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ABSTRACT

A simple aeroelastic analysis of a helicopter rotor blade
incorporating embedded piezoelectric fiber composite, interdigitated
electrode blade twist actuators is described.  The analysis consists of
a linear torsion and flapwise bending model coupled with a nonlinear
ONERA based unsteady aerodynamics model.  A modified Galerkin
procedure is performed upon the rotor blade partial differential
equations of motion to develop a system of ordinary differential
equations suitable for dynamics simulation using numerical
integration.  The twist actuation responses for three conceptual full-
scale blade designs with realistic constraints on blade mass are
numerically evaluated using the analysis.  Numerical results indicate
that useful amplitudes of nonresonant elastic twist, on the order of
one to two degrees, are achievable under one-g hovering flight
conditions for interdigitated electrode poling configurations.  Twist
actuation for the interdigitated electrode blades is also compared with
the twist actuation of a conventionally poled piezoelectric fiber
composite blade.  Elastic twist produced using the interdigitated
electrode actuators was found to be four to five times larger than that
obtained with the conventionally poled actuators.

NOMENCLATURE

A rotor disk area, πR2; spar material cross sectional area, m2

Ae thin-walled spar section enclosed area, m2

a lift curve slope, rad-1

b blade semichord, c/2, m

b normalized blade semichord, b/R
Cm airfoil pitching moment coefficient, Cm=Mθ/(1/2)ρV2c2

Cml linear model static pitching moment coefficient
Cms measured static pitching moment coefficient
CT rotor thrust coefficient, CT=T/ρAΩ2R2

Cz airfoil lift coefficient, Cz=L/(1/2)ρV2c
Czl linear model static lift coefficient
Czs measured static lift coefficient
c blade chord, m; section contour length, m
c normalized blade chord, c/R
c1, c2, c3 pitching moment coefficients
cij material stiffnesses, N/m2

Di electrical displacements, Coulombs/m2

dij piezoelectric strain constants, Coulombs/N or m/V
EIηη effective bending stiffness of composite blade structure,

K z ds11
2I , N-m2

Ei electric field intensities, V/m
E* coefficient of internal friction in tension, N/m2/sec
e distance of section mass center forward of pitch axis, m
e normalized distance of section mass center forward of pitch

axis, e/R
eij piezoelectric stress constants, Coulomb/m2

f equivalent flat plate drag area of fuselage, m2

GJ effective torsional stiffness of composite blade structure,
4 2

2 22

A

c
K dse I , N-m2

G* coefficient of internal friction in shear, N/m2/sec
h height of rectangular spar cross-section, m

Iβ blade flapping inertia, mr dr
R

2

0∫ , kg-m2

Iθ  blade pitch mass moment of inertia, mk dxm

R
2

0∫ ,  kg-m2

Kij effective laminate stiffnesses neglecting hoop stress, N/m
Kβ blade flapping root spring rate, N-m/rad
Kθ blade pitch root spring rate, N-m/rad
kA polar radius of gyration of cross-section area about the

elastic axis, m



km polar radius of gyration of cross-section mass about the
elastic axis, km

2=km1
2+km2

2, m
km1 mass radius of gyration about section y3 axis, m
km2 mass radius of gyration about section z3 axis, m

k average value of inverse of reduced velocity, b/x
L airfoil section aerodynamic lift per unit length, N/m
Lz aerodynamic force per unit length in z0  direction, N/m
Lw

nondimensional aerodynamic force per unit length in z0

direction, Lw/mΩ2R
M section Mach number
MPE induced piezoelectric bending moment, N-m
Mφ, Mθ aerodynamic pitching moment per unit length about c/4, N-

m/m

Mφ
nondimensional aerodynamic pitching moment, Mφ/mΩ2R2

m blade mass per unit length, kg/m
N number of aerodynamic evaluation points along blade
Q number of rotor blades
QPE piezoelectric induced twisting moment, N-m
r distance perpendicular from section contour tangent to

origin, m
R rotor radius, m
Si material strains, m/m
sij material compliances, m2/N
T rotor thrust, N;

blade tension force, N
Ti material stresses, N/m2

t time, sec;
spar wall total thickness, m

tPE total thickness of piezoelectric material, m
U airfoil section normalized velocity, V/ΩR
u blade axial elastic deflection, m
u normalized blade axial deflection, u u R≡
V airfoil section velocity, m/sec
V∞

