pitching moment, which agrees well with the
annular airfoil data, is known, it does not include the power-induced effects.

The power-induced effects on the aerodynamic forces were shown to be signifi-
cant (fig. 4). But, since the location of these fozces is unknown, their

effect on pitching moment, although significant, cannot be determined. There-

fore, the difference between the powered and unpowereo data in figure 6 repre-

sents the staaof the ram-drag contribution and the power-induced effects on

the nacelle aerodynamics.

In figure ?, the total nacelle pitching-moment coefficient is plotted

versus the total lift coefficient. A good corre_ation between tctsl lift and

total pitching moment is indicated by the fact that for a given thrust coeffi-
cient, the data before and after maximum lift are near the same line. This

correlation is shown in figure 8, where the ratio of total pitching-moment
coefficient to total lift coefficient is shown as a function of thrust coeffi-

cient. This ratio changes only slightly with angle of attack at any given

thrust coefficient. It is reasonable, therefore, to estimate the pitching
moment of a tilt-nacelle V/STOL propulsion system for a given thrust coeffi-

cient as a percentage of the total lift, regardless of the angle of attack.

Figure 8 indicates that this approximation results in a pltchlng-moment accu-

racy of about ±SZ.

Conclusions

Although more testing is required to determine if the results presented

in this paper are applicable to other configurations, the following conclusions
can be made about a tilt-nacelle V/STOL propulsion system:

1. Unpowered-nacelle aerodynsmics can be approximated by annular airfoil
data for a e/milar aspect ratio.

2. Aerodynaaic forces, including substantial power-induced effects, are

_7 a significant part of _he total forces.

k

1979018967-006



3. Very large pitching moments are produced and are a result of both ram

drag and nacelle aerodynamics.

4. The maximum aerodynamic forces, as well as the maximum pitching moment,
occur at angles of attack between 75° and 90°.

5. In order to determine an effective ram-drag moment arm, the aerodynamic

pitching moment must be separated from the pitching moment due to ram drag.

6. Total pitching moment correlates well with total llft.
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Figure 1.- Tilt-nacelle V/STOL propulsion system in the Ames 40- by 80-Foot
Wind Tunnel.
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