helicopter forward flight velocity, m/sec

W bending modal function
w out-of-plane elastic deflection, m;

width of rectangular spar cross-section, m
w normalized blade out-of-plane elastic deflection, w w R≡
x blade radial coordinate, m
x nondimensional radial coordinate, x R

xi
normalized midpoint position of ith aerodynamic segment

x3y3z3 reference system fixed in deformed blade, with x3 axis
tangent to the deformed blade elastic axis

yac distance of aerodynamic center forward of pitch axis, m
yac normalized distance of aerodynamic center forward of pitch

axis, yac/c
α airfoil section angle of attack, rad
αs rotor shaft angle, rad
∆i normalized width of ith aerodynamic segment
εij permittivities of piezoelectric material, Farad/m

e
*

section rotation rate with respect to the air mass
Φ torsion modal function
φ torsional deflection, rad
γ blade Lock number, γ=ρacR4/Iβ

Γ section nondimensional circulation, Γ = L Uz

Γ1
linear model (unstalled) component of section

nondimensional circulation
Γ2

component of section nondimensional circulation due to

stall
Γm2

normalized section pitching moment deviation due to stall

µ rotor advance ratio, V R∞ Ω
θ section pitch angle, θ=θcon+φ , rad
θ0 blade collective pitch input angle, rad
θ1c longitudinal cyclic pitch input, rad
θ1s lateral cyclic pitch input, rad
θcon blade control pitch setting, θcon=θ0+θ1ccosψ+θ1ssinψ , rad
θply piezoelectric material ply rotation angle, rad
ρ air density, kg/m3

σ rotor solidity, σ=Qc/πR
Ω rotor rotational speed, rad/sec

ω φ
nondimensional root pitch natural frequency, K Iφ θ Ω2

ψ nondimensional time (blade azimuth angle), ψ=Ωt, rad

( )
E

constant electric field value

( )
S

constant strain value

( )
T

constant stress value

( )
t

matrix transpose

( )
~

rotated system value

( )
*

d d( ) y

( )
+

d dx( )

1. INTRODUCTION

High vibratory loads problems exist throughout today’s civil and
military helicopter fleet.  Such vibratory loads place severe limits on
the reliability and maintainability of vibration sensitive helicopter
hardware, as well as limit the load carrying and forward flight speed
capabilities of these vehicles.  As a result, a high priority has been
placed on reducing or eliminating these vibratory loads, and much
work has been performed to develop various passive and active
methods and mechanisms for achieving this task (Reichert, 1981;
Loewy, 1984).

The primary sources of rotorcraft vibration can be traced to
effects associated with the unsteady aerodynamic environment of the
main rotor system.  High tip Mach numbers on the advancing blade
side, and stall effects on the retreating blade side produce many of the
high oscillatory forces experienced by the rotor blades.  Blade-vortex
interaction and fuselage interference effects are also additional
aerodynamic sources of rotor vibrations.

Past conventional rotorcraft vibration reduction schemes have
often focused on dampening or alleviating undesirable vibrations
after the fact.  More recent active control techniques seek to eliminate
or reduce these vibrations at their source, namely by modifying the
unsteady aerodynamic forces acting upon individual rotor blades.
These are the so-called "individual blade control" techniques, or IBC



(Ham, 1987).  Some form of IBC will most likely be required for
future helicopters if the goal of a "jet smooth" ride is ever to be met.

1.1 Smart material IBC actuation schemes.

Although the IBC concept itself is not new, providing a practical
means of actuating on-blade control surfaces, pitch, or twist of
individual blades remains the principal difficulty in implementing
individual blade control techniques on actual helicopters.  Adaptive,
or smart, materials have been examined by many researchers as a
means of providing these sorts of actuation without employing
complicated electromechanical or hydraulic mechanisms.

Flap actuation techniques using adaptive materials can, in
principal, provide the power and displacement necessary to be used
as a means of vibration suppression, and the development of effective
smart material flap actuators has been examined by many researchers
(Spangler and Hall, 1990; Samak and Chopra, 1993; Giurgiutiu, et al,
1995).  This approach still requires placement of additional
mechanisms, with an attendant increase in complexity, into the
rotating system.  The requirement that much of the mass of these
mechanisms must be placed aft of the blade pitch axis is also an
undesirable characteristic.  A more desirable technique, in terms of
mechanical simplicity and aerodynamic efficiency, is the production
of active blade twist through piezoelectric material actuators
embedded in the blade structure (Barrett, 1990; Chen and Chopra,
1993; Derham and Hagood, 1996).  Unfortunately, the effectiveness
of the majority of these smart material twist actuation schemes, to
date, has been relatively poor due, primarily, to the limited power and
displacement capabilities of the available smart materials.

 Despite these drawbacks, some encouraging developments in
twist actuation of smart material structures continue to be made.
Most recently, research in anisotropic twist actuation of plate
structures using piezoelectric fiber composites (PFC) (Rodgers and
Hagood, 1995; Bent, et al, 1995) has demonstrated that relatively
high levels of twist actuation are potentially achievable.  The
application of interdigitated electrode technology (IDE) (Hagood, et
al, 1993; Bent and Hagood, 1995) can in principle enhance the
performance of these materials even further.

1.2 Previous work related to analysis of embedded smart
material actuated rotor structures.

To date, there has been relatively little analytical work reported
detailing the aeroelastic behavior of rotor blades incorporating
embedded smart material actuators.  Song and Lebrescu (1993)
developed the equations of motion for a rotating, thin-walled,
cantilevered beam structure incorporating embedded piezoelectric
actuators.  No aerodynamics were included in their study, and
actuation of torsional motion was not considered.  Nitzsche and
Breitbach (1994) reported results of an analytical study to evaluate
the ability of embedded piezoelectric materials to attenuate out-of-
plane bending and torsional vibrations on a rotor blade structure.  To
accomplish this, they developed a rotor blade aeroelastic model
incorporating quasi-static aerodynamics and a "directionally attached
piezoelectric crystal" bending-torsion actuation scheme similar to that
developed by Barrett.  They concluded that the lightly damped
torsional blade modes could be significantly affected on a practical
blade structure without saturation of the piezoelectric materials.

Most recently, Derham and Hagood (1996) described work
related to a joint Boeing/MIT effort to develop a system for actively

twisting helicopter blades using interdigitated electrode piezoelectric
fiber composite plies.  They report achieving levels of twist up to 1.4
degrees in a bench test of a 1/16 Froude scaled model rotor blade.
The vibration reduction potential of a proposed 1/6 Mach scaled
model blade was also examined using a modified version of Boeing’s
TECH-01 comprehensive rotor analysis program.  This analysis
indicated that 70% to near 100% reductions in the 3Ω  vertical hub
shears (the principal vibratory load) could be achieved using an
appropriately phased 3Ω frequency applied twisting moment couple.
A couple magnitude associated with the maximum theoretically
produceable level of piezoelectric strain was used in this study.

1.3 Scope of this effort.

For the most part, aeroelastic analysis of rotor blades
incorporating embedded smart material strain actuation is still very
much in its infancy.  In particular, there is a lack of simple analytical
models suitable for conducting preliminary conceptual control and
design studies for such rotor blade structures.  In light of this, and in
order to gain greater insight into the control and aeroelastic response
issues related to induced twist smart structure rotor blades, a simple
aeroelasticity model for a piezoelectric twist actuated helicopter rotor
blade has been developed by the authors.  This model is derived
specifically for use in the investigation of phenomena related to
torsional control and response of helicopter rotor blades
incorporating piezoelectric twist.  Terms related to both stiffness and
piezoelectric free strain anisotropy have been included, which allows
for a wide variety of piezoelectric actuation concepts to be evaluated.
In this paper, a description of the derivation and numerical
implementation of this model is given.  Additionally, numerical
examples demonstrating the twist actuation potential of three
conceptual full-scale helicopter blade designs, each employing a
representative form of piezoelectric actuation, are shown.

2. ANALYTICAL MODEL DESCRIPTION

In this section we will present aeroelastic equations of motion
for a piezoelectric actuated helicopter rotor blade.  For simplicity,
only linear out-of-plane bending and torsion structural dynamics will
be considered here.  The aerodynamic formulation will follow a
finite-state strip-theory approach, but will include a dynamic stall
representation based on the ONERA model.  The blade structural
geometry will be idealized as a rectangular, closed-cell, thin-walled
composite beam containing embedded piezoelectric material layers
(Fig. 1), and we will develop the piezoelectric actuation equations for
this structure allowing for stiffness and piezoelectric free strain
anisotropy within the piezoelectric laminae.

2.1     Structural formulation

The equations of motion used here to were adapted from the
general elastic bending and torsion deformation equations developed
by Kaza and Kvaternik (1977). Due to the complexity of these
equations, and elastic rotor blade equations of motion in general, it
was necessary to apply some simplifying assumptions to the complete
set of equations in order to obtain a more mathematically manageable
model.  An ordering scheme approach was used here to accomplish
this.  Use of such a procedure ensures that the most physically
significant terms are retained, while allowing small terms to be
consistently neglected.  The ordering of parameters used in this study



was based on schemes applicable to rotorcraft vibrations, and is given
in Wilkie and Park (1996).

Additional assumptions made to simplify the equations were, 1)
that the blade precone angle and built in twist were assumed to be
zero, 2) the blade structural cross-section was assumed to be doubly
symmetric, and 3) the blade pitch radius of gyration could be
approximated by the km2  cross section integral (i.e., km1/km2<<1).
Small angles were assumed throughout for θcon  and φ.

Applying the ordering scheme, with the additional assumptions
listed above, to Kaza and Kvaternik’s equations yields the following
nondimensional partial differential equations of motion for blade out-
of-plane bending and torsion.
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The blade section tension force, T, is approximately given by

T R mxdx
x

@ IW2 2 1 (3)

Rotor blade coordinate systems and deflections are shown in
Fig. 2.   MPE  and QPE  in Eq. (1) and Eq. (2) are the additional terms
representing the piezoelectric induced bending and twisting moments
produceable with the blade structure.  These terms will be derived in
the piezoelectric control moment section below.

A modified Galerkin procedure (Duncan, 1937) is used here to
obtain modal solutions to Eqs. (1)-(3).  In this case, superposition
solutions for  w and φ of the form,
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are assumed, where L and M are the number of out-of-plane bending
and torsional modal functions respectively.  In the modified Galerkin

procedure, these modal functions need only satisfy the geometric
boundary conditions on the blade.  Work due to any nonfulfilled
natural boundary conditions is accounted for with additional
boundary terms in the equations.  Substituting Eqs. (4)-(5) into Eq.
(1), and performing the appropriate integrations, yields a set of L
ordinary differential equations of the following form:

w W W dx w
E I

m R
W W dx

w
T

m R
W W dx

EI

m R
W W dx

K

R mdx
W W

e W dx ex W dx
m

L

m R
W dx

M

m R

l l n
l

L

l l n
l

L

l
l

L

l n l n

l n

m m n
m

M

m m n

M

w
n

PE

**

=

*
*

++ ++

=

=

+ + ++ ++

+ +

**

=

+

IÂ IÂ

Â I I

I
IÂ IÂ

I

+

+ +

+

+ +
=

= +

0

1

1
40

1

1

1
2 20

1

2 40

1

2 3

0

1

0

1

1
0

1

20

1

2

0 0

1

hh

hh

b

f f

W

W W

W

F F

W W

(

)0 5 0 5

30

1

0

1

0

1

W dx

eW dx exW dx

n

con n con n

++

**
+

I
I I- +�� ��q q

(6)

where n=1,L.  A similar procedure performed on Eq. (2) yields an
additional set of M ordinary differential equations;
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with p=1, M.
The Kβ and Kθ terms in Eqs. (6)-(7), which do not appear in Eqs.

(3)-(4), are used to represent finite stiffnesses present at x = 0 .
These terms can be used to account for the stiffness of a mechanical
flapping spring placed at the blade root, or the inherent flexibility of
the pitch control system.



Stiffness terms (GJ, EIηη) in the above equations represent the
effective stiffnesses of the combined piezoelectric/passive material
blade structure.  These terms were derived using the thin-walled,
closed section, composite beam theory developed by Rehfield (1985).
We have assumed that the resulting composite structure is elastically
uncoupled, hence, potential elastic coupling terms have been ignored.
The detailed derivation of the stiffness terms is given in Wilkie and
Park (1996).

2.2 Aerodynamic formulation

The sectional lifting forces and moments are calculated using a
technique based on the ONERA dynamic stall model developed by
Tran and Petot (1981).  The ONERA model uses differential
equations in time to describe the unsteady aerodynamic lifting forces
and pitching moments, including dynamic stall effects, acting upon
an airfoil section undergoing arbitrary pitch and plunge motion.

2.2.1 Section lift formulation

Modifications to the ONERA model for general use in rotorcraft
aerodynamic formulations have been made by Peters (1985), with
nondimensional circulations employed as state variables instead of
aerodynamic coefficients.  The simplified lift circulation equations
reported therein, which are well behaved in the reverse flow region of
the rotor disk but do not give lift reversal, are used here (Eqs. (8)-
(12)).

L L UY X= + +0 1 2G G2 7 (8)
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L0
 in Eq. (10) is the nondimensional apparent mass lift.  LX

and LY
  are the components of the nondimensional lift in the airfoil

section X and Y directions respectively, and ε
∗

 is the geometric rate
of rotation of the airfoil with respect to the air mass.  The
nondimensional section velocities U, UX  and UY and section angle of
attack, α, used in this study are presented in detail in Wilkie and Park
(1996).

∆Cz  in Eq.(12) is the difference between the linear model static
lift coefficient, Czl and the measured stalled lift coefficient, Czs, i.e.,
∆Cz =Czl -Czs,.  The angle of attack dependent coefficients (s, λ, δ, d,
w, and e) are derived from experimental two-dimensional unsteady
airfoil tests using the parameter identification scheme described in

Tran and Petot (1981).  ONERA OA212 airfoil static lift coefficient
data and stall parameter values were used in this model (Peters, et al,
1990).

2.2.2 Section Pitching Moment Formulation

Improvements to the basic ONERA pitching moment
formulation have been made by Petot (1989) with further
modifications made by Peters, et al (1990), and this is the
representation used in this model.  In this approach, the unstalled
component of Cm  is given explicitly through the static moment
coefficient, which is a function of angle-of-attack only.  This results
in the elimination of one state per spanwise aerodynamic evaluation
point in the model.  Static pitching moment data used here was
extrapolated from curves given in Peters, et al (1990), and from data
provided by Tang (1995).
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Figure 1.  Idealized rectangular, thin-walled, closed-
section piezoelectric blade structure.
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Figure 2.  Rotor blade coordinate systems and deflections.



The stalled contribution to the section pitching moment is
calculated using a circulation based model similar to that developed
for section lift.   The second order differential equation describing
this stalled pitching moment circulation, defined as Γm mUC2 2≡ , is

shown below (13).
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The coefficients am, rm, and Em  in Eq. (13) were found by Petot
(1989) to have similar characteristics for many airfoils.  Expressions
for these coefficients, omitting subscripts, may be written as

a a a Cm z= +0 2
2D (14)

r r r Cm z= +0 2
2 2

D2 7 (15)

E E Cm z= 2
2D (16)

Values of a0, a2, r0, r2, and E2 used in the present formulation
are taken from the generic "mean airfoil" values proposed by Petot
(1989).

2.2.3 Airloads calculation

The aerodynamic forcing integrals present in Eqs. (6)-(7) were
calculated by evaluating the sectional aerodynamic forces and
moments per unit length at N discrete points along the blade span.
For ease of integration, section aerodynamic forces and moments
were assumed to be constant over the width of each section.
Consistent with the ordering scheme assumed in the structural
formulation above, the final expressions for these aerodynamic
loading integrals are
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(Note that the lifting moment expression used here (17), is an
approximation valid for small θ and conditions where UY<<UX.)

ri , in Eqs. (17)-(18), is the radial location of the inboard edge

of the ith aerodynamic section, r xi i i= − ∆ 2 , where xi
 is the

nondimensional radial location of the ith aerodynamic evaluation
point, and ∆i  the associated nondimensional section width.

A uniform rotor inflow model, based on momentum theory
(Gessow and Myers, 1952), was used for this formulation.  This
assumption of constant inflow velocity at every location across the
rotor disk is adequate for modelling hovering or vertical flight
conditions, but not realistic for forward flight.  Nevertheless, it is
used here for computational simplicity in the numerical model.  More
complex inflow representations will be incorporated into future
versions of this analysis.

Swashplate control angles (θ0, θ1c θ1s) required for trim were
calculated using the harmonic balance equations given in Johnson
(1980).  These equations were reasonably effective at generating a
trimmed solutions for hover and forward flight conditions where stall
effects were not significant.  Where stall is significant, however,
these control angles will usually need to be adjusted through some
automatic control procedure in order to obtain an acceptably trimmed
solution.

2.3 Piezoelectric control moment formulation

Bent, et al (1995), developed actuator equations for
piezoelectric fiber composites using conventional poling.  We will
follow their approach here, although we will assume an interdigitated
electrode scheme (Hagood, et al, 1993).  Their notation has been
adapted accordingly.

Assuming in-plane structural anisotropy in the piezoelectric
material, and further assuming conditions of plane stress
(T3=T4=T5=0), the standard linear piezoelectric constitutive relations
(ANSI/IEEE Std 176-1987, 1988) may be rewritten as
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or more compactly
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As in Bent, et al (1995), the S3,  S4, and S5 strains, although not
necessarily zero, have been neglected here.  Note that we have
assumed poling of the piezoelectric material in the 1-direction,
instead of the standard 3-direction, in accordance with the
assumption of IDE poling.

Rewriting Eq. (20) with strains (S) as independent variables
yields
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where

c s e dc dc dE E E S T E t= = = -
-2 7 0 51

e e (23)

The relationships between field components given in the global,
or beam coordinate system, and those in a system rotated by an angle
θply  about the 3-direction (see Fig. 3) are given by
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where RE and RS are respectively the applicable matrix of direction
cosines and strain transformation matrix (see Jones (1975)).  In terms
of the actuator coordinate system, Eq. (22) then becomes
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Substituting Eq. (24) into Eq. (25) yields constitutive relations
expressed in terms of the global field variables.
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For convenience, the electric fields and displacements will be
defined as being specified along the actuator system 1-direction only.
As a simplifying abstraction, the electric field within the piezoelectric

material will also be assumed to be an average of the field strength
between alternating electrodes.  Equation (26) then reduces to
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From Eq. (27), we can extract the stresses in the piezoelectric
material arising solely from the application of an electric field, i.e.,

T R ePE S
t t E= - ~ ~
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(28)

A piezoelectric ply orientation angle which maximizes the
actuator induced shear stress (T6 ) is desired for the present study.
This will occur for orientation angles of θply=±45°.  Equation (28)
then, for the case of θply=+45°, may be expanded as
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For the idealized closed, rectangular, thin-walled section
considered here, the total piezoelectric induced bending moment may
be found to be

M z T t dsPE PE PE= I 3 1
(30)

where tPE  is the total thickness of all piezoelectric laminae.  If the
applied electric field and piezoelectric laminate properties of the spar
structure do not vary around the contour, we can see immediately that
the piezoelectric bending moment will be identically zero.

The piezoelectric induced shear flow for this structure, qPE,, may
be written as

q T tPE PE PE= 6
(31)

The total piezoelectric torsional moment is thus
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where h and w are the height and width of the rectangular cross-
section, and Ae  is the area enclosed by the wall centerline.

Expressing Eq. (32) in terms of the free strain piezoelectric
coefficients, yields

Q A d c c d c c E tPE e
E E E E

PE= - - + -11 11 12 12 12 22 1
~ ~ ~ ~ ~2 7 2 73 8 (33)
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Figure 3.  Material axes for piezoelectric layer.  (Note that
with an interdigitated electrode poling scheme, material is
polarized along the 

~
1  direction.)



For further convenience, we will rewrite Eq. (33) in terms of an
assumed maximum produceable piezoelectric strain, Λmax, , or
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where L max max

~∫ d E11 1
.  Material properties appearing in Eq. (34) for

the piezoelectric laminae used in the numerical portion of this study
are given in Table 1.

3. NUMERICAL IMPLEMENTATION

The equations of motion for the structural and aerodynamic
degrees of freedom are rewritten in state variable form for numerical
integration.  For N radial aerodynamic points, the resulting state
space model will consist of a system of  2(L+M)+5N first order
differential equations with, in general, time varying coefficients.
These state variable equations are numerically integrated using a
fourth and fifth order Runge-Kutta-Fehlberg algorithm, with the
integrations performed with respect to rotor azimuth angle, ψ.

For the numerical case studies presented in this paper, we have
used one out-of-plane bending mode and three torsional modes.
Here, W x10 5 was defined as the linear rigid body flapping deflection
mode shape, and Fm x0 5 were assumed to be the first three torsional

comparison functions developed by Karunamoorthy and Peters
(1987).  Use of polynomial approximations instead of the exact
nonrotating mode shapes was done solely to simplify calculation of
the integral coefficients appearing in Eq. (6) and Eq. (7).

4. RESULTS AND DISCUSSION

4.1 Piezoelectric twist actuated rotor blade conceptual design

Three conceptual piezoelectric induced twist rotor blade designs
were examined in this study.  These designs were developed in order
to illustrate the twist actuation capabilities of the three general cases
of piezoelectric actuation suggested by inspection of Eq. (34).  These
three general cases are:

Case 1:  d d12 11π , ~ ~c cE E
11 22= .   This is the case of actuation

lamina possessing piezoelectric free-strain anisotropy, and in-plane
stiffness isotropy.  This corresponds to a configuration where
actuation layers are composed of solid, or monolithic, PZT materials,
and are polarized according to the IDE scheme.  This case will be
referred to as IDE/MON for the remainder of the discussion.

Case 2:  d d12 11π , ~ ~c cE E
11 22π .  This is the case where the

actuation lamina possess both free-strain and stiffness anisotropy.
This would be true of a piezoelectric fiber composite, interdigitated
electrode actuation scheme.  This case will be referred to as
IDE/PFC.

Case 3:  d d12 11= , ~ ~c cE E
11 22π .  This is the case of free-strain

isotropy (or near isotropy) but with stiffness anisotropy in the
actuating layers.  This would be the case for a piezoelectric fiber
composite structure utilizing a conventional poling scheme, or in an
idealized sense, a case similar to the Directionally Attached
Piezoelectric scheme originally proposed by Barret (1990).  This
scheme will be referred to as DAP/PFC in the following sections.

Stiffness, inertial, and actuation parameters for three conceptual
helicopter blade designs, each representing one of the three cases
above, were developed using full-scale helicopter parameters for a
Sikorsky H-34 main rotor blade (Scheiman, 1964).  The H-34 main
rotor blade is a relatively simple, closed-section spar structure, and
was easily idealized as a rectangular box section for the purposes of
this study.  These baseline blade parameters are summarized in Table
2.  Structural parameters not identical to the baseline blade
parameters are shown for each of the piezoelectric twist blade designs
in Table 3.

Table 1.  Lamina structural properties.  (Piezoelectric
lamina properties adapted from Rogers and Hagood
(1995).)

Property passive
structure

IDE/MON IDE/PFC DAP/PFC

c11 , GPa 88 66 31 31
c22/c11 1 1 0.60 0.60
c12/c11 0.375 0.29 0.24 0.24

c66 , GPa 28 23 5.7 5.7
d31/d33 - -0.5 -0.4 1

ρ, kg/m3 280 750 580 580

Λmax - 500 µε 500 µε 250 µε

Table 2.  Baseline helicopter rotor parameters.

Parameter Baseline value
Ω (rad/sec) 23.2

R (m) 8.54
γ 9.44

c/R 0.0488
Q 4
σ 0.0622
CT 0.00465

f/πR2 0.015

ωθ θ θ= K IΩ2 16.0

Iθ/Iβ
0.000327

e/c 0
GJ/IβΩ

2R 0.00552
h (m) 46.7e-3
w (m) 155e-3
t (m) 3.58e-3
ω β 1.0

ω φ1
6.10

ω φ 2
18.19

ω φ3
61.02



Uniform blade properties were assumed in each case for
simplicity.  The piezoelectric material thickness fractions, tPE,, given
here were calculated assuming that the blade total mass of each
design could be no greater than 120% of the baseline full-scale
helicopter blade mass.  (The choice of 120% was essentially

arbitrary, but represents a reasonable weight constraint on the design
of the conceptual piezoelectric twist blades.)  As a result, the
torsional natural frequencies of the blade structures vary somewhat
from the baseline design.  Aerodynamic parameters used in the
numerical case studies were not varied between the designs, and are
shown in Table 4.

4.2 Numerical twist actuation authority results

Numerically generated twist actuation authority results for each
of the three piezoelectric induced twist blade designs are shown in
Figs. 2-4.  These results are for a typical one-g hovering flight
condition, which corresponds to a thrust coefficient of CT = 0.00465.
One electrode segment extending from x = 0 1,  is assumed for all
three structures.  A sinusoidal electric field input with linearly
increasing frequency and peak amplitude of E1max

 was used to

generate the frequency responses (amplitude and phase with respect
to the electric field input signal) shown in the figures.  In these
figures the elastic twist is defined as the difference between the
elastic torsional deflection at the blade tip and that at the blade root.

Figure 4 illustrates the structural response of the IDE/MON
case.  A sustained oscillatory elastic twist magnitude of
approximately ±1.25° to ±1.5° is generated for excitation frequencies
below the first torsional frequency.  At the first torsional resonance,
which is predominately an elastic torsional response, the amplitude
increases to approximately ±2.25°.  A smaller torsional response
occurs at the second and third torsional resonance frequencies.

The resonant response at the second and third torsional
frequencies was found to vary widely depending on the amount of
material and aerodynamic damping present in the structure.  As the

Table 4  Aerodynamic parameters for numerical
cases.

Parameter Value
c1 ( )− +π

4
1 1 4 2. M

c2 c1

c3 ( )( )( )− − − −−3

16
126 153 15 0 71π
. . tan .M

M 0.30
yac 0

N 5
xi {0.28   0.44   0.60   0.76   0.92}

∆ι
{0.16   0.16  0.16   0.16   0.16}

Table 3.  Structural parameters for numerical examples.

Parameter IDE/MON IDE/PFC DAP/PFC
GJ/IβΩ

2R 0.00447 0.00365 0.00365
γ 8.28 8.28 8.28

tPE/t 0.1875 0.300 0.300
ω β 1.0 1.0 1.0

ω φ1
5.60 5.14 5.14

ω φ 2
16.64 15.22 15.22

ω φ3
59.67 58.58 58.58
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Figure 4.  Blade frequency response:  monolithic PZT twist
actuation with interdigitated electrode poling scheme
(IDE/MON); CT = 0.00465, µ = 0.0.
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Figure 5.  Blade frequency response:  PFC twist actuation
with interdigitated electrode poling scheme (IDE/PFC);
CT= 0.00465, µ = 0.0.



torsional aerodynamic damping, from Eq. (18), is in general
proportional to b 2 , the corresponding aerodynamic damping for these
two modes is almost negligible.  Some additional form of damping is
desirable then at these higher frequencies to avoid unrealistically
large torsional deflections.  As such, a level of material damping
equivalent to 0.5% of critical damping was assumed for each of the
cases presented here.

The actuation results for the IDE/PFC lamina design are shown
for the same flight condition in Fig. 5.  A level of actuation capability
on the order of ±1° to ±1.25° of elastic twist below the first torsional

resonance, and ±1.5°  at the first torsional mode resonance frequency
is shown here.  This is a level of performance slightly less than that
demonstrated with the IDE/MON configuration.  Although this may
seem to imply that monolithic PZT laminae are more desirable for
inclusion in piezoelectric actuated structures, manufacturing and
poling nonplanar composite structures with solid PZT layers may not
be practical.  Piezoelectric fibers on the other hand could be
incorporated into complex composite aerospace structures using, for
the most part, established fiber composite construction techniques.

Figure 6 displays the twist actuation capabilities of the
DAP/PFC blade design.  Structurally, the DAP/PFC blade is identical
to the IDE/PFC blade design, although the DAP/PFC blade utilizes
conventional poling of the piezoelectric fibers.  Relatively low
nonresonant twist actuation is demonstrated for this actuation case,
i.e., around ±0.2° to ±0.25° of elastic twist.

Comparison of the elastic twist actuation response of all three
cases is shown in Fig. 7.  The effect of the large free-strain
anisotropies present in the IDE schemes on the magnitude of elastic
twist is readily apparent.  Both IDE poling cases exhibit generally
four to five times the twist actuation magnitudes of the
conventionally poled configuration.  Such magnitudes of elastic twist
are generally regarded as being sufficient for practical use in a
vibration reduction scheme using individually controllable blade
twist.

5. CONCLUSIONS

A simple helicopter rotor blade aeroelasticity analysis was
developed and used to numerically demonstrate the twist actuation
potential of embedded piezoelectric actuators for three nominally
full-scale helicopter rotor blade designs.  It was numerically
demonstrated that useful nonresonant levels of oscillatory blade twist,
i.e., on the order of ±1°, can potentially be produced without the
addition of an excessive amount of piezoelectric actuator mass or
saturation of the piezoelectric actuator materials, using an
interdigitated electrode poling scheme with either a piezoelectric
fiber composite or monolithic PZT actuation design.

The analysis and numerical model in its present form (i.e., with
rigid flapping, elastic torsion and stall aerodynamics), should be
sufficient for an examination of  the potential of piezoelectric twist
actuation to alleviate high oscillatory control loads induced by blade
stall flutter (Ham and Young, 1966).  Such a study is underway by
the authors.  Improvements to this model, such as the addition of
multiple flapwise bending modes and a simple nonuniform inflow
model, are also being undertaken.
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